rust/src/libcore/ptr.rs

600 lines
19 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2012-12-10 17:44:02 -06:00
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2014-05-07 14:12:24 -05:00
// FIXME: talk about offset, copy_memory, copy_nonoverlapping_memory
//! Raw, unsafe pointers, `*const T`, and `*mut T`
2014-04-07 16:00:19 -05:00
//!
//! *[See also the pointer primitive types](../primitive.pointer.html).*
2012-03-10 02:04:09 -06:00
2015-01-23 23:48:20 -06:00
#![stable(feature = "rust1", since = "1.0.0")]
2013-07-02 14:47:32 -05:00
use clone::Clone;
2014-04-30 22:17:50 -05:00
use intrinsics;
use ops::{CoerceUnsized, Deref};
use fmt;
use hash;
2015-01-03 21:42:21 -06:00
use option::Option::{self, Some, None};
use marker::{Copy, PhantomData, Send, Sized, Sync, Unsize};
use mem;
use nonzero::NonZero;
use cmp::{PartialEq, Eq, Ord, PartialOrd};
2015-01-03 21:42:21 -06:00
use cmp::Ordering::{self, Less, Equal, Greater};
// FIXME #19649: intrinsic docs don't render, so these have no docs :(
2014-12-08 19:12:35 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub use intrinsics::copy_nonoverlapping;
2014-12-08 19:12:35 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub use intrinsics::copy;
2014-12-08 19:12:35 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub use intrinsics::write_bytes;
2014-12-08 19:12:35 -06:00
/// Creates a null raw pointer.
2014-04-07 16:00:19 -05:00
///
2014-12-08 19:12:35 -06:00
/// # Examples
2014-04-07 16:00:19 -05:00
///
/// ```
/// use std::ptr;
///
/// let p: *const i32 = ptr::null();
2014-04-07 16:00:19 -05:00
/// assert!(p.is_null());
/// ```
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub const fn null<T>() -> *const T { 0 as *const T }
2012-04-03 23:56:16 -05:00
2014-12-08 19:12:35 -06:00
/// Creates a null mutable raw pointer.
2014-04-07 16:00:19 -05:00
///
2014-12-08 19:12:35 -06:00
/// # Examples
2014-04-07 16:00:19 -05:00
///
/// ```
/// use std::ptr;
///
/// let p: *mut i32 = ptr::null_mut();
2014-04-07 16:00:19 -05:00
/// assert!(p.is_null());
/// ```
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub const fn null_mut<T>() -> *mut T { 0 as *mut T }
2014-12-08 19:12:35 -06:00
/// Swaps the values at two mutable locations of the same type, without
2015-10-13 08:44:11 -05:00
/// deinitializing either. They may overlap, unlike `mem::swap` which is
/// otherwise equivalent.
2014-12-08 19:12:35 -06:00
///
/// # Safety
///
/// This is only unsafe because it accepts a raw pointer.
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-02-14 17:42:01 -06:00
pub unsafe fn swap<T>(x: *mut T, y: *mut T) {
// Give ourselves some scratch space to work with
let mut tmp: T = mem::uninitialized();
// Perform the swap
copy_nonoverlapping(x, &mut tmp, 1);
copy(y, x, 1); // `x` and `y` may overlap
copy_nonoverlapping(&tmp, y, 1);
// y and t now point to the same thing, but we need to completely forget `tmp`
// because it's no longer relevant.
