rust/src/comp/middle/trans.rs

3734 lines
125 KiB
Rust
Raw Normal View History

import std._str;
import std._uint;
import std._vec;
import std._str.rustrt.sbuf;
import std._vec.rustrt.vbuf;
import std.map;
import std.map.hashmap;
2010-11-03 17:10:37 -07:00
import std.option;
import std.option.some;
import std.option.none;
import front.ast;
import driver.session;
import middle.ty;
import back.x86;
import back.abi;
import middle.ty.pat_ty;
2010-12-15 09:38:23 -08:00
import util.common;
import util.common.append;
import util.common.istr;
import util.common.new_def_hash;
import util.common.new_str_hash;
import lib.llvm.llvm;
import lib.llvm.builder;
import lib.llvm.target_data;
import lib.llvm.type_handle;
import lib.llvm.mk_pass_manager;
import lib.llvm.mk_target_data;
import lib.llvm.mk_type_handle;
import lib.llvm.llvm.ModuleRef;
import lib.llvm.llvm.ValueRef;
import lib.llvm.llvm.TypeRef;
import lib.llvm.llvm.TypeHandleRef;
import lib.llvm.llvm.BuilderRef;
import lib.llvm.llvm.BasicBlockRef;
import lib.llvm.False;
import lib.llvm.True;
state obj namegen(mutable int i) {
fn next(str prefix) -> str {
i += 1;
ret prefix + istr(i);
}
}
type glue_fns = rec(ValueRef activate_glue,
ValueRef yield_glue,
ValueRef exit_task_glue,
vec[ValueRef] upcall_glues,
ValueRef no_op_type_glue);
tag arity { nullary; n_ary; }
type tag_info = rec(type_handle th,
mutable vec[tup(ast.def_id,arity)] variants,
mutable uint size);
state type crate_ctxt = rec(session.session sess,
ModuleRef llmod,
target_data td,
hashmap[str, ValueRef] upcalls,
hashmap[str, ValueRef] intrinsics,
hashmap[str, ValueRef] item_names,
hashmap[ast.def_id, ValueRef] item_ids,
hashmap[ast.def_id, @ast.item] items,
hashmap[ast.def_id, @tag_info] tags,
hashmap[ast.def_id, ValueRef] fn_pairs,
hashmap[ast.def_id,()] obj_methods,
hashmap[@ty.t, ValueRef] tydescs,
2010-12-30 17:01:20 -08:00
vec[ast.obj_field] obj_fields,
@glue_fns glues,
namegen names,
str path);
state type fn_ctxt = rec(ValueRef llfn,
ValueRef lltaskptr,
ValueRef llclosure,
mutable option.t[ValueRef] llself,
mutable option.t[ValueRef] llretptr,
hashmap[ast.def_id, ValueRef] llargs,
2010-12-30 17:01:20 -08:00
hashmap[ast.def_id, ValueRef] llobjfields,
hashmap[ast.def_id, ValueRef] lllocals,
hashmap[ast.def_id, ValueRef] lltydescs,
@crate_ctxt ccx);
tag cleanup {
clean(fn(@block_ctxt cx) -> result);
}
state type block_ctxt = rec(BasicBlockRef llbb,
builder build,
block_parent parent,
bool is_scope,
mutable vec[cleanup] cleanups,
@fn_ctxt fcx);
// FIXME: we should be able to use option.t[@block_parent] here but
// the infinite-tag check in rustboot gets upset.
tag block_parent {
parent_none;
parent_some(@block_ctxt);
}
state type result = rec(mutable @block_ctxt bcx,
mutable ValueRef val);
fn res(@block_ctxt bcx, ValueRef val) -> result {
ret rec(mutable bcx = bcx,
mutable val = val);
}
fn ty_str(TypeRef t) -> str {
ret lib.llvm.type_to_str(t);
}
fn val_ty(ValueRef v) -> TypeRef {
ret llvm.LLVMTypeOf(v);
}
fn val_str(ValueRef v) -> str {
ret ty_str(val_ty(v));
}
// LLVM type constructors.
fn T_void() -> TypeRef {
// Note: For the time being llvm is kinda busted here, it has the notion
// of a 'void' type that can only occur as part of the signature of a
// function, but no general unit type of 0-sized value. This is, afaict,
// vestigial from its C heritage, and we'll be attempting to submit a
// patch upstream to fix it. In the mean time we only model function
// outputs (Rust functions and C functions) using T_void, and model the
// Rust general purpose nil type you can construct as 1-bit (always
// zero). This makes the result incorrect for now -- things like a tuple
// of 10 nil values will have 10-bit size -- but it doesn't seem like we
// have any other options until it's fixed upstream.
ret llvm.LLVMVoidType();
}
fn T_nil() -> TypeRef {
// NB: See above in T_void().
ret llvm.LLVMInt1Type();
}
fn T_i1() -> TypeRef {
ret llvm.LLVMInt1Type();
}
fn T_i8() -> TypeRef {
ret llvm.LLVMInt8Type();
}
fn T_i16() -> TypeRef {
ret llvm.LLVMInt16Type();
}
fn T_i32() -> TypeRef {
ret llvm.LLVMInt32Type();
}
fn T_i64() -> TypeRef {
ret llvm.LLVMInt64Type();
}
fn T_f32() -> TypeRef {
ret llvm.LLVMFloatType();
}
fn T_f64() -> TypeRef {
ret llvm.LLVMDoubleType();
}
fn T_bool() -> TypeRef {
ret T_i1();
}
fn T_int() -> TypeRef {
// FIXME: switch on target type.
ret T_i32();
}
fn T_char() -> TypeRef {
ret T_i32();
}
fn T_fn(vec[TypeRef] inputs, TypeRef output) -> TypeRef {
ret llvm.LLVMFunctionType(output,
_vec.buf[TypeRef](inputs),
_vec.len[TypeRef](inputs),
False);
}
fn T_fn_pair(TypeRef tfn) -> TypeRef {
ret T_struct(vec(T_ptr(tfn),
T_opaque_closure_ptr()));
}
fn T_ptr(TypeRef t) -> TypeRef {
ret llvm.LLVMPointerType(t, 0u);
}
fn T_struct(vec[TypeRef] elts) -> TypeRef {
ret llvm.LLVMStructType(_vec.buf[TypeRef](elts),
_vec.len[TypeRef](elts),
False);
}
fn T_opaque() -> TypeRef {
ret llvm.LLVMOpaqueType();
}
fn T_task() -> TypeRef {
ret T_struct(vec(T_int(), // Refcount
T_int(), // Delegate pointer
T_int(), // Stack segment pointer
T_int(), // Runtime SP
T_int(), // Rust SP
T_int(), // GC chain
T_int(), // Domain pointer
T_int() // Crate cache pointer
));
}
fn T_tydesc() -> TypeRef {
auto pvoid = T_ptr(T_i8());
auto glue_fn_ty = T_ptr(T_fn(vec(T_taskptr(), pvoid), T_void()));
ret T_struct(vec(pvoid, // first_param
T_int(), // size
T_int(), // align
glue_fn_ty, // take_glue_off
glue_fn_ty, // drop_glue_off
glue_fn_ty, // free_glue_off
glue_fn_ty, // sever_glue_off
glue_fn_ty, // mark_glue_off
glue_fn_ty, // obj_drop_glue_off
glue_fn_ty)); // is_stateful
}
fn T_array(TypeRef t, uint n) -> TypeRef {
ret llvm.LLVMArrayType(t, n);
}
fn T_vec(TypeRef t) -> TypeRef {
ret T_struct(vec(T_int(), // Refcount
T_int(), // Alloc
T_int(), // Fill
T_array(t, 0u) // Body elements
));
}
fn T_str() -> TypeRef {
ret T_vec(T_i8());
}
fn T_box(TypeRef t) -> TypeRef {
ret T_struct(vec(T_int(), t));
}
2010-09-24 16:41:01 -07:00
fn T_crate() -> TypeRef {
ret T_struct(vec(T_int(), // ptrdiff_t image_base_off
T_int(), // uintptr_t self_addr
T_int(), // ptrdiff_t debug_abbrev_off
T_int(), // size_t debug_abbrev_sz
T_int(), // ptrdiff_t debug_info_off
T_int(), // size_t debug_info_sz
T_int(), // size_t activate_glue_off
T_int(), // size_t yield_glue_off
T_int(), // size_t unwind_glue_off
T_int(), // size_t gc_glue_off
T_int(), // size_t main_exit_task_glue_off
T_int(), // int n_rust_syms
T_int(), // int n_c_syms
T_int() // int n_libs
2010-09-24 16:41:01 -07:00
));
}
fn T_double() -> TypeRef {
ret llvm.LLVMDoubleType();
}
fn T_taskptr() -> TypeRef {
ret T_ptr(T_task());
}
fn T_typaram_ptr() -> TypeRef {
ret T_ptr(T_i8());
}
fn T_closure_ptr(TypeRef lltarget_ty,
TypeRef llbindings_ty) -> TypeRef {
ret T_ptr(T_box(T_struct(vec(T_ptr(T_tydesc()),
lltarget_ty,
llbindings_ty)
// FIXME: add captured typarams.
)));
}
fn T_opaque_closure_ptr() -> TypeRef {
ret T_closure_ptr(T_struct(vec(T_ptr(T_nil()),
T_ptr(T_nil()))),
T_nil());
}
fn type_of(@crate_ctxt cx, @ty.t t) -> TypeRef {
let TypeRef llty = type_of_inner(cx, t);
check (llty as int != 0);
llvm.LLVMAddTypeName(cx.llmod, _str.buf(ty.ty_to_str(t)), llty);
ret llty;
}
// NB: this must match trans_args and create_llargs_for_fn_args.
fn type_of_fn_full(@crate_ctxt cx,
option.t[TypeRef] obj_self,
vec[ty.arg] inputs,
@ty.t output) -> TypeRef {
let vec[TypeRef] atys = vec(T_taskptr());
auto fn_ty = ty.plain_ty(ty.ty_fn(inputs, output));
auto ty_param_count = ty.count_ty_params(fn_ty);
auto i = 0u;
while (i < ty_param_count) {
atys += T_ptr(T_tydesc());
i += 1u;
}
if (ty.type_has_dynamic_size(output)) {
atys += T_typaram_ptr();
}
alt (obj_self) {
case (some[TypeRef](?t)) {
check (t as int != 0);
atys += t;
}
case (_) {
atys += T_opaque_closure_ptr();
}
}
for (ty.arg arg in inputs) {
if (ty.type_has_dynamic_size(arg.ty)) {
check (arg.mode == ast.alias);
atys += T_typaram_ptr();
} else {
let TypeRef t = type_of(cx, arg.ty);
alt (arg.mode) {
case (ast.alias) {
t = T_ptr(t);
}
case (_) { /* fall through */ }
}
atys += t;
}
}
auto ret_ty;
if (ty.type_is_nil(output) || ty.type_has_dynamic_size(output)) {
ret_ty = llvm.LLVMVoidType();
} else {
ret_ty = type_of(cx, output);
}
ret T_fn(atys, ret_ty);
}
fn type_of_fn(@crate_ctxt cx, vec[ty.arg] inputs, @ty.t output) -> TypeRef {
ret type_of_fn_full(cx, none[TypeRef], inputs, output);
}
fn type_of_inner(@crate_ctxt cx, @ty.t t) -> TypeRef {
2010-11-03 16:43:12 -07:00
alt (t.struct) {
case (ty.ty_nil) { ret T_nil(); }
case (ty.ty_bool) { ret T_bool(); }
case (ty.ty_int) { ret T_int(); }
case (ty.ty_uint) { ret T_int(); }
case (ty.ty_machine(?tm)) {
alt (tm) {
case (common.ty_i8) { ret T_i8(); }
case (common.ty_u8) { ret T_i8(); }
case (common.ty_i16) { ret T_i16(); }
case (common.ty_u16) { ret T_i16(); }
case (common.ty_i32) { ret T_i32(); }
case (common.ty_u32) { ret T_i32(); }
case (common.ty_i64) { ret T_i64(); }
case (common.ty_u64) { ret T_i64(); }
case (common.ty_f32) { ret T_f32(); }
case (common.ty_f64) { ret T_f64(); }
}
}
case (ty.ty_char) { ret T_char(); }
case (ty.ty_str) { ret T_ptr(T_str()); }
case (ty.ty_tag(?tag_id)) {
ret llvm.LLVMResolveTypeHandle(cx.tags.get(tag_id).th.llth);
}
case (ty.ty_box(?t)) {
ret T_ptr(T_box(type_of(cx, t)));
}
case (ty.ty_vec(?t)) {
ret T_ptr(T_vec(type_of(cx, t)));
}
case (ty.ty_tup(?elts)) {
let vec[TypeRef] tys = vec();
for (@ty.t elt in elts) {
tys += type_of(cx, elt);
}
ret T_struct(tys);
}
case (ty.ty_rec(?fields)) {
let vec[TypeRef] tys = vec();
for (ty.field f in fields) {
tys += type_of(cx, f.ty);
}
ret T_struct(tys);
}
case (ty.ty_fn(?args, ?out)) {
ret T_fn_pair(type_of_fn(cx, args, out));
}
case (ty.ty_obj(?meths)) {
auto th = mk_type_handle();
auto self_ty = llvm.LLVMResolveTypeHandle(th.llth);
let vec[TypeRef] mtys = vec();
for (ty.method m in meths) {
let TypeRef mty =
type_of_fn_full(cx,
some[TypeRef](self_ty),
m.inputs, m.output);
mtys += T_ptr(mty);
}
let TypeRef vtbl = T_struct(mtys);
let TypeRef body = T_struct(vec(T_ptr(T_tydesc()),
T_nil()));
let TypeRef pair =
T_struct(vec(T_ptr(vtbl),
T_ptr(T_box(body))));
auto abs_pair = llvm.LLVMResolveTypeHandle(th.llth);
llvm.LLVMRefineType(abs_pair, pair);
abs_pair = llvm.LLVMResolveTypeHandle(th.llth);
ret abs_pair;
}
case (ty.ty_var(_)) {
2010-11-03 16:43:12 -07:00
log "ty_var in trans.type_of";
fail;
}
case (ty.ty_param(_)) {
ret T_typaram_ptr();
}
}
fail;
}
fn type_of_arg(@crate_ctxt cx, &ty.arg arg) -> TypeRef {
auto ty = type_of(cx, arg.ty);
if (arg.mode == ast.alias) {
ty = T_ptr(ty);
}
ret ty;
}
// Name sanitation. LLVM will happily accept identifiers with weird names, but
// gas doesn't!
fn sanitize(str s) -> str {
auto result = "";
for (u8 c in s) {
if (c == ('@' as u8)) {
result += "boxed_";
} else {
if (c == (',' as u8)) {
result += "_";
} else {
if (c == ('{' as u8) || c == ('(' as u8)) {
result += "_of_";
} else {
if (c != 10u8 && c != ('}' as u8) && c != (')' as u8) &&
c != (' ' as u8) && c != ('\t' as u8) &&
c != (';' as u8)) {
auto v = vec(c);
result += _str.from_bytes(v);
}
}
}
}
}
ret result;
}
// LLVM constant constructors.
fn C_null(TypeRef t) -> ValueRef {
ret llvm.LLVMConstNull(t);
}
fn C_integral(int i, TypeRef t) -> ValueRef {
// FIXME. We can't use LLVM.ULongLong with our existing minimal native
// API, which only knows word-sized args. Lucky for us LLVM has a "take a
// string encoding" version. Hilarious. Please fix to handle:
//
// ret llvm.LLVMConstInt(T_int(), t as LLVM.ULongLong, False);
//
ret llvm.LLVMConstIntOfString(t, _str.buf(istr(i)), 10);
}
fn C_nil() -> ValueRef {
// NB: See comment above in T_void().
