rust/src/libcore/private.rs

664 lines
21 KiB
Rust
Raw Normal View History

// NB: transitionary, de-mode-ing.
#[forbid(deprecated_mode)];
#[forbid(deprecated_pattern)];
#[doc(hidden)];
2012-09-04 11:12:17 -07:00
use compare_and_swap = rustrt::rust_compare_and_swap_ptr;
use task::TaskBuilder;
use task::atomically;
2012-04-06 17:03:00 -07:00
extern mod rustrt {
#[legacy_exports];
2012-04-06 17:03:00 -07:00
fn rust_task_weaken(ch: rust_port_id);
fn rust_task_unweaken(ch: rust_port_id);
#[rust_stack]
fn rust_atomic_increment(p: &mut libc::intptr_t)
-> libc::intptr_t;
#[rust_stack]
fn rust_atomic_decrement(p: &mut libc::intptr_t)
-> libc::intptr_t;
#[rust_stack]
fn rust_compare_and_swap_ptr(address: &mut libc::uintptr_t,
oldval: libc::uintptr_t,
newval: libc::uintptr_t) -> bool;
fn rust_create_little_lock() -> rust_little_lock;
fn rust_destroy_little_lock(lock: rust_little_lock);
fn rust_lock_little_lock(lock: rust_little_lock);
fn rust_unlock_little_lock(lock: rust_little_lock);
}
#[allow(non_camel_case_types)] // runtime type
type rust_port_id = uint;
type GlobalPtr = *libc::uintptr_t;
/**
* Atomically gets a channel from a pointer to a pointer-sized memory location
* or, if no channel exists creates and installs a new channel and sets up a
* new task to receive from it.
*/
pub unsafe fn chan_from_global_ptr<T: Send>(
global: GlobalPtr,
2012-08-15 14:10:46 -07:00
task_fn: fn() -> task::TaskBuilder,
+f: fn~(comm::Port<T>)
) -> comm::Chan<T> {
enum Msg {
Proceed,
Abort
}
log(debug,~"ENTERING chan_from_global_ptr, before is_prob_zero check");
let is_probably_zero = *global == 0u;
log(debug,~"after is_prob_zero check");
if is_probably_zero {
log(debug,~"is probably zero...");
// There's no global channel. We must make it
2012-08-08 16:38:26 -04:00
let (setup_po, setup_ch) = do task_fn().spawn_conversation
|move f, setup_po, setup_ch| {
2012-08-27 14:22:25 -07:00
let po = comm::Port::<T>();
let ch = comm::Chan(po);
comm::send(setup_ch, ch);
// Wait to hear if we are the official instance of
// this global task
match comm::recv::<Msg>(setup_po) {
Proceed => f(move po),
Abort => ()
}
};
log(debug,~"before setup recv..");
// This is the proposed global channel
let ch = comm::recv(setup_po);
// 0 is our sentinal value. It is not a valid channel
assert *ch != 0;
// Install the channel
log(debug,~"BEFORE COMPARE AND SWAP");
let swapped = compare_and_swap(
2012-09-18 17:34:08 -07:00
cast::reinterpret_cast(&global),
0u, cast::reinterpret_cast(&ch));
2012-08-22 17:24:52 -07:00
log(debug,fmt!("AFTER .. swapped? %?", swapped));
if swapped {
// Success!
comm::send(setup_ch, Proceed);
ch
} else {
// Somebody else got in before we did
comm::send(setup_ch, Abort);
2012-09-18 17:34:08 -07:00
cast::reinterpret_cast(&*global)
}
} else {
log(debug, ~"global != 0");
2012-09-18 17:34:08 -07:00
cast::reinterpret_cast(&*global)
}
}
#[test]
pub fn test_from_global_chan1() {
// This is unreadable, right?