core: Remove the cast module This commit revisits the `cast` module in libcore and libstd, and scrutinizes all functions inside of it. The result was to remove the `cast` module entirely, folding all functionality into the `mem` module. Specifically, this is the fate of each function in the `cast` module. * transmute - This function was moved to `mem`, but it is now marked as #[unstable]. This is due to planned changes to the `transmute` function and how it can be invoked (see the #[unstable] comment). For more information, see RFC 5 and #12898 * transmute_copy - This function was moved to `mem`, with clarification that is is not an error to invoke it with T/U that are different sizes, but rather that it is strongly discouraged. This function is now #[stable] * forget - This function was moved to `mem` and marked #[stable] * bump_box_refcount - This function was removed due to the deprecation of managed boxes as well as its questionable utility. * transmute_mut - This function was previously deprecated, and removed as part of this commit. * transmute_mut_unsafe - This function doesn't serve much of a purpose when it can be achieved with an `as` in safe code, so it was removed. * transmute_lifetime - This function was removed because it is likely a strong indication that code is incorrect in the first place. * transmute_mut_lifetime - This function was removed for the same reasons as `transmute_lifetime` * copy_lifetime - This function was moved to `mem`, but it is marked `#[unstable]` now due to the likelihood of being removed in the future if it is found to not be very useful. * copy_mut_lifetime - This function was also moved to `mem`, but had the same treatment as `copy_lifetime`. * copy_lifetime_vec - This function was removed because it is not used today, and its existence is not necessary with DST (copy_lifetime will suffice). In summary, the cast module was stripped down to these functions, and then the functions were moved to the `mem` module. transmute - #[unstable] transmute_copy - #[stable] forget - #[stable] copy_lifetime - #[unstable] copy_mut_lifetime - #[unstable] [breaking-change]
2014-05-09 12:34:51 -05:00
mem::forget(tmp);
}
2014-12-08 19:12:35 -06:00
/// Replaces the value at `dest` with `src`, returning the old
/// value, without dropping either.
///
/// # Safety
///
/// This is only unsafe because it accepts a raw pointer.
/// Otherwise, this operation is identical to `mem::replace`.
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-02-14 17:42:01 -06:00
pub unsafe fn replace<T>(dest: *mut T, mut src: T) -> T {
mem::swap(&mut *dest, &mut src); // cannot overlap
src
}
2015-02-05 18:57:28 -06:00
/// Reads the value from `src` without moving it. This leaves the
2014-12-08 19:12:35 -06:00
/// memory in `src` unchanged.
///
/// # Safety
///
/// Beyond accepting a raw pointer, this is unsafe because it semantically
/// moves the value out of `src` without preventing further usage of `src`.
/// If `T` is not `Copy`, then care must be taken to ensure that the value at
/// `src` is not used before the data is overwritten again (e.g. with `write`,
/// `zero_memory`, or `copy_memory`). Note that `*src = foo` counts as a use
/// because it will attempt to drop the value previously at `*src`.
#[inline(always)]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-06-25 14:47:34 -05:00
pub unsafe fn read<T>(src: *const T) -> T {
let mut tmp: T = mem::uninitialized();
copy_nonoverlapping(src, &mut tmp, 1);
tmp
}
/// Variant of read_and_zero that writes the specific drop-flag byte
/// (which may be more appropriate than zero).
#[inline(always)]
#[unstable(feature = "filling_drop",
reason = "may play a larger role in std::ptr future extensions",
issue = "5016")]
pub unsafe fn read_and_drop<T>(dest: *mut T) -> T {
// Copy the data out from `dest`:
let tmp = read(&*dest);
// Now mark `dest` as dropped:
write_bytes(dest, mem::POST_DROP_U8, 1);
tmp
}
/// Overwrites a memory location with the given value without reading or
/// dropping the old value.
///
2014-12-08 19:12:35 -06:00
/// # Safety
///
/// This operation is marked unsafe because it accepts a raw pointer.
///
/// It does not drop the contents of `dst`. This is safe, but it could leak
/// allocations or resources, so care must be taken not to overwrite an object
/// that should be dropped.
2014-12-08 19:12:35 -06:00
///
/// This is appropriate for initializing uninitialized memory, or overwriting
/// memory that has previously been `read` from.
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn write<T>(dst: *mut T, src: T) {
intrinsics::move_val_init(&mut *dst, src)
}
2015-03-10 23:13:36 -05:00
#[stable(feature = "rust1", since = "1.0.0")]
#[lang = "const_ptr"]
impl<T: ?Sized> *const T {
/// Returns true if the pointer is null.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
2015-03-18 11:36:18 -05:00
pub fn is_null(self) -> bool where T: Sized {
self == null()
2015-03-10 23:13:36 -05:00
}
/// Returns `None` if the pointer is null, or else returns a reference to
/// the value wrapped in `Some`.