ret C_integral(0, T_i1());
}
fn C_bool(bool b) -> ValueRef {
if (b) {
ret C_integral(1, T_bool());
} else {
ret C_integral(0, T_bool());
}
}
fn C_int(int i) -> ValueRef {
ret C_integral(i, T_int());
}
fn C_str(@crate_ctxt cx, str s) -> ValueRef {
auto sc = llvm.LLVMConstString(_str.buf(s), _str.byte_len(s), False);
auto g = llvm.LLVMAddGlobal(cx.llmod, val_ty(sc),
_str.buf(cx.names.next("str")));
llvm.LLVMSetInitializer(g, sc);
llvm.LLVMSetGlobalConstant(g, True);
llvm.LLVMSetLinkage(g, lib.llvm.LLVMPrivateLinkage
as llvm.Linkage);
ret g;
}
fn C_zero_byte_arr(uint size) -> ValueRef {
auto i = 0u;
let vec[ValueRef] elts = vec();
while (i < size) {
elts += vec(C_integral(0, T_i8()));
i += 1u;
}
ret llvm.LLVMConstArray(T_i8(), _vec.buf[ValueRef](elts),
_vec.len[ValueRef](elts));
}
fn C_struct(vec[ValueRef] elts) -> ValueRef {
ret llvm.LLVMConstStruct(_vec.buf[ValueRef](elts),
_vec.len[ValueRef](elts),
False);
}
2010-11-03 16:43:12 -07:00
fn decl_fn(ModuleRef llmod, str name, uint cc, TypeRef llty) -> ValueRef {
let ValueRef llfn =
llvm.LLVMAddFunction(llmod, _str.buf(name), llty);
llvm.LLVMSetFunctionCallConv(llfn, cc);
ret llfn;
}
2010-11-03 16:43:12 -07:00
fn decl_cdecl_fn(ModuleRef llmod, str name, TypeRef llty) -> ValueRef {
ret decl_fn(llmod, name, lib.llvm.LLVMCCallConv, llty);
}
2010-11-03 16:43:12 -07:00
fn decl_fastcall_fn(ModuleRef llmod, str name, TypeRef llty) -> ValueRef {
ret decl_fn(llmod, name, lib.llvm.LLVMFastCallConv, llty);
}
fn decl_glue(ModuleRef llmod, str s) -> ValueRef {
2010-11-03 16:43:12 -07:00
ret decl_cdecl_fn(llmod, s, T_fn(vec(T_taskptr()), T_void()));
}
fn decl_upcall(ModuleRef llmod, uint _n) -> ValueRef {
// It doesn't actually matter what type we come up with here, at the
// moment, as we cast the upcall function pointers to int before passing
// them to the indirect upcall-invocation glue. But eventually we'd like
// to call them directly, once we have a calling convention worked out.
let int n = _n as int;
let str s = abi.upcall_glue_name(n);
let vec[TypeRef] args =
vec(T_taskptr(), // taskptr
T_int()) // callee
+ _vec.init_elt[TypeRef](T_int(), n as uint);
2010-11-03 16:43:12 -07:00
ret decl_fastcall_fn(llmod, s, T_fn(args, T_int()));
}
fn get_upcall(@crate_ctxt cx, str name, int n_args) -> ValueRef {
if (cx.upcalls.contains_key(name)) {
ret cx.upcalls.get(name);
}
auto inputs = vec(T_taskptr());
inputs += _vec.init_elt[TypeRef](T_int(), n_args as uint);
auto output = T_int();
2010-11-03 16:43:12 -07:00
auto f = decl_cdecl_fn(cx.llmod, name, T_fn(inputs, output));
cx.upcalls.insert(name, f);
ret f;
}
fn trans_upcall(@block_ctxt cx, str name, vec[ValueRef] args) -> result {
let int n = _vec.len[ValueRef](args) as int;
let ValueRef llupcall = get_upcall(cx.fcx.ccx, name, n);
llupcall = llvm.LLVMConstPointerCast(llupcall, T_int());
let ValueRef llglue = cx.fcx.ccx.glues.upcall_glues.(n);
let vec[ValueRef] call_args = vec(cx.fcx.lltaskptr, llupcall);
for (ValueRef a in args) {
call_args += cx.build.ZExtOrBitCast(a, T_int());
}
ret res(cx, cx.build.FastCall(llglue, call_args));
}
fn trans_non_gc_free(@block_ctxt cx, ValueRef v) -> result {
ret trans_upcall(cx, "upcall_free", vec(cx.build.PtrToInt(v, T_int()),
C_int(0)));
}
fn find_scope_cx(@block_ctxt cx) -> @block_ctxt {
if (cx.is_scope) {
ret cx;
}
alt (cx.parent) {
case (parent_some(?b)) {
be find_scope_cx(b);
}
case (parent_none) {
fail;
}
}
}
fn size_of(TypeRef t) -> ValueRef {
ret llvm.LLVMConstIntCast(lib.llvm.llvm.LLVMSizeOf(t), T_int(), False);
}
fn align_of(TypeRef t) -> ValueRef {
ret llvm.LLVMConstIntCast(lib.llvm.llvm.LLVMAlignOf(t), T_int(), False);
}
fn trans_malloc_inner(@block_ctxt cx, TypeRef llptr_ty) -> result {
auto llbody_ty = lib.llvm.llvm.LLVMGetElementType(llptr_ty);
// FIXME: need a table to collect tydesc globals.
auto tydesc = C_int(0);
auto sz = size_of(llbody_ty);
auto sub = trans_upcall(cx, "upcall_malloc", vec(sz, tydesc));
sub.val = sub.bcx.build.IntToPtr(sub.val, llptr_ty);
ret sub;
}
fn trans_malloc(@block_ctxt cx, @ty.t t) -> result {
auto scope_cx = find_scope_cx(cx);
auto llptr_ty = type_of(cx.fcx.ccx, t);
auto sub = trans_malloc_inner(cx, llptr_ty);
scope_cx.cleanups += clean(bind drop_ty(_, sub.val, t));
ret sub;
}
// Type descriptor and type glue stuff
// Given a type and a field index into its corresponding type descriptor,
// returns an LLVM ValueRef of that field from the tydesc, generating the
// tydesc if necessary.
fn field_of_tydesc(@block_ctxt cx, @ty.t t, int field) -> ValueRef {
auto tydesc = get_tydesc(cx, t);
ret cx.build.GEP(tydesc, vec(C_int(0), C_int(field)));
}
fn get_tydesc(&@block_ctxt cx, @ty.t t) -> ValueRef {
// Is the supplied type a type param? If so, return the passed-in tydesc.
alt (ty.type_param(t)) {
case (some[ast.def_id](?id)) { ret cx.fcx.lltydescs.get(id); }
case (none[ast.def_id]) { /* fall through */ }
}
// Does it contain a type param? If so, generate a derived tydesc.
if (ty.count_ty_params(t) > 0u) {
log "TODO: trans.get_tydesc(): generate a derived type descriptor";
fail;
}
// Otherwise, generate a tydesc if necessary, and return it.
if (!cx.fcx.ccx.tydescs.contains_key(t)) {
make_tydesc(cx.fcx.ccx, t);
}
ret cx.fcx.ccx.tydescs.get(t);
}
fn make_tydesc(@crate_ctxt cx, @ty.t t) {
auto tg = make_take_glue;
auto take_glue = make_generic_glue(cx, t, "take", tg);
auto dg = make_drop_glue;
auto drop_glue = make_generic_glue(cx, t, "drop", dg);
auto llty = type_of(cx, t);
auto pvoid = T_ptr(T_i8());
auto glue_fn_ty = T_ptr(T_fn(vec(T_taskptr(), pvoid), T_void()));
auto tydesc = C_struct(vec(C_null(pvoid),
size_of(llty),
align_of(llty),
take_glue, // take_glue_off
drop_glue, // drop_glue_off
C_null(glue_fn_ty), // free_glue_off
C_null(glue_fn_ty), // sever_glue_off
C_null(glue_fn_ty), // mark_glue_off
C_null(glue_fn_ty), // obj_drop_glue_off
C_null(glue_fn_ty))); // is_stateful
auto name = sanitize(cx.names.next("tydesc_" + ty.ty_to_str(t)));
auto gvar = llvm.LLVMAddGlobal(cx.llmod, val_ty(tydesc), _str.buf(name));
llvm.LLVMSetInitializer(gvar, tydesc);
llvm.LLVMSetGlobalConstant(gvar, True);
llvm.LLVMSetLinkage(gvar, lib.llvm.LLVMPrivateLinkage
as llvm.Linkage);
cx.tydescs.insert(t, gvar);
}
fn make_generic_glue(@crate_ctxt cx, @ty.t t, str name,
val_and_ty_fn helper) -> ValueRef {
auto llfnty = T_fn(vec(T_taskptr(), T_ptr(T_i8())), T_void());
auto fn_name = cx.names.next("_rust_" + name) + "." + ty.ty_to_str(t);
fn_name = sanitize(fn_name);
auto llfn = decl_fastcall_fn(cx.llmod, fn_name, llfnty);
auto fcx = new_fn_ctxt(cx, fn_name, llfn);
auto bcx = new_top_block_ctxt(fcx);
auto re;
if (!ty.type_is_scalar(t)) {
auto llty;
if (ty.type_is_structural(t)) {
llty = T_ptr(type_of(cx, t));
} else {
llty = type_of(cx, t);
}
auto llrawptr = llvm.LLVMGetParam(llfn, 1u);
auto llval = bcx.build.BitCast(llrawptr, llty);
2010-12-20 11:40:33 -08:00
re = helper(bcx, llval, t);
} else {
re = res(bcx, C_nil());
}
re.bcx.build.RetVoid();
ret llfn;
}
fn make_take_glue(@block_ctxt cx, ValueRef v, @ty.t t) -> result {
if (ty.type_is_boxed(t)) {
ret incr_refcnt_of_boxed(cx, v);
} else if (ty.type_is_structural(t)) {
ret iter_structural_ty(cx, v, t,
bind incr_all_refcnts(_, _, _));
}
ret res(cx, C_nil());
}
fn incr_refcnt_of_boxed(@block_ctxt cx, ValueRef box_ptr) -> result {
auto rc_ptr = cx.build.GEP(box_ptr, vec(C_int(0),
C_int(abi.box_rc_field_refcnt)));
auto rc = cx.build.Load(rc_ptr);
auto rc_adj_cx = new_sub_block_ctxt(cx, "rc++");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto const_test = cx.build.ICmp(lib.llvm.LLVMIntEQ,
C_int(abi.const_refcount as int), rc);
cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb);
rc = rc_adj_cx.build.Add(rc, C_int(1));
rc_adj_cx.build.Store(rc, rc_ptr);
rc_adj_cx.build.Br(next_cx.llbb);
ret res(next_cx, C_nil());
}
fn make_drop_glue(@block_ctxt cx, ValueRef v, @ty.t t) -> result {
alt (t.struct) {
case (ty.ty_str) {
ret decr_refcnt_and_if_zero(cx, v,
bind trans_non_gc_free(_, v),
"free string",
T_int(), C_int(0));
}
case (ty.ty_vec(_)) {
fn hit_zero(@block_ctxt cx, ValueRef v, @ty.t t) -> result {
auto res = iter_sequence(cx, v, t, bind drop_ty(_,_,_));
// FIXME: switch gc/non-gc on layer of the type.
ret trans_non_gc_free(res.bcx, v);
}
ret decr_refcnt_and_if_zero(cx, v,
bind hit_zero(_, v, t),
"free vector",
T_int(), C_int(0));
}
case (ty.ty_box(?body_ty)) {
fn hit_zero(@block_ctxt cx, ValueRef v, @ty.t body_ty) -> result {
auto body = cx.build.GEP(v,
vec(C_int(0),
C_int(abi.box_rc_field_body)));
auto body_val = load_scalar_or_boxed(cx, body, body_ty);
auto res = drop_ty(cx, body_val, body_ty);
// FIXME: switch gc/non-gc on layer of the type.
ret trans_non_gc_free(res.bcx, v);
}
ret decr_refcnt_and_if_zero(cx, v,
bind hit_zero(_, v, body_ty),
"free box",
T_int(), C_int(0));
}
case (ty.ty_obj(_)) {
fn hit_zero(@block_ctxt cx, ValueRef v) -> result {
// Call through the obj's own fields-drop glue first.
auto body =
cx.build.GEP(v,
vec(C_int(0),
C_int(abi.box_rc_field_body)));
auto fields =
cx.build.GEP(body,
vec(C_int(0),
C_int(abi.obj_body_elt_fields)));
auto llrawptr = cx.build.BitCast(fields, T_ptr(T_i8()));
auto tydescptr =
cx.build.GEP(body,
vec(C_int(0),
C_int(abi.obj_body_elt_tydesc)));
auto tydesc = cx.build.Load(tydescptr);
auto llfnptr =
cx.build.GEP(tydesc,
vec(C_int(0),
C_int(abi.tydesc_field_drop_glue_off)));
auto llfn = cx.build.Load(llfnptr);
cx.build.FastCall(llfn, vec(cx.fcx.lltaskptr, llrawptr));
// Then free the body.
// FIXME: switch gc/non-gc on layer of the type.
ret trans_non_gc_free(cx, v);
}
auto box_cell =
cx.build.GEP(v,
vec(C_int(0),
C_int(abi.obj_field_box)));
auto boxptr = cx.build.Load(box_cell);
ret decr_refcnt_and_if_zero(cx, boxptr,
bind hit_zero(_, boxptr),
"free obj",
T_int(), C_int(0));
}
case (ty.ty_fn(_,_)) {
fn hit_zero(@block_ctxt cx, ValueRef v) -> result {
// Call through the closure's own fields-drop glue first.
auto body =
cx.build.GEP(v,
vec(C_int(0),
C_int(abi.box_rc_field_body)));
auto bindings =
cx.build.GEP(body,
vec(C_int(0),
C_int(abi.closure_elt_bindings)));
auto llrawptr = cx.build.BitCast(bindings, T_ptr(T_i8()));
auto tydescptr =
cx.build.GEP(body,
vec(C_int(0),
C_int(abi.closure_elt_tydesc)));
auto tydesc = cx.build.Load(tydescptr);
auto llfnptr =
cx.build.GEP(tydesc,
vec(C_int(0),
C_int(abi.tydesc_field_drop_glue_off)));
auto llfn = cx.build.Load(llfnptr);
cx.build.FastCall(llfn, vec(cx.fcx.lltaskptr, llrawptr));
// Then free the body.
// FIXME: switch gc/non-gc on layer of the type.
ret trans_non_gc_free(cx, v);
}
auto box_cell =
cx.build.GEP(v,
vec(C_int(0),
C_int(abi.fn_field_box)));
auto boxptr = cx.build.Load(box_cell);
ret decr_refcnt_and_if_zero(cx, boxptr,
bind hit_zero(_, boxptr),
"free fn",
T_int(), C_int(0));
}
case (_) {
if (ty.type_is_structural(t)) {
ret iter_structural_ty(cx, v, t,
bind drop_ty(_, _, _));
} else if (ty.type_is_scalar(t) ||
ty.type_is_nil(t)) {
ret res(cx, C_nil());
}
}
}
cx.fcx.ccx.sess.bug("bad type in trans.make_drop_glue_inner: " +
ty.ty_to_str(t));
fail;
}
fn decr_refcnt_and_if_zero(@block_ctxt cx,
ValueRef box_ptr,
fn(@block_ctxt cx) -> result inner,
str inner_name,
TypeRef t_else, ValueRef v_else) -> result {
auto load_rc_cx = new_sub_block_ctxt(cx, "load rc");
auto rc_adj_cx = new_sub_block_ctxt(cx, "rc--");
auto inner_cx = new_sub_block_ctxt(cx, inner_name);
auto next_cx = new_sub_block_ctxt(cx, "next");
auto null_test = cx.build.IsNull(box_ptr);
cx.build.CondBr(null_test, next_cx.llbb, load_rc_cx.llbb);
auto rc_ptr = load_rc_cx.build.GEP(box_ptr,
vec(C_int(0),
C_int(abi.box_rc_field_refcnt)));
auto rc = load_rc_cx.build.Load(rc_ptr);
auto const_test =
load_rc_cx.build.ICmp(lib.llvm.LLVMIntEQ,
C_int(abi.const_refcount as int), rc);
load_rc_cx.build.CondBr(const_test, next_cx.llbb, rc_adj_cx.llbb);
rc = rc_adj_cx.build.Sub(rc, C_int(1));
rc_adj_cx.build.Store(rc, rc_ptr);
auto zero_test = rc_adj_cx.build.ICmp(lib.llvm.LLVMIntEQ, C_int(0), rc);
rc_adj_cx.build.CondBr(zero_test, inner_cx.llbb, next_cx.llbb);
auto inner_res = inner(inner_cx);
inner_res.bcx.build.Br(next_cx.llbb);
auto phi = next_cx.build.Phi(t_else,
vec(v_else, v_else, v_else, inner_res.val),
vec(cx.llbb,
load_rc_cx.llbb,
rc_adj_cx.llbb,
inner_res.bcx.llbb));
ret res(next_cx, phi);
}
fn type_of_variant(@crate_ctxt cx, &ast.variant v) -> TypeRef {
let vec[TypeRef] lltys = vec();
alt (ty.ann_to_type(v.ann).struct) {
case (ty.ty_fn(?args, _)) {
for (ty.arg arg in args) {
lltys += vec(type_of(cx, arg.ty));
}
}
case (_) { fail; }
}
ret T_struct(lltys);
}
type val_and_ty_fn = fn(@block_ctxt cx, ValueRef v, @ty.t t) -> result;
// Iterates through the elements of a structural type.