// The global channel
let globchan = 0;
let globchanp = ptr::p2::addr_of(&globchan);
// Create the global channel, attached to a new task
let ch = unsafe {
do chan_from_global_ptr(globchanp, task::task) |po| {
let ch = comm::recv(po);
comm::send(ch, true);
let ch = comm::recv(po);
comm::send(ch, true);
}
};
// Talk to it
2012-08-27 14:22:25 -07:00
let po = comm::Port();
comm::send(ch, comm::Chan(po));
assert comm::recv(po) == true;
// This one just reuses the previous channel
let ch = unsafe {
do chan_from_global_ptr(globchanp, task::task) |po| {
let ch = comm::recv(po);
comm::send(ch, false);
}
};
// Talk to the original global task
2012-08-27 14:22:25 -07:00
let po = comm::Port();
comm::send(ch, comm::Chan(po));
assert comm::recv(po) == true;
}
#[test]
pub fn test_from_global_chan2() {
for iter::repeat(100) {
// The global channel
let globchan = 0;
let globchanp = ptr::p2::addr_of(&globchan);
2012-08-27 14:22:25 -07:00
let resultpo = comm::Port();
let resultch = comm::Chan(resultpo);
// Spawn a bunch of tasks that all want to compete to
// create the global channel
for uint::range(0, 10) |i| {
do task::spawn {
let ch = unsafe {
do chan_from_global_ptr(
globchanp, task::task) |po| {
for uint::range(0, 10) |_j| {
let ch = comm::recv(po);
comm::send(ch, {i});
}
}
};
2012-08-27 14:22:25 -07:00
let po = comm::Port();
comm::send(ch, comm::Chan(po));
// We are The winner if our version of the
// task was installed
let winner = comm::recv(po);
comm::send(resultch, winner == i);
}
}
// There should be only one winner
let mut winners = 0u;
2012-06-30 16:19:07 -07:00
for uint::range(0u, 10u) |_i| {
let res = comm::recv(resultpo);
if res { winners += 1u };
}
assert winners == 1u;
}
}
2012-04-06 17:03:00 -07:00
/**
* Convert the current task to a 'weak' task temporarily
*
* As a weak task it will not be counted towards the runtime's set
* of live tasks. When there are no more outstanding live (non-weak) tasks
* the runtime will send an exit message on the provided channel.
*
* This function is super-unsafe. Do not use.
*
* # Safety notes
*
* * Weak tasks must either die on their own or exit upon receipt of
* the exit message. Failure to do so will cause the runtime to never
* exit
* * Tasks must not call `weaken_task` multiple times. This will
* break the kernel's accounting of live tasks.
* * Weak tasks must not be supervised. A supervised task keeps
* a reference to its parent, so the parent will not die.
*/
pub unsafe fn weaken_task(f: fn(comm::Port<()>)) {
2012-08-27 14:22:25 -07:00
let po = comm::Port();
let ch = comm::Chan(po);
unsafe {
2012-09-18 17:34:08 -07:00
rustrt::rust_task_weaken(cast::reinterpret_cast(&ch));
}
let _unweaken = Unweaken(ch);
2012-04-06 17:03:00 -07:00
f(po);
2012-08-15 18:46:55 -07:00
struct Unweaken {
2012-09-06 19:40:15 -07:00
ch: comm::Chan<()>,
drop unsafe {
2012-09-18 17:34:08 -07:00
rustrt::rust_task_unweaken(cast::reinterpret_cast(&self.ch));
}
2012-04-06 17:03:00 -07:00
}
2012-09-04 15:23:28 -07:00
fn Unweaken(ch: comm::Chan<()>) -> Unweaken {
Unweaken {
ch: ch
}
}
2012-04-06 17:03:00 -07:00
}
#[test]
pub fn test_weaken_task_then_unweaken() {
do task::try {
unsafe {
2012-06-30 16:19:07 -07:00
do weaken_task |_po| {
}
2012-04-06 17:03:00 -07:00
}
};
}
#[test]
pub fn test_weaken_task_wait() {
do task::spawn_unlinked {
unsafe {
2012-06-30 16:19:07 -07:00
do weaken_task |po| {
comm::recv(po);
}
2012-04-06 17:03:00 -07:00
}
}
}
#[test]
pub fn test_weaken_task_stress() {
2012-04-06 17:03:00 -07:00
// Create a bunch of weak tasks
for iter::repeat(100u) {
do task::spawn {
unsafe {
2012-06-30 16:19:07 -07:00
do weaken_task |_po| {
}
2012-04-06 17:03:00 -07:00
}
}
do task::spawn_unlinked {
unsafe {
2012-06-30 16:19:07 -07:00
do weaken_task |po| {
// Wait for it to tell us to die
comm::recv(po);
}
2012-04-06 17:03:00 -07:00
}
}
}
}
#[test]
#[ignore(cfg(windows))]
pub fn test_weaken_task_fail() {
let res = do task::try {
unsafe {
2012-06-30 16:19:07 -07:00
do weaken_task |_po| {
fail;
}
2012-04-06 17:03:00 -07:00
}
};
2012-09-25 16:23:04 -07:00
assert result::is_err(&res);
}
/****************************************************************************
* Shared state & exclusive ARC
****************************************************************************/
// An unwrapper uses this protocol to communicate with the "other" task that
// drops the last refcount on an arc. Unfortunately this can't be a proper
// pipe protocol because the unwrapper has to access both stages at once.