///
/// # Safety
///
/// While this method and its mutable counterpart are useful for
/// null-safety, it is important to note that this is still an unsafe
/// operation because the returned value could be pointing to invalid
/// memory.
#[unstable(feature = "ptr_as_ref",
reason = "Option is not clearly the right return type, and we \
may want to tie the return lifetime to a borrow of \
the raw pointer",
issue = "27780")]
2015-03-10 23:13:36 -05:00
#[inline]
2015-03-18 11:36:18 -05:00
pub unsafe fn as_ref<'a>(&self) -> Option<&'a T> where T: Sized {
2015-03-10 23:13:36 -05:00
if self.is_null() {
None
} else {
Some(&**self)
}
}
/// Calculates the offset from a pointer. `count` is in units of T; e.g. a
/// `count` of 3 represents a pointer offset of `3 * sizeof::<T>()` bytes.
///
/// # Safety
///
2015-04-19 12:17:47 -05:00
/// Both the starting and resulting pointer must be either in bounds or one
/// byte past the end of an allocated object. If either pointer is out of
/// bounds or arithmetic overflow occurs then
/// any further use of the returned value will result in undefined behavior.
2015-03-10 23:13:36 -05:00
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub unsafe fn offset(self, count: isize) -> *const T where T: Sized {
intrinsics::offset(self, count)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
#[lang = "mut_ptr"]
impl<T: ?Sized> *mut T {
/// Returns true if the pointer is null.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
2015-03-18 11:36:18 -05:00
pub fn is_null(self) -> bool where T: Sized {
self == null_mut()
2015-03-10 23:13:36 -05:00
}
/// Returns `None` if the pointer is null, or else returns a reference to
/// the value wrapped in `Some`.
///
/// # Safety
///
/// While this method and its mutable counterpart are useful for
/// null-safety, it is important to note that this is still an unsafe
/// operation because the returned value could be pointing to invalid
/// memory.
#[unstable(feature = "ptr_as_ref",
reason = "Option is not clearly the right return type, and we \
may want to tie the return lifetime to a borrow of \
the raw pointer",
issue = "27780")]
2015-03-10 23:13:36 -05:00
#[inline]
2015-03-18 11:36:18 -05:00
pub unsafe fn as_ref<'a>(&self) -> Option<&'a T> where T: Sized {
2015-03-10 23:13:36 -05:00
if self.is_null() {
None
} else {
Some(&**self)
}
}
/// Calculates the offset from a pointer. `count` is in units of T; e.g. a
/// `count` of 3 represents a pointer offset of `3 * sizeof::<T>()` bytes.
///
/// # Safety
///
/// The offset must be in-bounds of the object, or one-byte-past-the-end.
2015-10-13 08:44:11 -05:00
/// Otherwise `offset` invokes Undefined Behavior, regardless of whether
2015-03-10 23:13:36 -05:00
/// the pointer is used.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub unsafe fn offset(self, count: isize) -> *mut T where T: Sized {
intrinsics::offset(self, count) as *mut T
}
/// Returns `None` if the pointer is null, or else returns a mutable
/// reference to the value wrapped in `Some`.
///
/// # Safety
///
/// As with `as_ref`, this is unsafe because it cannot verify the validity
/// of the returned pointer.