fn iter_structural_ty(@block_ctxt cx,
ValueRef v,
@ty.t t,
val_and_ty_fn f)
-> result {
let result r = res(cx, C_nil());
fn iter_boxpp(@block_ctxt cx,
ValueRef box_cell,
val_and_ty_fn f) -> result {
auto box_ptr = cx.build.Load(box_cell);
auto tnil = ty.plain_ty(ty.ty_nil);
auto tbox = ty.plain_ty(ty.ty_box(tnil));
auto inner_cx = new_sub_block_ctxt(cx, "iter box");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto null_test = cx.build.IsNull(box_ptr);
cx.build.CondBr(null_test, next_cx.llbb, inner_cx.llbb);
auto r = f(inner_cx, box_ptr, tbox);
r.bcx.build.Br(next_cx.llbb);
ret res(next_cx, r.val);
}
alt (t.struct) {
case (ty.ty_tup(?args)) {
let int i = 0;
for (@ty.t arg in args) {
auto elt = r.bcx.build.GEP(v, vec(C_int(0), C_int(i)));
2010-12-03 13:03:07 -08:00
r = f(r.bcx,
load_scalar_or_boxed(r.bcx, elt, arg),
2010-12-03 13:03:07 -08:00
arg);
i += 1;
}
}
case (ty.ty_rec(?fields)) {
let int i = 0;
for (ty.field fld in fields) {
auto llfld = r.bcx.build.GEP(v, vec(C_int(0), C_int(i)));
2010-12-03 13:03:07 -08:00
r = f(r.bcx,
load_scalar_or_boxed(r.bcx, llfld, fld.ty),
2010-12-03 13:03:07 -08:00
fld.ty);
i += 1;
}
}
case (ty.ty_tag(?tid)) {
check (cx.fcx.ccx.tags.contains_key(tid));
auto info = cx.fcx.ccx.tags.get(tid);
auto n_variants = _vec.len[tup(ast.def_id,arity)](info.variants);
// Look up the tag in the typechecked AST.
check (cx.fcx.ccx.items.contains_key(tid));
auto tag_item = cx.fcx.ccx.items.get(tid);
let vec[ast.variant] variants = vec(); // FIXME: typestate bug
alt (tag_item.node) {
case (ast.item_tag(_, ?vs, _, _)) {
variants = vs;
}
case (_) {
log "trans: ty_tag doesn't actually refer to a tag";
fail;
}
}
auto lldiscrim_ptr = cx.build.GEP(v, vec(C_int(0), C_int(0)));
auto llunion_ptr = cx.build.GEP(v, vec(C_int(0), C_int(1)));
auto lldiscrim = cx.build.Load(lldiscrim_ptr);
2010-12-03 12:26:27 -08:00
auto unr_cx = new_sub_block_ctxt(cx, "tag-iter-unr");
unr_cx.build.Unreachable();
auto llswitch = cx.build.Switch(lldiscrim, unr_cx.llbb,
n_variants);
2010-12-03 12:26:27 -08:00
auto next_cx = new_sub_block_ctxt(cx, "tag-iter-next");
auto i = 0u;
for (tup(ast.def_id,arity) variant in info.variants) {
auto variant_cx = new_sub_block_ctxt(cx, "tag-iter-variant-" +
_uint.to_str(i, 10u));
llvm.LLVMAddCase(llswitch, C_int(i as int), variant_cx.llbb);
alt (variant._1) {
case (n_ary) {
let vec[ValueRef] vals = vec(C_int(0), C_int(1),
C_int(i as int));
auto llvar = variant_cx.build.GEP(v, vals);
auto llvarty = type_of_variant(cx.fcx.ccx,
variants.(i));
auto fn_ty = ty.ann_to_type(variants.(i).ann);
alt (fn_ty.struct) {
case (ty.ty_fn(?args, _)) {
auto llvarp = variant_cx.build.
TruncOrBitCast(llunion_ptr,
T_ptr(llvarty));
auto j = 0u;
for (ty.arg a in args) {
auto llfldp = variant_cx.build.GEP(llvarp,
vec(C_int(0), C_int(j as int)));
2010-12-03 13:03:07 -08:00
auto llfld =
load_scalar_or_boxed(variant_cx,
llfldp, a.ty);
2010-12-03 13:03:07 -08:00
auto res = f(variant_cx, llfld, a.ty);
variant_cx = res.bcx;
j += 1u;
}
}
case (_) { fail; }
}
variant_cx.build.Br(next_cx.llbb);
}
case (nullary) {
// Nothing to do.
variant_cx.build.Br(next_cx.llbb);
}
}
i += 1u;
}
ret res(next_cx, C_nil());
}
case (ty.ty_fn(_,_)) {
auto box_cell =
cx.build.GEP(v,
vec(C_int(0),
C_int(abi.fn_field_box)));
ret iter_boxpp(cx, box_cell, f);
}
case (ty.ty_obj(_)) {
auto box_cell =
cx.build.GEP(v,
vec(C_int(0),
C_int(abi.obj_field_box)));
ret iter_boxpp(cx, box_cell, f);
}
case (_) {
cx.fcx.ccx.sess.unimpl("type in iter_structural_ty");
}
}
ret r;
}
// Iterates through the elements of a vec or str.
fn iter_sequence(@block_ctxt cx,
ValueRef v,
@ty.t t,
val_and_ty_fn f) -> result {
fn iter_sequence_body(@block_ctxt cx,
ValueRef v,
@ty.t elt_ty,
val_and_ty_fn f,
bool trailing_null) -> result {
auto p0 = cx.build.GEP(v, vec(C_int(0),
C_int(abi.vec_elt_data)));
auto lenptr = cx.build.GEP(v, vec(C_int(0),
C_int(abi.vec_elt_fill)));
auto llunit_ty = type_of(cx.fcx.ccx, elt_ty);
auto unit_sz = size_of(llunit_ty);
auto len = cx.build.Load(lenptr);
if (trailing_null) {
len = cx.build.Sub(len, unit_sz);
}
auto r = res(cx, C_nil());
auto cond_cx = new_scope_block_ctxt(cx, "sequence-iter cond");
auto body_cx = new_scope_block_ctxt(cx, "sequence-iter body");
auto next_cx = new_sub_block_ctxt(cx, "next");
cx.build.Br(cond_cx.llbb);
auto ix = cond_cx.build.Phi(T_int(), vec(C_int(0)), vec(cx.llbb));
auto scaled_ix = cond_cx.build.Phi(T_int(),
vec(C_int(0)), vec(cx.llbb));
auto end_test = cond_cx.build.ICmp(lib.llvm.LLVMIntNE,
scaled_ix, len);
cond_cx.build.CondBr(end_test, body_cx.llbb, next_cx.llbb);
auto elt = body_cx.build.GEP(p0, vec(C_int(0), ix));
auto body_res = f(body_cx,
load_scalar_or_boxed(body_cx, elt, elt_ty),
elt_ty);
auto next_ix = body_res.bcx.build.Add(ix, C_int(1));
auto next_scaled_ix = body_res.bcx.build.Add(scaled_ix, unit_sz);
cond_cx.build.AddIncomingToPhi(ix, vec(next_ix),
vec(body_res.bcx.llbb));
cond_cx.build.AddIncomingToPhi(scaled_ix, vec(next_scaled_ix),
vec(body_res.bcx.llbb));
body_res.bcx.build.Br(cond_cx.llbb);
ret res(next_cx, C_nil());
}
alt (t.struct) {
case (ty.ty_vec(?et)) {
ret iter_sequence_body(cx, v, et, f, false);
}
case (ty.ty_str) {
auto et = ty.plain_ty(ty.ty_machine(common.ty_u8));
ret iter_sequence_body(cx, v, et, f, true);
}
case (_) { fail; }
}
cx.fcx.ccx.sess.bug("bad type in trans.iter_sequence");
fail;
}
fn incr_all_refcnts(@block_ctxt cx,
ValueRef v,
@ty.t t) -> result {
if (!ty.type_is_scalar(t)) {
auto llrawptr = cx.build.BitCast(v, T_ptr(T_i8()));
auto llfnptr = field_of_tydesc(cx, t, abi.tydesc_field_take_glue_off);
auto llfn = cx.build.Load(llfnptr);
cx.build.FastCall(llfn, vec(cx.fcx.lltaskptr, llrawptr));
}
ret res(cx, C_nil());
}
fn drop_slot(@block_ctxt cx,
ValueRef slot,
@ty.t t) -> result {
auto llptr = load_scalar_or_boxed(cx, slot, t);
auto re = drop_ty(cx, llptr, t);
auto llty = val_ty(slot);
auto llelemty = lib.llvm.llvm.LLVMGetElementType(llty);
re.bcx.build.Store(C_null(llelemty), slot);
ret re;
}
fn drop_ty(@block_ctxt cx,
ValueRef v,
@ty.t t) -> result {
if (!ty.type_is_scalar(t)) {
auto llrawptr = cx.build.BitCast(v, T_ptr(T_i8()));
auto llfnptr = field_of_tydesc(cx, t, abi.tydesc_field_drop_glue_off);
auto llfn = cx.build.Load(llfnptr);
cx.build.FastCall(llfn, vec(cx.fcx.lltaskptr, llrawptr));
}
ret res(cx, C_nil());
}
fn build_memcpy(@block_ctxt cx,
ValueRef dst,
ValueRef src,
ValueRef n_bytes) -> result {
// FIXME: switch to the 64-bit variant when on such a platform.
check (cx.fcx.ccx.intrinsics.contains_key("llvm.memcpy.p0i8.p0i8.i32"));
auto memcpy = cx.fcx.ccx.intrinsics.get("llvm.memcpy.p0i8.p0i8.i32");
auto src_ptr = cx.build.PointerCast(src, T_ptr(T_i8()));
auto dst_ptr = cx.build.PointerCast(dst, T_ptr(T_i8()));
auto size = cx.build.IntCast(n_bytes, T_i32());
auto align = cx.build.IntCast(C_int(1), T_i32());
// FIXME: align seems like it should be
// lib.llvm.llvm.LLVMAlignOf(llty);
// but this makes it upset because it's not a constant.
auto volatile = C_integral(0, T_i1());
ret res(cx, cx.build.Call(memcpy,
vec(dst_ptr, src_ptr,
size, align, volatile)));
}
fn memcpy_ty(@block_ctxt cx,
ValueRef dst,
ValueRef src,
@ty.t t) -> result {
if (ty.type_has_dynamic_size(t)) {
auto llszptr = field_of_tydesc(cx, t, abi.tydesc_field_size);
auto llsz = cx.build.Load(llszptr);
ret build_memcpy(cx, dst, src, llsz);
} else {
ret res(cx, cx.build.Store(cx.build.Load(src), dst));
}
}
fn copy_ty(@block_ctxt cx,
bool is_init,
ValueRef dst,
ValueRef src,
@ty.t t) -> result {
if (ty.type_is_scalar(t)) {
ret res(cx, cx.build.Store(src, dst));
} else if (ty.type_is_nil(t)) {
ret res(cx, C_nil());
} else if (ty.type_is_boxed(t)) {
auto r = incr_all_refcnts(cx, src, t);
if (! is_init) {
r = drop_ty(r.bcx, r.bcx.build.Load(dst), t);
}
ret res(r.bcx, r.bcx.build.Store(src, dst));
} else if (ty.type_is_structural(t) ||
ty.type_has_dynamic_size(t)) {
auto r = incr_all_refcnts(cx, src, t);
if (! is_init) {
r = drop_ty(r.bcx, dst, t);
}
ret memcpy_ty(r.bcx, dst, src, t);
}
cx.fcx.ccx.sess.bug("unexpected type in trans.copy_ty: " +
ty.ty_to_str(t));
fail;
}
impure fn trans_lit(@block_ctxt cx, &ast.lit lit, &ast.ann ann) -> result {
alt (lit.node) {
case (ast.lit_int(?i)) {
ret res(cx, C_int(i));
}
case (ast.lit_uint(?u)) {
ret res(cx, C_int(u as int));
}
case (ast.lit_mach_int(?tm, ?i)) {
// FIXME: the entire handling of mach types falls apart
// if target int width is larger than host, at the moment;
// re-do the mach-int types using 'big' when that works.
auto t = T_int();
alt (tm) {
2011-01-17 14:35:57 -08:00
case (common.ty_u8) { t = T_i8(); }
case (common.ty_u16) { t = T_i16(); }
case (common.ty_u32) { t = T_i32(); }
case (common.ty_u64) { t = T_i64(); }
case (common.ty_i8) { t = T_i8(); }
case (common.ty_i16) { t = T_i16(); }
case (common.ty_i32) { t = T_i32(); }
case (common.ty_i64) { t = T_i64(); }
case (_) {
cx.fcx.ccx.sess.bug("bad mach int literal type");
}
}
ret res(cx, C_integral(i, t));
}
case (ast.lit_char(?c)) {
ret res(cx, C_integral(c as int, T_char()));
}
case (ast.lit_bool(?b)) {
ret res(cx, C_bool(b));
}
case (ast.lit_nil) {
ret res(cx, C_nil());
}
case (ast.lit_str(?s)) {
auto len = (_str.byte_len(s) as int) + 1;
auto sub = trans_upcall(cx, "upcall_new_str",
vec(p2i(C_str(cx.fcx.ccx, s)),
C_int(len)));
sub.val = sub.bcx.build.IntToPtr(sub.val,
T_ptr(T_str()));
auto t = node_ann_type(cx.fcx.ccx, ann);
find_scope_cx(cx).cleanups +=
clean(bind drop_ty(_, sub.val, t));
ret sub;
}
}
}
fn target_type(@crate_ctxt cx, @ty.t t) -> @ty.t {
alt (t.struct) {
case (ty.ty_int) {
auto tm = ty.ty_machine(cx.sess.get_targ_cfg().int_type);
ret @rec(struct=tm with *t);
}
case (ty.ty_uint) {
auto tm = ty.ty_machine(cx.sess.get_targ_cfg().uint_type);
ret @rec(struct=tm with *t);
}
case (_) { /* fall through */ }
}
ret t;
}
fn node_ann_type(@crate_ctxt cx, &ast.ann a) -> @ty.t {
alt (a) {
case (ast.ann_none) {
cx.sess.bug("missing type annotation");
}
case (ast.ann_type(?t)) {
ret target_type(cx, t);
}
}
}
fn node_type(@crate_ctxt cx, &ast.ann a) -> TypeRef {
ret type_of(cx, node_ann_type(cx, a));
}
impure fn trans_unary(@block_ctxt cx, ast.unop op,
@ast.expr e, &ast.ann a) -> result {
auto sub = trans_expr(cx, e);
alt (op) {
case (ast.bitnot) {
sub.val = cx.build.Not(sub.val);
ret sub;
}
case (ast.not) {
sub.val = cx.build.Not(sub.val);
ret sub;
}
case (ast.neg) {
// FIXME: switch by signedness.
sub.val = cx.build.Neg(sub.val);
ret sub;
}
case (ast.box) {
auto e_ty = ty.expr_ty(e);
auto e_val = sub.val;
sub = trans_malloc(sub.bcx, node_ann_type(sub.bcx.fcx.ccx, a));
auto box = sub.val;
auto rc = sub.bcx.build.GEP(box,
vec(C_int(0),
C_int(abi.box_rc_field_refcnt)));
auto body = sub.bcx.build.GEP(box,
vec(C_int(0),
C_int(abi.box_rc_field_body)));
sub.bcx.build.Store(C_int(1), rc);
sub = copy_ty(sub.bcx, true, body, e_val, e_ty);
ret res(sub.bcx, box);
}
2010-12-02 19:12:09 -08:00
case (ast.deref) {
sub.val = sub.bcx.build.GEP(sub.val,
vec(C_int(0),
C_int(abi.box_rc_field_body)));
auto e_ty = node_ann_type(sub.bcx.fcx.ccx, a);
if (ty.type_is_scalar(e_ty) ||
ty.type_is_nil(e_ty)) {
2010-12-02 19:12:09 -08:00
sub.val = sub.bcx.build.Load(sub.val);
}
ret sub;
}
}
fail;
}
fn trans_eager_binop(@block_ctxt cx, ast.binop op,
ValueRef lhs, ValueRef rhs) -> ValueRef {
alt (op) {
case (ast.add) { ret cx.build.Add(lhs, rhs); }
case (ast.sub) { ret cx.build.Sub(lhs, rhs); }
// FIXME: switch by signedness.