#[unstable(feature = "ptr_as_ref",
2015-03-10 23:13:36 -05:00
reason = "return value does not necessarily convey all possible \
information",
issue = "27780")]
2015-03-10 23:13:36 -05:00
#[inline]
2015-03-18 11:36:18 -05:00
pub unsafe fn as_mut<'a>(&self) -> Option<&'a mut T> where T: Sized {
2015-03-10 23:13:36 -05:00
if self.is_null() {
None
} else {
Some(&mut **self)
}
}
}
// Equality for pointers
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> PartialEq for *const T {
#[inline]
fn eq(&self, other: &*const T) -> bool { *self == *other }
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Eq for *const T {}
2014-03-22 15:30:45 -05:00
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> PartialEq for *mut T {
#[inline]
fn eq(&self, other: &*mut T) -> bool { *self == *other }
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Eq for *mut T {}
2014-03-22 15:30:45 -05:00
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Clone for *const T {
#[inline]
2014-06-25 14:47:34 -05:00
fn clone(&self) -> *const T {
*self
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Clone for *mut T {
#[inline]
fn clone(&self) -> *mut T {
*self
}
}
// Impls for function pointers
macro_rules! fnptr_impls_safety_abi {
($FnTy: ty, $($Arg: ident),*) => {
#[stable(feature = "rust1", since = "1.0.0")]
impl<Ret, $($Arg),*> Clone for $FnTy {
#[inline]
fn clone(&self) -> Self {
*self
}
}
#[stable(feature = "fnptr_impls", since = "1.4.0")]
impl<Ret, $($Arg),*> PartialEq for $FnTy {
#[inline]
fn eq(&self, other: &Self) -> bool {
*self as usize == *other as usize
}
}
#[stable(feature = "fnptr_impls", since = "1.4.0")]
impl<Ret, $($Arg),*> Eq for $FnTy {}
#[stable(feature = "fnptr_impls", since = "1.4.0")]
impl<Ret, $($Arg),*> PartialOrd for $FnTy {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
(*self as usize).partial_cmp(&(*other as usize))
}
}
#[stable(feature = "fnptr_impls", since = "1.4.0")]
impl<Ret, $($Arg),*> Ord for $FnTy {
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
(*self as usize).cmp(&(*other as usize))
}
}
#[stable(feature = "fnptr_impls", since = "1.4.0")]
impl<Ret, $($Arg),*> hash::Hash for $FnTy {
fn hash<HH: hash::Hasher>(&self, state: &mut HH) {
state.write_usize(*self as usize)
}
}
#[stable(feature = "fnptr_impls", since = "1.4.0")]
impl<Ret, $($Arg),*> fmt::Pointer for $FnTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&(*self as *const ()), f)
}
}
#[stable(feature = "fnptr_impls", since = "1.4.0")]
impl<Ret, $($Arg),*> fmt::Debug for $FnTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&(*self as *const ()), f)
}
}
}
}
macro_rules! fnptr_impls_args {
($($Arg: ident),*) => {
fnptr_impls_safety_abi! { extern "Rust" fn($($Arg),*) -> Ret, $($Arg),* }
fnptr_impls_safety_abi! { extern "C" fn($($Arg),*) -> Ret, $($Arg),* }
fnptr_impls_safety_abi! { unsafe extern "Rust" fn($($Arg),*) -> Ret, $($Arg),* }
fnptr_impls_safety_abi! { unsafe extern "C" fn($($Arg),*) -> Ret, $($Arg),* }
}
}
fnptr_impls_args! { }
fnptr_impls_args! { A }
fnptr_impls_args! { A, B }
fnptr_impls_args! { A, B, C }
fnptr_impls_args! { A, B, C, D }
fnptr_impls_args! { A, B, C, D, E }
fnptr_impls_args! { A, B, C, D, E, F }
fnptr_impls_args! { A, B, C, D, E, F, G }
fnptr_impls_args! { A, B, C, D, E, F, G, H }
fnptr_impls_args! { A, B, C, D, E, F, G, H, I }
fnptr_impls_args! { A, B, C, D, E, F, G, H, I, J }
fnptr_impls_args! { A, B, C, D, E, F, G, H, I, J, K }
fnptr_impls_args! { A, B, C, D, E, F, G, H, I, J, K, L }
2012-08-27 18:26:35 -05:00
// Comparison for pointers
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Ord for *const T {