case (ast.mul) { ret cx.build.Mul(lhs, rhs); }
case (ast.div) { ret cx.build.SDiv(lhs, rhs); }
case (ast.rem) { ret cx.build.SRem(lhs, rhs); }
case (ast.bitor) { ret cx.build.Or(lhs, rhs); }
case (ast.bitand) { ret cx.build.And(lhs, rhs); }
case (ast.bitxor) { ret cx.build.Xor(lhs, rhs); }
case (ast.lsl) { ret cx.build.Shl(lhs, rhs); }
case (ast.lsr) { ret cx.build.LShr(lhs, rhs); }
case (ast.asr) { ret cx.build.AShr(lhs, rhs); }
case (_) {
auto cmp = lib.llvm.LLVMIntEQ;
alt (op) {
case (ast.eq) { cmp = lib.llvm.LLVMIntEQ; }
case (ast.ne) { cmp = lib.llvm.LLVMIntNE; }
// FIXME: switch by signedness.
case (ast.lt) { cmp = lib.llvm.LLVMIntSLT; }
case (ast.le) { cmp = lib.llvm.LLVMIntSLE; }
case (ast.ge) { cmp = lib.llvm.LLVMIntSGE; }
case (ast.gt) { cmp = lib.llvm.LLVMIntSGT; }
}
ret cx.build.ICmp(cmp, lhs, rhs);
}
}
fail;
}
impure fn trans_binary(@block_ctxt cx, ast.binop op,
@ast.expr a, @ast.expr b) -> result {
// First couple cases are lazy:
alt (op) {
case (ast.and) {
// Lazy-eval and
auto lhs_res = trans_expr(cx, a);
auto rhs_cx = new_scope_block_ctxt(cx, "rhs");
auto rhs_res = trans_expr(rhs_cx, b);
auto lhs_false_cx = new_scope_block_ctxt(cx, "lhs false");
auto lhs_false_res = res(lhs_false_cx, C_bool(false));
lhs_res.bcx.build.CondBr(lhs_res.val,
rhs_cx.llbb,
lhs_false_cx.llbb);
ret join_results(cx, T_bool(),
vec(lhs_false_res, rhs_res));
}
case (ast.or) {
// Lazy-eval or
auto lhs_res = trans_expr(cx, a);
auto rhs_cx = new_scope_block_ctxt(cx, "rhs");
auto rhs_res = trans_expr(rhs_cx, b);
auto lhs_true_cx = new_scope_block_ctxt(cx, "lhs true");
auto lhs_true_res = res(lhs_true_cx, C_bool(true));
lhs_res.bcx.build.CondBr(lhs_res.val,
lhs_true_cx.llbb,
rhs_cx.llbb);
ret join_results(cx, T_bool(),
vec(lhs_true_res, rhs_res));
}
case (_) {
// Remaining cases are eager:
auto lhs = trans_expr(cx, a);
auto sub = trans_expr(lhs.bcx, b);
ret res(sub.bcx, trans_eager_binop(sub.bcx, op,
lhs.val, sub.val));
}
}
fail;
}
fn join_results(@block_ctxt parent_cx,
TypeRef t,
vec[result] ins)
-> result {
let vec[result] live = vec();
let vec[ValueRef] vals = vec();
let vec[BasicBlockRef] bbs = vec();
for (result r in ins) {
if (! is_terminated(r.bcx)) {
live += r;
vals += r.val;
bbs += r.bcx.llbb;
}
}
alt (_vec.len[result](live)) {
case (0u) {
// No incoming edges are live, so we're in dead-code-land.
// Arbitrarily pick the first dead edge, since the caller
// is just going to propagate it outward.
check (_vec.len[result](ins) >= 1u);
ret ins.(0);
}
case (1u) {
// Only one incoming edge is live, so we just feed that block
// onward.
ret live.(0);
}
case (_) { /* fall through */ }
}
// We have >1 incoming edges. Make a join block and br+phi them into it.
auto join_cx = new_sub_block_ctxt(parent_cx, "join");
for (result r in live) {
r.bcx.build.Br(join_cx.llbb);
}
auto phi = join_cx.build.Phi(t, vals, bbs);
ret res(join_cx, phi);
}
impure fn trans_if(@block_ctxt cx, @ast.expr cond,
2010-11-03 17:10:37 -07:00
&ast.block thn, &option.t[ast.block] els) -> result {
auto cond_res = trans_expr(cx, cond);
auto then_cx = new_scope_block_ctxt(cx, "then");
auto then_res = trans_block(then_cx, thn);
auto else_cx = new_scope_block_ctxt(cx, "else");
auto else_res = res(else_cx, C_nil());
alt (els) {
case (some[ast.block](?eblk)) {
else_res = trans_block(else_cx, eblk);
}
case (_) { /* fall through */ }
}
cond_res.bcx.build.CondBr(cond_res.val,
then_cx.llbb,
else_cx.llbb);
// FIXME: use inferred type when available.
ret join_results(cx, T_nil(),
vec(then_res, else_res));
}
impure fn trans_while(@block_ctxt cx, @ast.expr cond,
&ast.block body) -> result {
auto cond_cx = new_scope_block_ctxt(cx, "while cond");
auto body_cx = new_scope_block_ctxt(cx, "while loop body");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto body_res = trans_block(body_cx, body);
auto cond_res = trans_expr(cond_cx, cond);
body_res.bcx.build.Br(cond_cx.llbb);
cond_res.bcx.build.CondBr(cond_res.val,
body_cx.llbb,
next_cx.llbb);
cx.build.Br(cond_cx.llbb);
ret res(next_cx, C_nil());
}
impure fn trans_do_while(@block_ctxt cx, &ast.block body,
@ast.expr cond) -> result {
auto body_cx = new_scope_block_ctxt(cx, "do-while loop body");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto body_res = trans_block(body_cx, body);
auto cond_res = trans_expr(body_res.bcx, cond);
cond_res.bcx.build.CondBr(cond_res.val,
body_cx.llbb,
next_cx.llbb);
cx.build.Br(body_cx.llbb);
ret res(next_cx, body_res.val);
}
2010-12-15 09:38:23 -08:00
// Pattern matching translation
// Returns a pointer to the union part of the LLVM representation of a tag
// type, cast to the appropriate type.
fn get_pat_union_ptr(@block_ctxt cx, vec[@ast.pat] subpats, ValueRef llval)
-> ValueRef {
auto llblobptr = cx.build.GEP(llval, vec(C_int(0), C_int(1)));
// Generate the union type.
let vec[TypeRef] llsubpattys = vec();
for (@ast.pat subpat in subpats) {
llsubpattys += vec(type_of(cx.fcx.ccx, pat_ty(subpat)));
}
// Recursively check subpatterns.
auto llunionty = T_struct(llsubpattys);
ret cx.build.TruncOrBitCast(llblobptr, T_ptr(llunionty));
}
impure fn trans_pat_match(@block_ctxt cx, @ast.pat pat, ValueRef llval,
@block_ctxt next_cx) -> result {
alt (pat.node) {
case (ast.pat_wild(_)) { ret res(cx, llval); }
case (ast.pat_bind(_, _, _)) { ret res(cx, llval); }
case (ast.pat_tag(?id, ?subpats, ?vdef_opt, ?ann)) {
auto lltagptr = cx.build.GEP(llval, vec(C_int(0), C_int(0)));
auto lltag = cx.build.Load(lltagptr);
2010-12-15 09:38:23 -08:00
auto vdef = option.get[ast.variant_def](vdef_opt);
auto variant_id = vdef._1;
auto tinfo = cx.fcx.ccx.tags.get(vdef._0);
auto variant_tag = 0;
auto i = 0;
for (tup(ast.def_id,arity) vinfo in tinfo.variants) {
auto this_variant_id = vinfo._0;
if (variant_id._0 == this_variant_id._0 &&
variant_id._1 == this_variant_id._1) {
variant_tag = i;
}
i += 1;
}
auto matched_cx = new_sub_block_ctxt(cx, "matched_cx");
auto lleq = cx.build.ICmp(lib.llvm.LLVMIntEQ, lltag,
C_int(variant_tag));
cx.build.CondBr(lleq, matched_cx.llbb, next_cx.llbb);
if (_vec.len[@ast.pat](subpats) > 0u) {
auto llunionptr = get_pat_union_ptr(matched_cx, subpats,
llval);
auto i = 0;
for (@ast.pat subpat in subpats) {
auto llsubvalptr = matched_cx.build.GEP(llunionptr,
vec(C_int(0),
C_int(i)));
auto llsubval = load_scalar_or_boxed(matched_cx,
2010-12-15 09:38:23 -08:00
llsubvalptr,
pat_ty(subpat));
auto subpat_res = trans_pat_match(matched_cx, subpat,
llsubval, next_cx);
matched_cx = subpat_res.bcx;
}
}
ret res(matched_cx, llval);
}
}
fail;
}
impure fn trans_pat_binding(@block_ctxt cx, @ast.pat pat, ValueRef llval)
-> result {
alt (pat.node) {
case (ast.pat_wild(_)) { ret res(cx, llval); }
case (ast.pat_bind(?id, ?def_id, ?ann)) {
auto ty = node_ann_type(cx.fcx.ccx, ann);
auto llty = type_of(cx.fcx.ccx, ty);
auto dst = cx.build.Alloca(llty);
llvm.LLVMSetValueName(dst, _str.buf(id));
cx.fcx.lllocals.insert(def_id, dst);
cx.cleanups += clean(bind drop_slot(_, dst, ty));
ret copy_ty(cx, true, dst, llval, ty);
}
case (ast.pat_tag(_, ?subpats, _, _)) {
if (_vec.len[@ast.pat](subpats) == 0u) { ret res(cx, llval); }
auto llunionptr = get_pat_union_ptr(cx, subpats, llval);
auto this_cx = cx;
auto i = 0;
for (@ast.pat subpat in subpats) {
auto llsubvalptr = this_cx.build.GEP(llunionptr,
vec(C_int(0), C_int(i)));
auto llsubval = load_scalar_or_boxed(this_cx, llsubvalptr,
2010-12-15 09:38:23 -08:00
pat_ty(subpat));
auto subpat_res = trans_pat_binding(this_cx, subpat,
llsubval);
this_cx = subpat_res.bcx;
i += 1;
2010-12-15 09:38:23 -08:00
}
ret res(this_cx, llval);
}
}
}
impure fn trans_alt(@block_ctxt cx, @ast.expr expr, vec[ast.arm] arms)
-> result {
auto expr_res = trans_expr(cx, expr);
auto last_cx = new_sub_block_ctxt(expr_res.bcx, "last");
auto this_cx = expr_res.bcx;
for (ast.arm arm in arms) {
auto next_cx = new_sub_block_ctxt(expr_res.bcx, "next");
auto match_res = trans_pat_match(this_cx, arm.pat, expr_res.val,
next_cx);
auto binding_cx = new_scope_block_ctxt(match_res.bcx, "binding");
match_res.bcx.build.Br(binding_cx.llbb);
auto binding_res = trans_pat_binding(binding_cx, arm.pat,
expr_res.val);
auto block_res = trans_block(binding_res.bcx, arm.block);
if (!is_terminated(block_res.bcx)) {
block_res.bcx.build.Br(last_cx.llbb);
}
this_cx = next_cx;
}
// FIXME: This is executed when none of the patterns match; it should fail
// instead!
this_cx.build.Br(last_cx.llbb);
// FIXME: This is very wrong; we should phi together all the arm blocks,
// since this is an expression.
ret res(last_cx, C_nil());
}
type generic_info = rec(@ty.t item_type,
2011-01-14 14:17:57 -08:00
vec[ValueRef] tydescs);
type lval_result = rec(result res,
bool is_mem,
2011-01-14 14:17:57 -08:00
option.t[generic_info] generic,
option.t[ValueRef] llobj);
fn lval_mem(@block_ctxt cx, ValueRef val) -> lval_result {
ret rec(res=res(cx, val),
is_mem=true,
2011-01-14 14:17:57 -08:00
generic=none[generic_info],
llobj=none[ValueRef]);
}
fn lval_val(@block_ctxt cx, ValueRef val) -> lval_result {
ret rec(res=res(cx, val),
is_mem=false,
2011-01-14 14:17:57 -08:00
generic=none[generic_info],
llobj=none[ValueRef]);
}
fn trans_path(@block_ctxt cx, &ast.path p, &option.t[ast.def] dopt,
&ast.ann ann) -> lval_result {
alt (dopt) {
case (some[ast.def](?def)) {
alt (def) {
case (ast.def_arg(?did)) {
check (cx.fcx.llargs.contains_key(did));
ret lval_mem(cx, cx.fcx.llargs.get(did));
}
case (ast.def_local(?did)) {
check (cx.fcx.lllocals.contains_key(did));
ret lval_mem(cx, cx.fcx.lllocals.get(did));
2010-10-19 16:33:11 -07:00
}
2010-12-15 09:38:23 -08:00
case (ast.def_binding(?did)) {
check (cx.fcx.lllocals.contains_key(did));
ret lval_mem(cx, cx.fcx.lllocals.get(did));
2010-12-15 09:38:23 -08:00
}
2010-12-30 17:01:20 -08:00
case (ast.def_obj_field(?did)) {
check (cx.fcx.llobjfields.contains_key(did));
ret lval_mem(cx, cx.fcx.llobjfields.get(did));
}
case (ast.def_fn(?did)) {
check (cx.fcx.ccx.fn_pairs.contains_key(did));
check (cx.fcx.ccx.item_ids.contains_key(did));
auto fn_item = cx.fcx.ccx.items.get(did);
2011-01-14 14:17:57 -08:00
auto lv = lval_val(cx, cx.fcx.ccx.fn_pairs.get(did));
auto monoty = node_ann_type(cx.fcx.ccx, ann);
auto tys = ty.resolve_ty_params(fn_item, monoty);
2011-01-14 13:58:19 -08:00
if (_vec.len[@ty.t](tys) != 0u) {
let vec[ValueRef] tydescs = vec();
for (@ty.t t in tys) {
append[ValueRef](tydescs,
get_tydesc(cx, t));
}
auto gen = rec( item_type = ty.item_ty(fn_item)._1,
2011-01-14 14:17:57 -08:00
tydescs = tydescs );
lv = rec(generic = some[generic_info](gen)
with lv);
2011-01-14 13:58:19 -08:00
}
2011-01-14 14:17:57 -08:00
ret lv;
}
case (ast.def_obj(?did)) {
check (cx.fcx.ccx.fn_pairs.contains_key(did));
ret lval_val(cx, cx.fcx.ccx.fn_pairs.get(did));
}
case (ast.def_variant(?tid, ?vid)) {
check (cx.fcx.ccx.tags.contains_key(tid));
if (cx.fcx.ccx.fn_pairs.contains_key(vid)) {
ret lval_val(cx, cx.fcx.ccx.fn_pairs.get(vid));
} else {
// Nullary variants are just scalar constants.
check (cx.fcx.ccx.item_ids.contains_key(vid));
ret lval_val(cx, cx.fcx.ccx.item_ids.get(vid));
}
}
case (_) {
cx.fcx.ccx.sess.unimpl("def variant in trans");
2010-10-19 16:33:11 -07:00
}
}
}
case (none[ast.def]) {
cx.fcx.ccx.sess.err("unresolved expr_path in trans");
}
}
fail;
}
impure fn trans_field(@block_ctxt cx, &ast.span sp, @ast.expr base,
&ast.ident field, &ast.ann ann) -> lval_result {
auto lv = trans_lval(cx, base);
auto r = lv.res;
check (lv.is_mem);
auto t = ty.expr_ty(base);
alt (t.struct) {
case (ty.ty_tup(?fields)) {
let uint ix = ty.field_num(cx.fcx.ccx.sess, sp, field);
auto v = r.bcx.build.GEP(r.val, vec(C_int(0), C_int(ix as int)));
ret lval_mem(r.bcx, v);
}
case (ty.ty_rec(?fields)) {
let uint ix = ty.field_idx(cx.fcx.ccx.sess, sp, field, fields);
auto v = r.bcx.build.GEP(r.val, vec(C_int(0), C_int(ix as int)));
ret lval_mem(r.bcx, v);
}
case (ty.ty_obj(?methods)) {
let uint ix = ty.method_idx(cx.fcx.ccx.sess, sp, field, methods);
auto vtbl = r.bcx.build.GEP(r.val,
vec(C_int(0),
C_int(abi.obj_field_vtbl)));
vtbl = r.bcx.build.Load(vtbl);
auto v = r.bcx.build.GEP(vtbl, vec(C_int(0),
C_int(ix as int)));
auto lvo = lval_mem(r.bcx, v);
ret rec(llobj = some[ValueRef](r.val) with lvo);
}
case (_) { cx.fcx.ccx.sess.unimpl("field variant in trans_field"); }
}
fail;
}
impure fn trans_index(@block_ctxt cx, &ast.span sp, @ast.expr base,
@ast.expr idx, &ast.ann ann) -> lval_result {
2010-12-10 16:10:35 -08:00
2010-12-10 17:24:35 -08:00
auto lv = trans_expr(cx, base);
auto ix = trans_expr(lv.bcx, idx);
auto v = lv.val;
2010-12-10 16:10:35 -08:00
auto llunit_ty = node_type(cx.fcx.ccx, ann);
auto unit_sz = size_of(llunit_ty);
2010-12-10 16:10:35 -08:00
auto scaled_ix = ix.bcx.build.Mul(ix.val, unit_sz);
auto lim = ix.bcx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_fill)));
lim = ix.bcx.build.Load(lim);
2010-12-10 16:10:35 -08:00
auto bounds_check = ix.bcx.build.ICmp(lib.llvm.LLVMIntULT,
scaled_ix, lim);
auto fail_cx = new_sub_block_ctxt(ix.bcx, "fail");
auto next_cx = new_sub_block_ctxt(ix.bcx, "next");
ix.bcx.build.CondBr(bounds_check, next_cx.llbb, fail_cx.llbb);
// fail: bad bounds check.
auto V_expr_str = p2i(C_str(cx.fcx.ccx, "out-of-bounds access"));
auto V_filename = p2i(C_str(cx.fcx.ccx, sp.filename));
auto V_line = sp.lo.line as int;
auto args = vec(V_expr_str, V_filename, C_int(V_line));
auto fail_res = trans_upcall(fail_cx, "upcall_fail", args);
fail_res.bcx.build.Br(next_cx.llbb);
auto body = next_cx.build.GEP(v, vec(C_int(0), C_int(abi.vec_elt_data)));
auto elt = next_cx.build.GEP(body, vec(C_int(0), ix.val));
ret lval_mem(next_cx, elt);
2010-12-10 16:10:35 -08:00
}
// The additional bool returned indicates whether it's mem (that is
// represented as an alloca or heap, hence needs a 'load' to be used as an
// immediate).
impure fn trans_lval(@block_ctxt cx, @ast.expr e) -> lval_result {
alt (e.node) {
case (ast.expr_path(?p, ?dopt, ?ann)) {
ret trans_path(cx, p, dopt, ann);
}
case (ast.expr_field(?base, ?ident, ?ann)) {
ret trans_field(cx, e.span, base, ident, ann);
}
2010-12-10 16:10:35 -08:00
case (ast.expr_index(?base, ?idx, ?ann)) {
ret trans_index(cx, e.span, base, idx, ann);
}
case (_) { cx.fcx.ccx.sess.unimpl("expr variant in trans_lval"); }
2010-10-19 16:33:11 -07:00
}
fail;
}
impure fn trans_cast(@block_ctxt cx, @ast.expr e, &ast.ann ann) -> result {
auto e_res = trans_expr(cx, e);
auto llsrctype = val_ty(e_res.val);
auto t = node_ann_type(cx.fcx.ccx, ann);
auto lldsttype = type_of(cx.fcx.ccx, t);
if (!ty.type_is_fp(t)) {
if (llvm.LLVMGetIntTypeWidth(lldsttype) >
llvm.LLVMGetIntTypeWidth(llsrctype)) {
if (ty.type_is_signed(t)) {
// Widening signed cast.
e_res.val =
e_res.bcx.build.SExtOrBitCast(e_res.val,
lldsttype);
} else {
// Widening unsigned cast.
e_res.val =
e_res.bcx.build.ZExtOrBitCast(e_res.val,
lldsttype);
}
} else {
// Narrowing cast.
e_res.val =
e_res.bcx.build.TruncOrBitCast(e_res.val,
lldsttype);
}
} else {
cx.fcx.ccx.sess.unimpl("fp cast");
}
ret e_res;
}
// NB: this must match type_of_fn_full and create_llargs_for_fn_args.
2011-01-14 13:58:19 -08:00
impure fn trans_args(@block_ctxt cx,
ValueRef llclosure,
option.t[ValueRef] llobj,
2011-01-14 14:17:57 -08:00
option.t[generic_info] gen,
2011-01-14 13:58:19 -08:00
&vec[@ast.expr] es,
@ty.t fn_ty)
-> tup(@block_ctxt, vec[ValueRef]) {
let vec[ValueRef] vs = vec(cx.fcx.lltaskptr);
let @block_ctxt bcx = cx;
let vec[ty.arg] args = ty.ty_fn_args(fn_ty);
2011-01-14 14:17:57 -08:00
alt (gen) {
case (some[generic_info](?g)) {
for (ValueRef t in g.tydescs) {
2011-01-14 13:58:19 -08:00
vs += t;
}
args = ty.ty_fn_args(g.item_type);
if (ty.type_has_dynamic_size(ty.ty_fn_ret(g.item_type))) {
// FIXME: allocate real outptr in caller,
// pass in to here.
vs += C_null(T_typaram_ptr());
}
2011-01-14 13:58:19 -08:00
}
case (_) { }
}
alt (llobj) {
case (some[ValueRef](?ob)) {
// Every object is always found in memory,
// and not-yet-loaded (as part of an lval x.y
// doted method-call).
vs += cx.build.Load(ob);
}
case (_) {
vs += llclosure;
}
}
auto i = 0u;
for (@ast.expr e in es) {
auto mode = args.(i).mode;
auto re;
if (ty.type_is_structural(ty.expr_ty(e))) {
re = trans_expr(bcx, e);
if (mode == ast.val) {
// Until here we've been treating structures by pointer;
// we are now passing it as an arg, so need to load it.
re.val = re.bcx.build.Load(re.val);
}
} else if (mode == ast.alias) {
let lval_result lv;
if (ty.is_lval(e)) {
lv = trans_lval(bcx, e);
} else {
auto r = trans_expr(bcx, e);
lv = lval_val(r.bcx, r.val);
}
if (!lv.is_mem) {
// Non-mem but we're trying to alias; synthesize an
// alloca, spill to it and pass its address.
auto llty = val_ty(lv.res.val);
auto llptr = lv.res.bcx.build.Alloca(llty);
lv.res.bcx.build.Store(lv.res.val, llptr);
re = res(lv.res.bcx, llptr);
} else {
re = lv.res;
}
} else {
re = trans_expr(bcx, e);
}
if (ty.type_has_dynamic_size(args.(i).ty)) {
re.val = re.bcx.build.PointerCast(re.val,
T_typaram_ptr());
}
vs += re.val;
bcx = re.bcx;
i += 1u;
}
ret tup(bcx, vs);
}
impure fn trans_bind_thunk(@crate_ctxt cx,
@ty.t incoming_fty,
@ty.t outgoing_fty,
vec[option.t[@ast.expr]] args,
TypeRef llclosure_ty,
vec[@ty.t] bound_tys) -> ValueRef {
// Construct a thunk-call with signature incoming_fty, and that copies
// args forward into a call to outgoing_fty.
let str s = cx.names.next("_rust_thunk") + "." + cx.path;
let TypeRef llthunk_ty = get_pair_fn_ty(type_of(cx, incoming_fty));
let ValueRef llthunk = decl_fastcall_fn(cx.llmod, s, llthunk_ty);
let @ty.t rty = ret_ty_of_fn_ty(incoming_fty);
// FIXME: handle ty params properly.
let vec[ast.ty_param] ty_params = vec();
auto fcx = new_fn_ctxt(cx, s, llthunk);
auto bcx = new_top_block_ctxt(fcx);
auto llclosure = bcx.build.PointerCast(fcx.llclosure, llclosure_ty);
auto llbody = bcx.build.GEP(llclosure,
vec(C_int(0),
C_int(abi.box_rc_field_body)));
auto lltarget = bcx.build.GEP(llbody,
vec(C_int(0),
C_int(abi.closure_elt_target)));
auto llbound = bcx.build.GEP(llbody,
vec(C_int(0),
C_int(abi.closure_elt_bindings)));
auto lltargetclosure = bcx.build.GEP(lltarget,
vec(C_int(0),
C_int(abi.fn_field_box)));
lltargetclosure = bcx.build.Load(lltargetclosure);
let vec[ValueRef] llargs = vec(fcx.lltaskptr,
lltargetclosure);
let uint a = 0u;
let int b = 0;
for (option.t[@ast.expr] arg in args) {
alt (arg) {
// Arg provided at binding time; thunk copies it from closure.
case (some[@ast.expr](_)) {
let ValueRef bound_arg = bcx.build.GEP(llbound,
vec(C_int(0),
C_int(b)));
// FIXME: possibly support passing aliases someday.
llargs += bcx.build.Load(bound_arg);
b += 1;
}
// Arg will be provided when the thunk is invoked.
case (none[@ast.expr]) {
let ValueRef passed_arg = llvm.LLVMGetParam(llthunk, a);
llargs += passed_arg;
a += 1u;
}
}
}
// FIXME: turn this call + ret into a tail call.
auto lltargetfn = bcx.build.GEP(lltarget,
vec(C_int(0),
C_int(abi.fn_field_code)));
lltargetfn = bcx.build.Load(lltargetfn);
auto r = bcx.build.FastCall(lltargetfn, llargs);
alt (fcx.llretptr) {
case (some[ValueRef](?llptr)) {
bcx.build.Store(bcx.build.Load(r), llptr);
bcx.build.RetVoid();
}
case (none[ValueRef]) {
if (ty.type_is_nil(rty)) {
bcx.build.RetVoid();
} else {
bcx.build.Ret(r);
}
}
}
ret llthunk;
}
impure fn trans_bind(@block_ctxt cx, @ast.expr f,
vec[option.t[@ast.expr]] args,
&ast.ann ann) -> result {
auto f_res = trans_lval(cx, f);
if (f_res.is_mem) {
cx.fcx.ccx.sess.unimpl("re-binding existing function");
} else {
let vec[@ast.expr] bound = vec();
for (option.t[@ast.expr] argopt in args) {
alt (argopt) {
case (none[@ast.expr]) {
}
case (some[@ast.expr](?e)) {
append[@ast.expr](bound, e);
}
}
}
if (_vec.len[@ast.expr](bound) == 0u) {
// Trivial 'binding': just return the static pair-ptr.
ret f_res.res;
} else {
auto bcx = f_res.res.bcx;
auto pair_t = node_type(cx.fcx.ccx, ann);
auto pair_v = bcx.build.Alloca(pair_t);
// Translate the bound expressions.
let vec[@ty.t] bound_tys = vec();
let vec[ValueRef] bound_vals = vec();
for (@ast.expr e in bound) {
auto arg = trans_expr(bcx, e);
bcx = arg.bcx;
append[ValueRef](bound_vals, arg.val);
append[@ty.t](bound_tys, ty.expr_ty(e));
}
// Synthesize a closure type.
let @ty.t bindings_ty = ty.plain_ty(ty.ty_tup(bound_tys));
let TypeRef lltarget_ty = type_of(bcx.fcx.ccx, ty.expr_ty(f));
let TypeRef llbindings_ty = type_of(bcx.fcx.ccx, bindings_ty);
let TypeRef llclosure_ty = T_closure_ptr(lltarget_ty,
llbindings_ty);
// Malloc a box for the body.
auto r = trans_malloc_inner(bcx, llclosure_ty);
auto box = r.val;
bcx = r.bcx;
auto rc = bcx.build.GEP(box,
vec(C_int(0),
C_int(abi.box_rc_field_refcnt)));
auto closure =
bcx.build.GEP(box,
vec(C_int(0),
C_int(abi.box_rc_field_body)));
bcx.build.Store(C_int(1), rc);
// Store bindings tydesc.
auto bound_tydesc =
bcx.build.GEP(closure,
vec(C_int(0),
C_int(abi.closure_elt_tydesc)));
auto bindings_tydesc = get_tydesc(bcx, bindings_ty);
bcx.build.Store(bindings_tydesc, bound_tydesc);
// Store thunk-target.
auto bound_target =
bcx.build.GEP(closure,
vec(C_int(0),
C_int(abi.closure_elt_target)));
bcx.build.Store(bcx.build.Load(f_res.res.val), bound_target);
// Copy expr values into boxed bindings.
let int i = 0;
auto bindings =
bcx.build.GEP(closure,
vec(C_int(0),
C_int(abi.closure_elt_bindings)));
for (ValueRef v in bound_vals) {
auto bound = bcx.build.GEP(bindings,
vec(C_int(0),C_int(i)));
bcx = copy_ty(r.bcx, true, bound, v, bound_tys.(i)).bcx;
i += 1;
}
// Make thunk and store thunk-ptr in outer pair's code slot.
auto pair_code = bcx.build.GEP(pair_v,
vec(C_int(0),
C_int(abi.fn_field_code)));
let @ty.t pair_ty = node_ann_type(cx.fcx.ccx, ann);
let ValueRef llthunk =
trans_bind_thunk(cx.fcx.ccx, pair_ty, ty.expr_ty(f),
args, llclosure_ty, bound_tys);
bcx.build.Store(llthunk, pair_code);
// Store box ptr in outer pair's box slot.
auto pair_box = bcx.build.GEP(pair_v,
vec(C_int(0),
C_int(abi.fn_field_box)));
bcx.build.Store(bcx.build.PointerCast(box,
T_opaque_closure_ptr()),
pair_box);
find_scope_cx(cx).cleanups +=
clean(bind drop_slot(_, pair_v, pair_ty));
ret res(bcx, pair_v);
}
}
}
impure fn trans_call(@block_ctxt cx, @ast.expr f,
2010-12-08 16:20:04 -08:00
vec[@ast.expr] args, &ast.ann ann) -> result {
auto f_res = trans_lval(cx, f);
auto faddr = f_res.res.val;
auto llclosure = C_null(T_opaque_closure_ptr());
alt (f_res.llobj) {
case (some[ValueRef](_)) {
// It's a vtbl entry.
faddr = f_res.res.bcx.build.Load(faddr);
}
case (none[ValueRef]) {
// It's a closure.
auto bcx = f_res.res.bcx;
auto pair = faddr;
faddr = bcx.build.GEP(pair, vec(C_int(0),
C_int(abi.fn_field_code)));
faddr = bcx.build.Load(faddr);
llclosure = bcx.build.GEP(pair, vec(C_int(0),
C_int(abi.fn_field_box)));
llclosure = bcx.build.Load(llclosure);
}
}
auto fn_ty = ty.expr_ty(f);
auto ret_ty = ty.ann_to_type(ann);
2011-01-14 13:58:19 -08:00
auto args_res = trans_args(f_res.res.bcx,
llclosure, f_res.llobj,
2011-01-14 14:17:57 -08:00
f_res.generic,
args, fn_ty);
2010-12-20 11:40:33 -08:00
auto real_retval = args_res._0.build.FastCall(faddr, args_res._1);
auto retval;
if (ty.type_is_nil(ret_ty)) {
retval = C_nil();
} else {
retval = real_retval;
}
2010-12-08 16:20:04 -08:00
2010-12-08 16:34:16 -08:00
// Structured returns come back as first-class values. This is nice for
// LLVM but wrong for us; we treat structured values by pointer in
// most of our code here. So spill it to an alloca.
if (ty.type_is_structural(ret_ty)) {
2010-12-08 16:34:16 -08:00
auto local = args_res._0.build.Alloca(type_of(cx.fcx.ccx, ret_ty));
args_res._0.build.Store(retval, local);
retval = local;
}
2010-12-08 16:20:04 -08:00
// Retval doesn't correspond to anything really tangible in the frame, but
// it's a ref all the same, so we put a note here to drop it when we're
// done in this scope.
find_scope_cx(cx).cleanups += clean(bind drop_ty(_, retval, ret_ty));
ret res(args_res._0, retval);
}
impure fn trans_tup(@block_ctxt cx, vec[ast.elt] elts,
2010-11-24 18:10:52 -08:00
&ast.ann ann) -> result {
auto t = node_ann_type(cx.fcx.ccx, ann);
auto llty = type_of(cx.fcx.ccx, t);
auto tup_val = cx.build.Alloca(llty);
find_scope_cx(cx).cleanups += clean(bind drop_ty(_, tup_val, t));
2010-11-24 18:10:52 -08:00
let int i = 0;
auto r = res(cx, C_nil());
for (ast.elt e in elts) {
auto t = ty.expr_ty(e.expr);
auto src_res = trans_expr(r.bcx, e.expr);
2010-11-24 18:10:52 -08:00
auto dst_elt = r.bcx.build.GEP(tup_val, vec(C_int(0), C_int(i)));
r = copy_ty(src_res.bcx, true, dst_elt, src_res.val, t);
i += 1;
}
ret res(r.bcx, tup_val);
}
2010-12-10 17:25:11 -08:00
impure fn trans_vec(@block_ctxt cx, vec[@ast.expr] args,
&ast.ann ann) -> result {
auto t = node_ann_type(cx.fcx.ccx, ann);
auto unit_ty = t;
alt (t.struct) {
case (ty.ty_vec(?t)) {
2010-12-10 17:25:11 -08:00
unit_ty = t;
}
case (_) {
cx.fcx.ccx.sess.bug("non-vec type in trans_vec");
}
}
auto llunit_ty = type_of(cx.fcx.ccx, unit_ty);
auto unit_sz = size_of(llunit_ty);
2010-12-10 17:25:11 -08:00
auto data_sz = llvm.LLVMConstMul(C_int(_vec.len[@ast.expr](args) as int),
unit_sz);
// FIXME: pass tydesc properly.