#[inline]
2014-12-12 11:44:22 -06:00
fn cmp(&self, other: &*const T) -> Ordering {
if self < other {
2014-12-12 11:44:22 -06:00
Less
} else if self == other {
2014-12-12 11:44:22 -06:00
Equal
} else {
2014-12-12 11:44:22 -06:00
Greater
}
}
2014-12-12 11:44:22 -06:00
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> PartialOrd for *const T {
2014-12-12 11:44:22 -06:00
#[inline]
fn partial_cmp(&self, other: &*const T) -> Option<Ordering> {
Some(self.cmp(other))
}
#[inline]
2014-06-25 14:47:34 -05:00
fn lt(&self, other: &*const T) -> bool { *self < *other }
#[inline]
fn le(&self, other: &*const T) -> bool { *self <= *other }
#[inline]
fn gt(&self, other: &*const T) -> bool { *self > *other }
#[inline]
fn ge(&self, other: &*const T) -> bool { *self >= *other }
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Ord for *mut T {
#[inline]
2014-12-12 11:44:22 -06:00
fn cmp(&self, other: &*mut T) -> Ordering {
if self < other {
2014-12-12 11:44:22 -06:00
Less
} else if self == other {
2014-12-12 11:44:22 -06:00
Equal
} else {
2014-12-12 11:44:22 -06:00
Greater
}
}
2014-12-12 11:44:22 -06:00
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> PartialOrd for *mut T {
2014-12-12 11:44:22 -06:00
#[inline]
fn partial_cmp(&self, other: &*mut T) -> Option<Ordering> {
Some(self.cmp(other))
}
#[inline]
2014-04-30 22:17:50 -05:00
fn lt(&self, other: &*mut T) -> bool { *self < *other }
#[inline]
fn le(&self, other: &*mut T) -> bool { *self <= *other }
#[inline]
fn gt(&self, other: &*mut T) -> bool { *self > *other }
#[inline]
fn ge(&self, other: &*mut T) -> bool { *self >= *other }
}
2014-12-06 10:39:25 -06:00
/// A wrapper around a raw `*mut T` that indicates that the possessor
/// of this wrapper owns the referent. This in turn implies that the
/// `Unique<T>` is `Send`/`Sync` if `T` is `Send`/`Sync`, unlike a raw
/// `*mut T` (which conveys no particular ownership semantics). It
/// also implies that the referent of the pointer should not be
/// modified without a unique path to the `Unique` reference. Useful
/// for building abstractions like `Vec<T>` or `Box<T>`, which
2014-12-06 10:39:25 -06:00
/// internally use raw pointers to manage the memory that they own.
#[unstable(feature = "unique", reason = "needs an RFC to flesh out design",
issue = "27730")]
pub struct Unique<T: ?Sized> {
pointer: NonZero<*const T>,
// NOTE: this marker has no consequences for variance, but is necessary
// for dropck to understand that we logically own a `T`.
//
// For details, see:
// https://github.com/rust-lang/rfcs/blob/master/text/0769-sound-generic-drop.md#phantom-data
_marker: PhantomData<T>,
}
2014-12-06 10:39:25 -06:00
/// `Unique` pointers are `Send` if `T` is `Send` because the data they
2014-12-06 10:39:25 -06:00
/// reference is unaliased. Note that this aliasing invariant is
/// unenforced by the type system; the abstraction using the
/// `Unique` must enforce it.
#[unstable(feature = "unique", issue = "27730")]
unsafe impl<T: Send + ?Sized> Send for Unique<T> { }
2014-12-06 10:39:25 -06:00
/// `Unique` pointers are `Sync` if `T` is `Sync` because the data they
2014-12-06 10:39:25 -06:00
/// reference is unaliased. Note that this aliasing invariant is
/// unenforced by the type system; the abstraction using the
/// `Unique` must enforce it.
#[unstable(feature = "unique", issue = "27730")]
unsafe impl<T: Sync + ?Sized> Sync for Unique<T> { }
2014-12-06 10:39:25 -06:00
#[unstable(feature = "unique", issue = "27730")]
impl<T: ?Sized> Unique<T> {
/// Creates a new `Unique`.