auto sub = trans_upcall(cx, "upcall_new_vec", vec(data_sz, C_int(0)));
auto llty = type_of(cx.fcx.ccx, t);
2010-12-10 17:25:11 -08:00
auto vec_val = sub.bcx.build.IntToPtr(sub.val, llty);
find_scope_cx(cx).cleanups += clean(bind drop_ty(_, vec_val, t));
2010-12-10 17:25:11 -08:00
auto body = sub.bcx.build.GEP(vec_val, vec(C_int(0),
C_int(abi.vec_elt_data)));
let int i = 0;
for (@ast.expr e in args) {
auto src_res = trans_expr(sub.bcx, e);
auto dst_elt = sub.bcx.build.GEP(body, vec(C_int(0), C_int(i)));
sub = copy_ty(src_res.bcx, true, dst_elt, src_res.val, unit_ty);
i += 1;
}
auto fill = sub.bcx.build.GEP(vec_val,
vec(C_int(0), C_int(abi.vec_elt_fill)));
sub.bcx.build.Store(data_sz, fill);
2010-12-10 17:25:11 -08:00
ret res(sub.bcx, vec_val);
}
impure fn trans_rec(@block_ctxt cx, vec[ast.field] fields,
&ast.ann ann) -> result {
auto t = node_ann_type(cx.fcx.ccx, ann);
auto llty = type_of(cx.fcx.ccx, t);
auto rec_val = cx.build.Alloca(llty);
find_scope_cx(cx).cleanups += clean(bind drop_ty(_, rec_val, t));
let int i = 0;
auto r = res(cx, C_nil());
for (ast.field f in fields) {
auto t = ty.expr_ty(f.expr);
auto src_res = trans_expr(r.bcx, f.expr);
auto dst_elt = r.bcx.build.GEP(rec_val, vec(C_int(0), C_int(i)));
// FIXME: calculate copy init-ness in typestate.
r = copy_ty(src_res.bcx, true, dst_elt, src_res.val, t);
i += 1;
}
ret res(r.bcx, rec_val);
}
2010-11-24 18:10:52 -08:00
2010-11-25 16:40:24 -08:00
impure fn trans_expr(@block_ctxt cx, @ast.expr e) -> result {
alt (e.node) {
case (ast.expr_lit(?lit, ?ann)) {
ret trans_lit(cx, *lit, ann);
}
case (ast.expr_unary(?op, ?x, ?ann)) {
ret trans_unary(cx, op, x, ann);
}
2010-10-19 13:28:43 -07:00
case (ast.expr_binary(?op, ?x, ?y, _)) {
ret trans_binary(cx, op, x, y);
}
2010-10-19 13:28:43 -07:00
case (ast.expr_if(?cond, ?thn, ?els, _)) {
ret trans_if(cx, cond, thn, els);
}
case (ast.expr_while(?cond, ?body, _)) {
ret trans_while(cx, cond, body);
}
case (ast.expr_do_while(?body, ?cond, _)) {
ret trans_do_while(cx, body, cond);
}
2010-12-15 09:38:23 -08:00
case (ast.expr_alt(?expr, ?arms, _)) {
ret trans_alt(cx, expr, arms);
}
2010-10-19 13:28:43 -07:00
case (ast.expr_block(?blk, _)) {
auto sub_cx = new_scope_block_ctxt(cx, "block-expr body");
auto next_cx = new_sub_block_ctxt(cx, "next");
auto sub = trans_block(sub_cx, blk);
cx.build.Br(sub_cx.llbb);
sub.bcx.build.Br(next_cx.llbb);
ret res(next_cx, sub.val);
}
case (ast.expr_assign(?dst, ?src, ?ann)) {
auto lhs_res = trans_lval(cx, dst);
check (lhs_res.is_mem);
auto rhs_res = trans_expr(lhs_res.res.bcx, src);
auto t = node_ann_type(cx.fcx.ccx, ann);
2010-11-24 18:10:52 -08:00
// FIXME: calculate copy init-ness in typestate.
ret copy_ty(rhs_res.bcx, false, lhs_res.res.val, rhs_res.val, t);
}
2010-10-19 16:33:11 -07:00
case (ast.expr_assign_op(?op, ?dst, ?src, ?ann)) {
auto t = node_ann_type(cx.fcx.ccx, ann);
auto lhs_res = trans_lval(cx, dst);
check (lhs_res.is_mem);
auto lhs_val = load_scalar_or_boxed(lhs_res.res.bcx,
lhs_res.res.val, t);
auto rhs_res = trans_expr(lhs_res.res.bcx, src);
auto v = trans_eager_binop(rhs_res.bcx, op, lhs_val, rhs_res.val);
// FIXME: calculate copy init-ness in typestate.
ret copy_ty(rhs_res.bcx, false, lhs_res.res.val, v, t);
}
case (ast.expr_bind(?f, ?args, ?ann)) {
ret trans_bind(cx, f, args, ann);
}
2010-12-08 16:20:04 -08:00
case (ast.expr_call(?f, ?args, ?ann)) {
ret trans_call(cx, f, args, ann);
2010-10-21 17:24:26 -07:00
}
case (ast.expr_cast(?e, _, ?ann)) {
ret trans_cast(cx, e, ann);
}
2010-11-24 18:10:52 -08:00
2010-12-10 17:25:11 -08:00
case (ast.expr_vec(?args, ?ann)) {
ret trans_vec(cx, args, ann);
}
2010-11-24 18:10:52 -08:00
case (ast.expr_tup(?args, ?ann)) {
ret trans_tup(cx, args, ann);
}
2010-11-25 16:40:24 -08:00
case (ast.expr_rec(?args, ?ann)) {
ret trans_rec(cx, args, ann);
}
// lval cases fall through to trans_lval and then
// possibly load the result (if it's non-structural).
2010-11-25 16:40:24 -08:00
case (_) {
auto t = ty.expr_ty(e);
auto sub = trans_lval(cx, e);
ret res(sub.res.bcx,
load_scalar_or_boxed(sub.res.bcx, sub.res.val, t));
}
}
cx.fcx.ccx.sess.unimpl("expr variant in trans_expr");
fail;
}
2010-12-03 13:03:07 -08:00
// We pass structural values around the compiler "by pointer" and
// non-structural values (scalars and boxes) "by value". This function selects
// whether to load a pointer or pass it.
2010-12-03 13:03:07 -08:00
fn load_scalar_or_boxed(@block_ctxt cx,
ValueRef v,
@ty.t t) -> ValueRef {
if (ty.type_is_scalar(t) || ty.type_is_boxed(t)) {
2010-12-03 13:03:07 -08:00
ret cx.build.Load(v);
} else {
ret v;
2010-12-03 13:03:07 -08:00
}
}
impure fn trans_log(@block_ctxt cx, @ast.expr e) -> result {
auto sub = trans_expr(cx, e);
auto e_ty = ty.expr_ty(e);
alt (e_ty.struct) {
case (ty.ty_str) {
auto v = sub.bcx.build.PtrToInt(sub.val, T_int());
ret trans_upcall(sub.bcx,
"upcall_log_str",
vec(v));
}
case (_) {
ret trans_upcall(sub.bcx,
"upcall_log_int",
vec(sub.val));
}
}
fail;
}
impure fn trans_check_expr(@block_ctxt cx, @ast.expr e) -> result {
auto cond_res = trans_expr(cx, e);
// FIXME: need pretty-printer.
auto V_expr_str = p2i(C_str(cx.fcx.ccx, "<expr>"));
auto V_filename = p2i(C_str(cx.fcx.ccx, e.span.filename));
auto V_line = e.span.lo.line as int;
auto args = vec(V_expr_str, V_filename, C_int(V_line));
auto fail_cx = new_sub_block_ctxt(cx, "fail");
auto fail_res = trans_upcall(fail_cx, "upcall_fail", args);
auto next_cx = new_sub_block_ctxt(cx, "next");
fail_res.bcx.build.Br(next_cx.llbb);
cond_res.bcx.build.CondBr(cond_res.val,
next_cx.llbb,
fail_cx.llbb);
ret res(next_cx, C_nil());
}
2010-11-03 17:10:37 -07:00
impure fn trans_ret(@block_ctxt cx, &option.t[@ast.expr] e) -> result {
auto r = res(cx, C_nil());
alt (e) {
case (some[@ast.expr](?x)) {
auto t = ty.expr_ty(x);
r = trans_expr(cx, x);
// A return is an implicit copy into a newborn anonymous
// 'return value' in the caller frame.
r.bcx = incr_all_refcnts(r.bcx, r.val, t).bcx;
if (ty.type_is_structural(t)) {
2010-12-08 16:20:04 -08:00
// We usually treat structurals by-pointer; in particular,
// trans_expr will have given us a structure pointer. But in
// this case we're about to return. LLVM wants a first-class
// value here (which makes sense; the frame is going away!)
r.val = r.bcx.build.Load(r.val);
}
}
case (_) { /* fall through */ }
}
// Run all cleanups and back out.
let bool more_cleanups = true;
auto cleanup_cx = cx;
while (more_cleanups) {
r.bcx = trans_block_cleanups(r.bcx, cleanup_cx);
alt (cleanup_cx.parent) {
case (parent_some(?b)) {
cleanup_cx = b;
}
case (parent_none) {
more_cleanups = false;
}
}
}
alt (e) {
case (some[@ast.expr](?ex)) {
auto t = ty.expr_ty(ex);
if (ty.type_is_nil(t)) {
r.bcx.build.RetVoid();
r.val = C_nil();
ret r; // FIXME: early return needed due to typestate bug
}
alt (cx.fcx.llretptr) {
case (some[ValueRef](?llptr)) {
// Generic return via tydesc + retptr.
r = copy_ty(r.bcx, true, llptr, r.val, t);
r.bcx.build.RetVoid();
}
case (none[ValueRef]) {
r.val = r.bcx.build.Ret(r.val);
}
}
ret r;
}
case (_) { /* fall through */ }
}
// FIXME: until LLVM has a unit type, we are moving around
// C_nil values rather than their void type.
r.bcx.build.RetVoid();
r.val = C_nil();
ret r;
}
impure fn trans_stmt(@block_ctxt cx, &ast.stmt s) -> result {
auto sub = res(cx, C_nil());
alt (s.node) {
case (ast.stmt_log(?a)) {
sub.bcx = trans_log(cx, a).bcx;
}
case (ast.stmt_check_expr(?a)) {
sub.bcx = trans_check_expr(cx, a).bcx;
}
case (ast.stmt_ret(?e)) {
sub.bcx = trans_ret(cx, e).bcx;
}
case (ast.stmt_expr(?e)) {
sub.bcx = trans_expr(cx, e).bcx;
}
case (ast.stmt_decl(?d)) {
alt (d.node) {
case (ast.decl_local(?local)) {
// Make a note to drop this slot on the way out.
check (cx.fcx.lllocals.contains_key(local.id));
auto llptr = cx.fcx.lllocals.get(local.id);
auto ty = node_ann_type(cx.fcx.ccx, local.ann);
find_scope_cx(cx).cleanups +=
clean(bind drop_slot(_, llptr, ty));
alt (local.init) {
case (some[@ast.expr](?e)) {
sub = trans_expr(cx, e);
sub = copy_ty(sub.bcx, true, llptr, sub.val, ty);
}
case (_) {
auto llty = type_of(cx.fcx.ccx, ty);
auto null = lib.llvm.llvm.LLVMConstNull(llty);
sub = res(cx, cx.build.Store(null, llptr));
}
}
}
2010-12-31 15:16:11 -08:00
case (ast.decl_item(?i)) {
trans_item(cx.fcx.ccx, *i);
}
}
}
case (_) {
cx.fcx.ccx.sess.unimpl("stmt variant");
}
}
ret sub;
}
fn new_builder(BasicBlockRef llbb) -> builder {
let BuilderRef llbuild = llvm.LLVMCreateBuilder();
llvm.LLVMPositionBuilderAtEnd(llbuild, llbb);
ret builder(llbuild);
}
// You probably don't want to use this one. See the
// next three functions instead.
fn new_block_ctxt(@fn_ctxt cx, block_parent parent,
bool is_scope,
str name) -> @block_ctxt {
let vec[cleanup] cleanups = vec();
let BasicBlockRef llbb =
llvm.LLVMAppendBasicBlock(cx.llfn,
_str.buf(cx.ccx.names.next(name)));
ret @rec(llbb=llbb,
build=new_builder(llbb),
parent=parent,
is_scope=is_scope,
mutable cleanups=cleanups,
fcx=cx);
}
// Use this when you're at the top block of a function or the like.
fn new_top_block_ctxt(@fn_ctxt fcx) -> @block_ctxt {
ret new_block_ctxt(fcx, parent_none, true, "function top level");
}
// Use this when you're at a curly-brace or similar lexical scope.
fn new_scope_block_ctxt(@block_ctxt bcx, str n) -> @block_ctxt {
ret new_block_ctxt(bcx.fcx, parent_some(bcx), true, n);
}
// Use this when you're making a general CFG BB within a scope.
fn new_sub_block_ctxt(@block_ctxt bcx, str n) -> @block_ctxt {
ret new_block_ctxt(bcx.fcx, parent_some(bcx), false, n);
}
fn trans_block_cleanups(@block_ctxt cx,
@block_ctxt cleanup_cx) -> @block_ctxt {
auto bcx = cx;
if (!cleanup_cx.is_scope) {
check (_vec.len[cleanup](cleanup_cx.cleanups) == 0u);
}
for (cleanup c in cleanup_cx.cleanups) {
alt (c) {
case (clean(?cfn)) {
bcx = cfn(bcx).bcx;
}
}
}
ret bcx;
}
iter block_locals(&ast.block b) -> @ast.local {
// FIXME: putting from inside an iter block doesn't work, so we can't
// use the index here.
for (@ast.stmt s in b.node.stmts) {
alt (s.node) {
case (ast.stmt_decl(?d)) {
alt (d.node) {
case (ast.decl_local(?local)) {
put local;
}
case (_) { /* fall through */ }
}
}
case (_) { /* fall through */ }
}
}
}
impure fn trans_block(@block_ctxt cx, &ast.block b) -> result {
auto bcx = cx;
for each (@ast.local local in block_locals(b)) {
auto ty = node_type(cx.fcx.ccx, local.ann);
auto val = bcx.build.Alloca(ty);
cx.fcx.lllocals.insert(local.id, val);
}
auto r = res(bcx, C_nil());
for (@ast.stmt s in b.node.stmts) {
r = trans_stmt(bcx, *s);
bcx = r.bcx;
// If we hit a terminator, control won't go any further so
// we're in dead-code land. Stop here.
if (is_terminated(bcx)) {
ret r;
}
}
alt (b.node.expr) {
case (some[@ast.expr](?e)) {
r = trans_expr(bcx, e);
bcx = r.bcx;
if (is_terminated(bcx)) {
ret r;
}
}
case (none[@ast.expr]) {
r = res(bcx, C_nil());
}
}
bcx = trans_block_cleanups(bcx, find_scope_cx(bcx));
ret res(bcx, r.val);
}
fn new_fn_ctxt(@crate_ctxt cx,
str name,
ValueRef llfndecl) -> @fn_ctxt {
let ValueRef lltaskptr = llvm.LLVMGetParam(llfndecl, 0u);
let ValueRef llclosure = llvm.LLVMGetParam(llfndecl, 1u);
let hashmap[ast.def_id, ValueRef] llargs = new_def_hash[ValueRef]();
2010-12-30 17:01:20 -08:00
let hashmap[ast.def_id, ValueRef] llobjfields = new_def_hash[ValueRef]();
let hashmap[ast.def_id, ValueRef] lllocals = new_def_hash[ValueRef]();
let hashmap[ast.def_id, ValueRef] lltydescs = new_def_hash[ValueRef]();
ret @rec(llfn=llfndecl,
lltaskptr=lltaskptr,
llclosure=llclosure,
mutable llself=none[ValueRef],
mutable llretptr=none[ValueRef],
llargs=llargs,
2010-12-30 17:01:20 -08:00
llobjfields=llobjfields,
lllocals=lllocals,
lltydescs=lltydescs,
ccx=cx);
}
// NB: this must match trans_args and type_of_fn_full.
fn create_llargs_for_fn_args(&@fn_ctxt cx,
option.t[TypeRef] ty_self,
@ty.t ret_ty,
&vec[ast.arg] args,
&vec[ast.ty_param] ty_params) {
let uint arg_n = 1u;
for (ast.ty_param tp in ty_params) {
auto llarg = llvm.LLVMGetParam(cx.llfn, arg_n);
check (llarg as int != 0);
cx.lltydescs.insert(tp.id, llarg);
arg_n += 1u;
}
if (ty.type_has_dynamic_size(ret_ty)) {
cx.llretptr = some[ValueRef](llvm.LLVMGetParam(cx.llfn, arg_n));
arg_n += 1u;
}
alt (ty_self) {
case (some[TypeRef](_)) {
auto llself = llvm.LLVMGetParam(cx.llfn, arg_n);
check (llself as int != 0);
cx.llself = some[ValueRef](llself);
arg_n += 1u;
}
case (_) {
// llclosure, we don't know what it is.
arg_n += 1u;
}
}
for (ast.arg arg in args) {
auto llarg = llvm.LLVMGetParam(cx.llfn, arg_n);
check (llarg as int != 0);
cx.llargs.insert(arg.id, llarg);
arg_n += 1u;
}
}
// Recommended LLVM style, strange though this is, is to copy from args to
// allocas immediately upon entry; this permits us to GEP into structures we
// were passed and whatnot. Apparently mem2reg will mop up.
2010-12-30 17:01:20 -08:00
impure fn copy_args_to_allocas(@block_ctxt cx,
option.t[TypeRef] ty_self,
vec[ast.arg] args,
vec[ty.arg] arg_tys) {
let uint arg_n = 0u;
2010-12-30 17:01:20 -08:00
alt (cx.fcx.llself) {
case (some[ValueRef](?self_v)) {
alt (ty_self) {
case (some[TypeRef](?self_t)) {
auto alloca = cx.build.Alloca(self_t);
cx.build.Store(self_v, alloca);
cx.fcx.llself = some[ValueRef](alloca);
}
}
}
case (_) {
}
}
for (ast.arg aarg in args) {
2010-12-07 12:34:10 -08:00
if (aarg.mode != ast.alias) {
auto arg_t = type_of_arg(cx.fcx.ccx, arg_tys.(arg_n));
auto alloca = cx.build.Alloca(arg_t);
auto argval = cx.fcx.llargs.get(aarg.id);
cx.build.Store(argval, alloca);
// Overwrite the llargs entry for this arg with its alloca.
cx.fcx.llargs.insert(aarg.id, alloca);
}
arg_n += 1u;
}
}
fn is_terminated(@block_ctxt cx) -> bool {
auto inst = llvm.LLVMGetLastInstruction(cx.llbb);
ret llvm.LLVMIsATerminatorInst(inst) as int != 0;
}
fn arg_tys_of_fn(ast.ann ann) -> vec[ty.arg] {
alt (ty.ann_to_type(ann).struct) {
case (ty.ty_fn(?arg_tys, _)) {
ret arg_tys;
}
}
fail;
}
fn ret_ty_of_fn_ty(@ty.t t) -> @ty.t {
alt (t.struct) {
case (ty.ty_fn(_, ?ret_ty)) {
ret ret_ty;
}
}
fail;
}
fn ret_ty_of_fn(ast.ann ann) -> @ty.t {
ret ret_ty_of_fn_ty(ty.ann_to_type(ann));
}
2010-12-30 17:01:20 -08:00
fn create_llobjfields_for_fields(@block_ctxt cx, ValueRef llself) {
let vec[TypeRef] llfield_tys = vec();
for (ast.obj_field f in cx.fcx.ccx.obj_fields) {
llfield_tys += node_type(cx.fcx.ccx, f.ann);
}
let TypeRef llfields_ty = T_struct(llfield_tys);
let TypeRef lltydesc_ty = T_ptr(T_tydesc());
let TypeRef llobj_body_ty = T_struct(vec(lltydesc_ty,
llfields_ty));
let TypeRef llobj_box_ty = T_ptr(T_box(llobj_body_ty));
auto box_cell =
cx.build.GEP(llself,
vec(C_int(0),
C_int(abi.obj_field_box)));
auto box_ptr = cx.build.Load(box_cell);
box_ptr = cx.build.PointerCast(box_ptr, llobj_box_ty);
auto obj_fields = cx.build.GEP(box_ptr,
vec(C_int(0),
C_int(abi.box_rc_field_body),
C_int(abi.obj_body_elt_fields)));
let int i = 0;
for (ast.obj_field f in cx.fcx.ccx.obj_fields) {
let ValueRef llfield = cx.build.GEP(obj_fields,
vec(C_int(0),
C_int(i)));
cx.fcx.llobjfields.insert(f.id, llfield);
i += 1;
}
}
impure fn trans_fn(@crate_ctxt cx, &ast._fn f, ast.def_id fid,
2010-12-30 17:01:20 -08:00
option.t[TypeRef] ty_self,
&vec[ast.ty_param] ty_params, &ast.ann ann) {
auto llfndecl = cx.item_ids.get(fid);
cx.item_names.insert(cx.path, llfndecl);
auto fcx = new_fn_ctxt(cx, cx.path, llfndecl);
2010-12-30 17:01:20 -08:00
create_llargs_for_fn_args(fcx, ty_self, ret_ty_of_fn(ann),
f.inputs, ty_params);
auto bcx = new_top_block_ctxt(fcx);
2010-12-30 17:01:20 -08:00
copy_args_to_allocas(bcx, ty_self, f.inputs,
arg_tys_of_fn(ann));
alt (fcx.llself) {
case (some[ValueRef](?llself)) {
create_llobjfields_for_fields(bcx, llself);
}
case (_) {
}
}
auto res = trans_block(bcx, f.body);
if (!is_terminated(res.bcx)) {
// FIXME: until LLVM has a unit type, we are moving around
// C_nil values rather than their void type.
res.bcx.build.RetVoid();
}
}
impure fn trans_vtbl(@crate_ctxt cx, TypeRef self_ty,
&ast._obj ob,
&vec[ast.ty_param] ty_params) -> ValueRef {
2010-12-16 18:34:04 -08:00
let vec[ValueRef] methods = vec();
2010-12-30 17:01:20 -08:00
fn meth_lteq(&@ast.method a, &@ast.method b) -> bool {
ret _str.lteq(a.node.ident, b.node.ident);
}
auto meths = std.sort.merge_sort[@ast.method](bind meth_lteq(_,_),
ob.methods);
for (@ast.method m in meths) {
auto llfnty = T_nil();
alt (node_ann_type(cx, m.node.ann).struct) {
case (ty.ty_fn(?inputs, ?output)) {
llfnty = type_of_fn_full(cx,
some[TypeRef](self_ty),
inputs, output);
}
}
2010-12-30 17:01:20 -08:00
let @crate_ctxt mcx = @rec(path=cx.path + "." + m.node.ident
with *cx);
let str s = cx.names.next("_rust_method") + "." + mcx.path;
let ValueRef llfn = decl_fastcall_fn(cx.llmod, s, llfnty);
cx.item_ids.insert(m.node.id, llfn);
2010-12-30 17:01:20 -08:00
trans_fn(mcx, m.node.meth, m.node.id, some[TypeRef](self_ty),
ty_params, m.node.ann);
methods += llfn;
2010-12-16 18:34:04 -08:00
}
auto vtbl = C_struct(methods);
auto gvar = llvm.LLVMAddGlobal(cx.llmod,
val_ty(vtbl),
_str.buf("_rust_vtbl" + "." + cx.path));
llvm.LLVMSetInitializer(gvar, vtbl);
llvm.LLVMSetGlobalConstant(gvar, True);
llvm.LLVMSetLinkage(gvar, lib.llvm.LLVMPrivateLinkage
as llvm.Linkage);
ret gvar;
2010-12-16 18:34:04 -08:00
}
impure fn trans_obj(@crate_ctxt cx, &ast._obj ob, ast.def_id oid,
&vec[ast.ty_param] ty_params, &ast.ann ann) {
auto llctor_decl = cx.item_ids.get(oid);
cx.item_names.insert(cx.path, llctor_decl);
// Translate obj ctor args to function arguments.
let vec[ast.arg] fn_args = vec();
for (ast.obj_field f in ob.fields) {
fn_args += vec(rec(mode=ast.alias,
ty=f.ty,
ident=f.ident,
id=f.id));
}
auto fcx = new_fn_ctxt(cx, cx.path, llctor_decl);
create_llargs_for_fn_args(fcx, none[TypeRef], ret_ty_of_fn(ann),
fn_args, ty_params);
auto bcx = new_top_block_ctxt(fcx);
let vec[ty.arg] arg_tys = arg_tys_of_fn(ann);
2010-12-30 17:01:20 -08:00
copy_args_to_allocas(bcx, none[TypeRef], fn_args, arg_tys);
auto llself_ty = type_of(cx, ret_ty_of_fn(ann));
auto pair = bcx.build.Alloca(llself_ty);
auto vtbl = trans_vtbl(cx, llself_ty, ob, ty_params);
auto pair_vtbl = bcx.build.GEP(pair,
vec(C_int(0),
C_int(abi.obj_field_vtbl)));
auto pair_box = bcx.build.GEP(pair,
vec(C_int(0),
C_int(abi.obj_field_box)));
bcx.build.Store(vtbl, pair_vtbl);
let TypeRef llbox_ty = T_ptr(T_box(T_struct(vec(T_ptr(T_tydesc()),
T_nil()))));
if (_vec.len[ty.arg](arg_tys) == 0u) {
// Store null into pair, if no args.
bcx.build.Store(C_null(llbox_ty), pair_box);
} else {
// Malloc a box for the body and copy args in.
let vec[@ty.t] obj_fields = vec();
for (ty.arg a in arg_tys) {
append[@ty.t](obj_fields, a.ty);
}
// Synthesize an obj body type.
let @ty.t fields_ty = ty.plain_ty(ty.ty_tup(obj_fields));
let TypeRef llfields_ty = type_of(bcx.fcx.ccx, fields_ty);
let TypeRef llobj_body_ty =
T_ptr(T_box(T_struct(vec(T_ptr(T_tydesc()),
llfields_ty))));
// Malloc a box for the body.
auto r = trans_malloc_inner(bcx, llobj_body_ty);
auto box = r.val;
auto rc = r.bcx.build.GEP(box,
vec(C_int(0),
C_int(abi.box_rc_field_refcnt)));
auto body = r.bcx.build.GEP(box,
vec(C_int(0),
C_int(abi.box_rc_field_body)));
r.bcx.build.Store(C_int(1), rc);
// Store body tydesc.
auto body_tydesc =
r.bcx.build.GEP(body,
vec(C_int(0),
C_int(abi.obj_body_elt_tydesc)));
auto fields_tydesc = get_tydesc(r.bcx, fields_ty);
r.bcx.build.Store(fields_tydesc, body_tydesc);
// Copy args into body fields.
auto body_fields =
r.bcx.build.GEP(body,
vec(C_int(0),
C_int(abi.obj_body_elt_fields)));
let int i = 0;
for (ast.obj_field f in ob.fields) {
auto arg = r.bcx.fcx.llargs.get(f.id);
arg = load_scalar_or_boxed(r.bcx, arg, arg_tys.(i).ty);
auto field = r.bcx.build.GEP(body_fields,
vec(C_int(0),C_int(i)));
r = copy_ty(r.bcx, true, field, arg, arg_tys.(i).ty);
i += 1;
}
// Store box ptr in outer pair.
auto p = r.bcx.build.PointerCast(box, llbox_ty);
r.bcx.build.Store(p, pair_box);
}
bcx.build.Ret(bcx.build.Load(pair));
}
fn trans_tag_variant(@crate_ctxt cx, ast.def_id tag_id,
&ast.variant variant, int index,
&vec[ast.ty_param] ty_params) {
if (_vec.len[ast.variant_arg](variant.args) == 0u) {
ret; // nullary constructors are just constants
}
// Translate variant arguments to function arguments.
let vec[ast.arg] fn_args = vec();
auto i = 0u;
for (ast.variant_arg varg in variant.args) {
fn_args += vec(rec(mode=ast.alias,
ty=varg.ty,
ident="arg" + _uint.to_str(i, 10u),
id=varg.id));
}
check (cx.item_ids.contains_key(variant.id));
let ValueRef llfndecl = cx.item_ids.get(variant.id);
auto fcx = new_fn_ctxt(cx, cx.path, llfndecl);
create_llargs_for_fn_args(fcx, none[TypeRef], ret_ty_of_fn(variant.ann),
fn_args, ty_params);
auto bcx = new_top_block_ctxt(fcx);
auto arg_tys = arg_tys_of_fn(variant.ann);
2010-12-30 17:01:20 -08:00
copy_args_to_allocas(bcx, none[TypeRef], fn_args, arg_tys);
auto info = cx.tags.get(tag_id);
auto lltagty = T_struct(vec(T_int(), T_array(T_i8(), info.size)));
// FIXME: better name.
llvm.LLVMAddTypeName(cx.llmod, _str.buf("tag"), lltagty);
auto lltagptr = bcx.build.Alloca(lltagty);
auto lldiscrimptr = bcx.build.GEP(lltagptr, vec(C_int(0), C_int(0)));
bcx.build.Store(C_int(index), lldiscrimptr);
auto llblobptr = bcx.build.GEP(lltagptr, vec(C_int(0), C_int(1)));
// First, generate the union type.
let vec[TypeRef] llargtys = vec();
for (ty.arg arg in arg_tys) {
llargtys += vec(type_of(cx, arg.ty));
}
auto llunionty = T_struct(llargtys);
auto llunionptr = bcx.build.TruncOrBitCast(llblobptr, T_ptr(llunionty));
i = 0u;
for (ast.variant_arg va in variant.args) {
auto llargval = bcx.build.Load(fcx.llargs.get(va.id));
auto lldestptr = bcx.build.GEP(llunionptr,
vec(C_int(0), C_int(i as int)));
bcx.build.Store(llargval, lldestptr);
i += 1u;
}
auto lltagval = bcx.build.Load(lltagptr);
bcx = trans_block_cleanups(bcx, find_scope_cx(bcx));
bcx.build.Ret(lltagval);
}
impure fn trans_item(@crate_ctxt cx, &ast.item item) {
alt (item.node) {
case (ast.item_fn(?name, ?f, ?tps, ?fid, ?ann)) {
auto sub_cx = @rec(path=cx.path + "." + name with *cx);
2010-12-30 17:01:20 -08:00
trans_fn(sub_cx, f, fid, none[TypeRef], tps, ann);
}
case (ast.item_obj(?name, ?ob, ?tps, ?oid, ?ann)) {
2010-12-30 17:01:20 -08:00
auto sub_cx = @rec(path=cx.path + "." + name,
obj_fields=ob.fields with *cx);
trans_obj(sub_cx, ob, oid, tps, ann);
}
case (ast.item_mod(?name, ?m, _)) {
auto sub_cx = @rec(path=cx.path + "." + name with *cx);
trans_mod(sub_cx, m);
}
case (ast.item_tag(?name, ?variants, ?tps, ?tag_id)) {
auto sub_cx = @rec(path=cx.path + "." + name with *cx);
auto i = 0;
for (ast.variant variant in variants) {
trans_tag_variant(sub_cx, tag_id, variant, i, tps);
i += 1;
}
}
case (_) { /* fall through */ }
}
}
impure fn trans_mod(@crate_ctxt cx, &ast._mod m) {
for (@ast.item item in m.items) {
trans_item(cx, *item);
}
}
fn get_pair_fn_ty(TypeRef llpairty) -> TypeRef {
// Bit of a kludge: pick the fn typeref out of the pair.
let vec[TypeRef] pair_tys = vec(T_nil(), T_nil());
llvm.LLVMGetStructElementTypes(llpairty,
_vec.buf[TypeRef](pair_tys));
ret llvm.LLVMGetElementType(pair_tys.(0));
}
fn decl_fn_and_pair(@crate_ctxt cx,
str kind,
str name,
&ast.ann ann,
ast.def_id id) {
auto llpairty = node_type(cx, ann);
auto llfty = get_pair_fn_ty(llpairty);
// Declare the function itself.
let str s = cx.names.next("_rust_" + kind) + "." + name;
let ValueRef llfn = decl_fastcall_fn(cx.llmod, s, llfty);
// Declare the global constant pair that points to it.