pub unsafe fn new(ptr: *mut T) -> Unique<T> {
Add trivial cast lints. This permits all coercions to be performed in casts, but adds lints to warn in those cases. Part of this patch moves cast checking to a later stage of type checking. We acquire obligations to check casts as part of type checking where we previously checked them. Once we have type checked a function or module, then we check any cast obligations which have been acquired. That means we have more type information available to check casts (this was crucial to making coercions work properly in place of some casts), but it means that casts cannot feed input into type inference. [breaking change] * Adds two new lints for trivial casts and trivial numeric casts, these are warn by default, but can cause errors if you build with warnings as errors. Previously, trivial numeric casts and casts to trait objects were allowed. * The unused casts lint has gone. * Interactions between casting and type inference have changed in subtle ways. Two ways this might manifest are: - You may need to 'direct' casts more with extra type information, for example, in some cases where `foo as _ as T` succeeded, you may now need to specify the type for `_` - Casts do not influence inference of integer types. E.g., the following used to type check: ``` let x = 42; let y = &x as *const u32; ``` Because the cast would inform inference that `x` must have type `u32`. This no longer applies and the compiler will fallback to `i32` for `x` and thus there will be a type error in the cast. The solution is to add more type information: ``` let x: u32 = 42; let y = &x as *const u32; ```
2015-03-19 23:15:27 -05:00
Unique { pointer: NonZero::new(ptr), _marker: PhantomData }
2014-12-06 10:39:25 -06:00
}
/// Dereferences the content.
pub unsafe fn get(&self) -> &T {
&**self.pointer
}
/// Mutably dereferences the content.
pub unsafe fn get_mut(&mut self) -> &mut T {
&mut ***self
2014-12-06 10:39:25 -06:00
}
}
#[unstable(feature = "unique", issue= "27730")]
impl<T:?Sized> Deref for Unique<T> {
type Target = *mut T;
#[inline]
2015-09-03 04:49:08 -05:00
fn deref(&self) -> &*mut T {
unsafe { mem::transmute(&*self.pointer) }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Pointer for Unique<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&*self.pointer, f)
}
}
/// A wrapper around a raw `*mut T` that indicates that the possessor
/// of this wrapper has shared ownership of the referent. Useful for
/// building abstractions like `Rc<T>` or `Arc<T>`, which internally
/// use raw pointers to manage the memory that they own.
#[unstable(feature = "shared", reason = "needs an RFC to flesh out design",
issue = "0")]
pub struct Shared<T: ?Sized> {
pointer: NonZero<*const T>,
// NOTE: this marker has no consequences for variance, but is necessary
// for dropck to understand that we logically own a `T`.
//
// For details, see:
// https://github.com/rust-lang/rfcs/blob/master/text/0769-sound-generic-drop.md#phantom-data
_marker: PhantomData<T>,
}
/// `Shared` pointers are not `Send` because the data they reference may be aliased.
// NB: This impl is unnecessary, but should provide better error messages.
#[unstable(feature = "shared", issue = "0")]
impl<T: ?Sized> !Send for Shared<T> { }
/// `Shared` pointers are not `Sync` because the data they reference may be aliased.
// NB: This impl is unnecessary, but should provide better error messages.
#[unstable(feature = "shared", issue = "0")]
impl<T: ?Sized> !Sync for Shared<T> { }
#[unstable(feature = "shared", issue = "0")]
impl<T: ?Sized> Shared<T> {
/// Creates a new `Shared`.
pub unsafe fn new(ptr: *mut T) -> Self {
Shared { pointer: NonZero::new(ptr), _marker: PhantomData }
}
}
#[unstable(feature = "shared", issue = "0")]
impl<T: ?Sized> Clone for Shared<T> {
fn clone(&self) -> Self {
*self
}
}
#[unstable(feature = "shared", issue = "0")]
impl<T: ?Sized> Copy for Shared<T> { }
#[cfg(not(stage0))] // remove cfg after new snapshot
#[unstable(feature = "shared", issue = "0")]
impl<T: ?Sized, U: ?Sized> CoerceUnsized<Shared<U>> for Shared<T> where T: Unsize<U> { }
#[unstable(feature = "shared", issue = "0")]
impl<T: ?Sized> Deref for Shared<T> {
type Target = *mut T;
#[inline]
fn deref(&self) -> &*mut T {
unsafe { mem::transmute(&*self.pointer) }
}
}
#[unstable(feature = "shared", issue = "0")]
impl<T> fmt::Pointer for Shared<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&*self.pointer, f)
}
}