let str ps = cx.names.next("_rust_" + kind + "_pair") + "." + name;
let ValueRef gvar = llvm.LLVMAddGlobal(cx.llmod, llpairty,
_str.buf(ps));
auto pair = C_struct(vec(llfn,
C_null(T_opaque_closure_ptr())));
llvm.LLVMSetInitializer(gvar, pair);
llvm.LLVMSetGlobalConstant(gvar, True);
llvm.LLVMSetLinkage(gvar,
lib.llvm.LLVMPrivateLinkage
as llvm.Linkage);
cx.item_ids.insert(id, llfn);
cx.fn_pairs.insert(id, gvar);
}
fn collect_item(&@crate_ctxt cx, @ast.item i) -> @crate_ctxt {
alt (i.node) {
2010-11-24 16:52:49 -08:00
case (ast.item_fn(?name, ?f, _, ?fid, ?ann)) {
// TODO: type-params
2010-11-03 16:43:12 -07:00
cx.items.insert(fid, i);
if (! cx.obj_methods.contains_key(fid)) {
decl_fn_and_pair(cx, "fn", name, ann, fid);
}
}
case (ast.item_obj(?name, ?ob, _, ?oid, ?ann)) {
// TODO: type-params
cx.items.insert(oid, i);
decl_fn_and_pair(cx, "obj_ctor", name, ann, oid);
for (@ast.method m in ob.methods) {
cx.obj_methods.insert(m.node.id, ());
}
}
case (ast.item_const(?name, _, _, ?cid, _)) {
cx.items.insert(cid, i);
}
case (ast.item_mod(?name, ?m, ?mid)) {
cx.items.insert(mid, i);
}
case (ast.item_tag(_, ?variants, _, ?tag_id)) {
auto vi = new_def_hash[uint]();
auto navi = new_def_hash[uint]();
let vec[tup(ast.def_id,arity)] variant_info = vec();
cx.tags.insert(tag_id, @rec(th=mk_type_handle(),
mutable variants=variant_info,
mutable size=0u));
cx.items.insert(tag_id, i);
}
case (_) { /* fall through */ }
}
ret cx;
}
fn collect_items(@crate_ctxt cx, @ast.crate crate) {
let fold.ast_fold[@crate_ctxt] fld =
fold.new_identity_fold[@crate_ctxt]();
fld = @rec( update_env_for_item = bind collect_item(_,_)
with *fld );
fold.fold_crate[@crate_ctxt](cx, fld, crate);
}
fn collect_tag_ctor(&@crate_ctxt cx, @ast.item i) -> @crate_ctxt {
alt (i.node) {
case (ast.item_tag(_, ?variants, _, _)) {
for (ast.variant variant in variants) {
if (_vec.len[ast.variant_arg](variant.args) != 0u) {
decl_fn_and_pair(cx, "tag", variant.name,
variant.ann, variant.id);
}
}
}
case (_) { /* fall through */ }
}
ret cx;
}
fn collect_tag_ctors(@crate_ctxt cx, @ast.crate crate) {
let fold.ast_fold[@crate_ctxt] fld =
fold.new_identity_fold[@crate_ctxt]();
fld = @rec( update_env_for_item = bind collect_tag_ctor(_,_)
with *fld );
fold.fold_crate[@crate_ctxt](cx, fld, crate);
}
// The tag type resolution pass, which determines all the LLVM types that
// correspond to each tag type in the crate.
fn resolve_tag_types_for_item(&@crate_ctxt cx, @ast.item i) -> @crate_ctxt {
alt (i.node) {
case (ast.item_tag(_, ?variants, _, ?tag_id)) {
auto max_align = 0u;
auto max_size = 0u;
auto info = cx.tags.get(tag_id);
let vec[tup(ast.def_id,arity)] variant_info = vec();
for (ast.variant variant in variants) {
auto arity_info;
if (_vec.len[ast.variant_arg](variant.args) > 0u) {
auto llvariantty = type_of_variant(cx, variant);
auto align = llvm.LLVMPreferredAlignmentOfType(cx.td.lltd,
llvariantty);
auto size = llvm.LLVMStoreSizeOfType(cx.td.lltd,
llvariantty) as uint;
if (max_align < align) { max_align = align; }
if (max_size < size) { max_size = size; }
arity_info = n_ary;
} else {
arity_info = nullary;
}
variant_info += vec(tup(variant.id, arity_info));
}
info.variants = variant_info;
info.size = max_size;
// FIXME: alignment is wrong here, manually insert padding I
// guess :(
auto tag_ty = T_struct(vec(T_int(), T_array(T_i8(), max_size)));
auto th = cx.tags.get(tag_id).th.llth;
llvm.LLVMRefineType(llvm.LLVMResolveTypeHandle(th), tag_ty);
}
case (_) {
// fall through
}
}
ret cx;
}
fn resolve_tag_types(@crate_ctxt cx, @ast.crate crate) {
let fold.ast_fold[@crate_ctxt] fld =
fold.new_identity_fold[@crate_ctxt]();
fld = @rec( update_env_for_item = bind resolve_tag_types_for_item(_,_)
with *fld );
fold.fold_crate[@crate_ctxt](cx, fld, crate);
}
// The constant translation pass.
fn trans_constant(&@crate_ctxt cx, @ast.item it) -> @crate_ctxt {
alt (it.node) {
case (ast.item_tag(_, ?variants, _, ?tag_id)) {
auto info = cx.tags.get(tag_id);
auto tag_ty = llvm.LLVMResolveTypeHandle(info.th.llth);
check (llvm.LLVMCountStructElementTypes(tag_ty) == 2u);
auto elts = vec(0 as TypeRef, 0 as TypeRef);
llvm.LLVMGetStructElementTypes(tag_ty, _vec.buf[TypeRef](elts));
auto union_ty = elts.(1);
auto i = 0u;
while (i < _vec.len[tup(ast.def_id,arity)](info.variants)) {
auto variant_info = info.variants.(i);
alt (variant_info._1) {
case (nullary) {
// Nullary tags become constants.
auto union_val = C_zero_byte_arr(info.size as uint);
auto val = C_struct(vec(C_int(i as int), union_val));
2010-12-03 12:26:27 -08:00
// FIXME: better name
auto gvar = llvm.LLVMAddGlobal(cx.llmod, val_ty(val),
_str.buf("tag"));
llvm.LLVMSetInitializer(gvar, val);
llvm.LLVMSetGlobalConstant(gvar, True);
llvm.LLVMSetLinkage(gvar,
lib.llvm.LLVMPrivateLinkage
as llvm.Linkage);
cx.item_ids.insert(variant_info._0, gvar);
}
case (n_ary) {
// N-ary tags are treated as functions and generated
// later.
}
}
i += 1u;
}
}
case (ast.item_const(?name, _, ?expr, ?cid, ?ann)) {
// FIXME: The whole expr-translation system needs cloning to deal
// with consts.
auto v = C_int(1);
cx.item_ids.insert(cid, v);
}
case (_) {
// empty
}
}
ret cx;
}
fn trans_constants(@crate_ctxt cx, @ast.crate crate) {
let fold.ast_fold[@crate_ctxt] fld =
fold.new_identity_fold[@crate_ctxt]();
fld = @rec(update_env_for_item = bind trans_constant(_,_) with *fld);
fold.fold_crate[@crate_ctxt](cx, fld, crate);
}
fn p2i(ValueRef v) -> ValueRef {
ret llvm.LLVMConstPtrToInt(v, T_int());
}
fn trans_exit_task_glue(@crate_ctxt cx) {
let vec[TypeRef] T_args = vec();
let vec[ValueRef] V_args = vec();
auto llfn = cx.glues.exit_task_glue;
let ValueRef lltaskptr = llvm.LLVMGetParam(llfn, 0u);
auto fcx = @rec(llfn=llfn,
lltaskptr=lltaskptr,
llclosure=C_null(T_opaque_closure_ptr()),
mutable llself=none[ValueRef],
mutable llretptr=none[ValueRef],
llargs=new_def_hash[ValueRef](),
2010-12-30 17:01:20 -08:00
llobjfields=new_def_hash[ValueRef](),
lllocals=new_def_hash[ValueRef](),
lltydescs=new_def_hash[ValueRef](),
ccx=cx);
auto bcx = new_top_block_ctxt(fcx);
trans_upcall(bcx, "upcall_exit", V_args);
bcx.build.RetVoid();
}
fn create_typedefs(@crate_ctxt cx) {
llvm.LLVMAddTypeName(cx.llmod, _str.buf("rust_crate"), T_crate());
llvm.LLVMAddTypeName(cx.llmod, _str.buf("rust_task"), T_task());
llvm.LLVMAddTypeName(cx.llmod, _str.buf("rust_tydesc"), T_tydesc());
}
fn crate_constant(@crate_ctxt cx) -> ValueRef {
2010-09-24 16:41:01 -07:00
let ValueRef crate_ptr =
llvm.LLVMAddGlobal(cx.llmod, T_crate(),
2010-09-24 16:41:01 -07:00
_str.buf("rust_crate"));
let ValueRef crate_addr = p2i(crate_ptr);
let ValueRef activate_glue_off =
llvm.LLVMConstSub(p2i(cx.glues.activate_glue), crate_addr);
let ValueRef yield_glue_off =
llvm.LLVMConstSub(p2i(cx.glues.yield_glue), crate_addr);
let ValueRef exit_task_glue_off =
llvm.LLVMConstSub(p2i(cx.glues.exit_task_glue), crate_addr);
2010-09-24 16:41:01 -07:00
let ValueRef crate_val =
C_struct(vec(C_null(T_int()), // ptrdiff_t image_base_off
p2i(crate_ptr), // uintptr_t self_addr
2010-09-24 16:41:01 -07:00
C_null(T_int()), // ptrdiff_t debug_abbrev_off
C_null(T_int()), // size_t debug_abbrev_sz
C_null(T_int()), // ptrdiff_t debug_info_off
C_null(T_int()), // size_t debug_info_sz
activate_glue_off, // size_t activate_glue_off
yield_glue_off, // size_t yield_glue_off
C_null(T_int()), // size_t unwind_glue_off
C_null(T_int()), // size_t gc_glue_off
exit_task_glue_off, // size_t main_exit_task_glue_off
C_null(T_int()), // int n_rust_syms
C_null(T_int()), // int n_c_syms
C_null(T_int()) // int n_libs
));
llvm.LLVMSetInitializer(crate_ptr, crate_val);
ret crate_ptr;
}
fn trans_main_fn(@crate_ctxt cx, ValueRef llcrate) {
auto T_main_args = vec(T_int(), T_int());
auto T_rust_start_args = vec(T_int(), T_int(), T_int(), T_int());
2010-11-05 18:28:51 -07:00
auto main_name;
if (_str.eq(std.os.target_os(), "win32")) {
main_name = "WinMain@16";
} else {
main_name = "main";
}
auto llmain =
2010-11-03 16:43:12 -07:00
decl_cdecl_fn(cx.llmod, main_name, T_fn(T_main_args, T_int()));
2010-11-03 16:43:12 -07:00
auto llrust_start = decl_cdecl_fn(cx.llmod, "rust_start",
T_fn(T_rust_start_args, T_int()));
auto llargc = llvm.LLVMGetParam(llmain, 0u);
auto llargv = llvm.LLVMGetParam(llmain, 1u);
check (cx.item_names.contains_key("_rust.main"));
auto llrust_main = cx.item_names.get("_rust.main");
//
// Emit the moral equivalent of:
//
// main(int argc, char **argv) {
// rust_start(&_rust.main, &crate, argc, argv);
// }
//
let BasicBlockRef llbb =
llvm.LLVMAppendBasicBlock(llmain, _str.buf(""));
auto b = new_builder(llbb);
auto start_args = vec(p2i(llrust_main), p2i(llcrate), llargc, llargv);
b.Ret(b.Call(llrust_start, start_args));
}
fn declare_intrinsics(ModuleRef llmod) -> hashmap[str,ValueRef] {
let vec[TypeRef] T_trap_args = vec();
let vec[TypeRef] T_memcpy32_args = vec(T_ptr(T_i8()), T_ptr(T_i8()),
T_i32(), T_i32(), T_i1());
let vec[TypeRef] T_memcpy64_args = vec(T_ptr(T_i8()), T_ptr(T_i8()),
T_i32(), T_i32(), T_i1());
auto trap = decl_cdecl_fn(llmod, "llvm.trap",
T_fn(T_trap_args, T_void()));
auto memcpy32 = decl_cdecl_fn(llmod, "llvm.memcpy.p0i8.p0i8.i32",
T_fn(T_memcpy32_args, T_void()));
auto memcpy64 = decl_cdecl_fn(llmod, "llvm.memcpy.p0i8.p0i8.i64",
T_fn(T_memcpy64_args, T_void()));
auto intrinsics = new_str_hash[ValueRef]();
intrinsics.insert("llvm.trap", trap);
intrinsics.insert("llvm.memcpy.p0i8.p0i8.i32", memcpy32);
intrinsics.insert("llvm.memcpy.p0i8.p0i8.i64", memcpy64);
ret intrinsics;
}
fn check_module(ModuleRef llmod) {
auto pm = mk_pass_manager();
llvm.LLVMAddVerifierPass(pm.llpm);
llvm.LLVMRunPassManager(pm.llpm, llmod);
// TODO: run the linter here also, once there are llvm-c bindings for it.
}
fn make_no_op_type_glue(ModuleRef llmod) -> ValueRef {
auto ty = T_fn(vec(T_taskptr(), T_ptr(T_i8())), T_void());
auto fun = decl_fastcall_fn(llmod, "_rust_no_op_type_glue", ty);
auto bb_name = _str.buf("_rust_no_op_type_glue_bb");
auto llbb = llvm.LLVMAppendBasicBlock(fun, bb_name);
new_builder(llbb).RetVoid();
ret fun;
}
fn make_glues(ModuleRef llmod) -> @glue_fns {
ret @rec(activate_glue = decl_glue(llmod, abi.activate_glue_name()),
yield_glue = decl_glue(llmod, abi.yield_glue_name()),
/*
* Note: the signature passed to decl_cdecl_fn here looks unusual
* because it is. It corresponds neither to an upcall signature
* nor a normal rust-ABI signature. In fact it is a fake
* signature, that exists solely to acquire the task pointer as
* an argument to the upcall. It so happens that the runtime sets
* up the task pointer as the sole incoming argument to the frame
* that we return into when returning to the exit task glue. So
* this is the signature required to retrieve it.
*/
exit_task_glue = decl_cdecl_fn(llmod, abi.exit_task_glue_name(),
T_fn(vec(T_taskptr()), T_void())),
upcall_glues =
_vec.init_fn[ValueRef](bind decl_upcall(llmod, _),
abi.n_upcall_glues as uint),
no_op_type_glue = make_no_op_type_glue(llmod));
}
fn trans_crate(session.session sess, @ast.crate crate, str output,
bool shared) {
auto llmod =
llvm.LLVMModuleCreateWithNameInContext(_str.buf("rust_out"),
llvm.LLVMGetGlobalContext());
llvm.LLVMSetDataLayout(llmod, _str.buf(x86.get_data_layout()));
llvm.LLVMSetTarget(llmod, _str.buf(x86.get_target_triple()));
auto td = mk_target_data(x86.get_data_layout());
llvm.LLVMSetModuleInlineAsm(llmod, _str.buf(x86.get_module_asm()));
auto intrinsics = declare_intrinsics(llmod);
auto glues = make_glues(llmod);
auto hasher = ty.hash_ty;
auto eqer = ty.eq_ty;
auto tydescs = map.mk_hashmap[@ty.t,ValueRef](hasher, eqer);
2010-12-30 17:01:20 -08:00
let vec[ast.obj_field] obj_fields = vec();
auto cx = @rec(sess = sess,
llmod = llmod,
td = td,
upcalls = new_str_hash[ValueRef](),
intrinsics = intrinsics,
item_names = new_str_hash[ValueRef](),
item_ids = new_def_hash[ValueRef](),
items = new_def_hash[@ast.item](),
tags = new_def_hash[@tag_info](),
fn_pairs = new_def_hash[ValueRef](),
obj_methods = new_def_hash[()](),
tydescs = tydescs,
2010-12-30 17:01:20 -08:00
obj_fields = obj_fields,
glues = glues,
names = namegen(0),
2010-09-24 16:41:01 -07:00
path = "_rust");
create_typedefs(cx);
collect_items(cx, crate);
resolve_tag_types(cx, crate);
collect_tag_ctors(cx, crate);
trans_constants(cx, crate);
trans_mod(cx, crate.node.module);
trans_exit_task_glue(cx);
if (!shared) {
trans_main_fn(cx, crate_constant(cx));
}
check_module(llmod);
llvm.LLVMWriteBitcodeToFile(llmod, _str.buf(output));
llvm.LLVMDisposeModule(llmod);
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C ../.. 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End:
//