type UnwrapProto = ~mut Option<(pipes::ChanOne<()>, pipes::PortOne<bool>)>;
struct ArcData<T> {
mut count: libc::intptr_t,
mut unwrapper: libc::uintptr_t, // either a UnwrapProto or 0
// FIXME(#3224) should be able to make this non-option to save memory, and
// in unwrap() use "let ~ArcData { data: result, _ } = thing" to unwrap it
mut data: Option<T>,
}
struct ArcDestruct<T> {
mut data: *libc::c_void,
drop unsafe {
if self.data.is_null() {
return; // Happens when destructing an unwrapper's handle.
}
do task::unkillable {
2012-09-18 17:34:08 -07:00
let data: ~ArcData<T> = cast::reinterpret_cast(&self.data);
let new_count = rustrt::rust_atomic_decrement(&mut data.count);
assert new_count >= 0;
if new_count == 0 {
// Were we really last, or should we hand off to an unwrapper?
// It's safe to not xchg because the unwrapper will set the
// unwrap lock *before* dropping his/her reference. In effect,
// being here means we're the only *awake* task with the data.
if data.unwrapper != 0 {
let p: UnwrapProto =
2012-09-18 17:34:08 -07:00
cast::reinterpret_cast(&data.unwrapper);
let (message, response) = option::swap_unwrap(p);
// Send 'ready' and wait for a response.
pipes::send_one(move message, ());
// Unkillable wait. Message guaranteed to come.
if pipes::recv_one(move response) {
// Other task got the data.
2012-09-18 17:34:08 -07:00
cast::forget(move data);
} else {
// Other task was killed. drop glue takes over.
}
} else {
// drop glue takes over.
}
} else {
2012-09-18 17:34:08 -07:00
cast::forget(move data);
}
}
}
}
fn ArcDestruct<T>(data: *libc::c_void) -> ArcDestruct<T> {
ArcDestruct {
data: data
}
}
pub unsafe fn unwrap_shared_mutable_state<T: Send>(+rc: SharedMutableState<T>)
-> T {
struct DeathThroes<T> {
mut ptr: Option<~ArcData<T>>,
mut response: Option<pipes::ChanOne<bool>>,
drop unsafe {
let response = option::swap_unwrap(&mut self.response);
// In case we get killed early, we need to tell the person who
// tried to wake us whether they should hand-off the data to us.
if task::failing() {
pipes::send_one(move response, false);
// Either this swap_unwrap or the one below (at "Got here")
// ought to run.
2012-09-18 17:34:08 -07:00
cast::forget(option::swap_unwrap(&mut self.ptr));
} else {
assert self.ptr.is_none();
pipes::send_one(move response, true);
}
}
}
do task::unkillable {
2012-09-18 17:34:08 -07:00
let ptr: ~ArcData<T> = cast::reinterpret_cast(&rc.data);
let (c1,p1) = pipes::oneshot(); // ()
let (c2,p2) = pipes::oneshot(); // bool
let server: UnwrapProto = ~mut Some((move c1,move p2));
2012-09-18 17:34:08 -07:00
let serverp: libc::uintptr_t = cast::transmute(move server);
// Try to put our server end in the unwrapper slot.
if rustrt::rust_compare_and_swap_ptr(&mut ptr.unwrapper, 0, serverp) {
// Got in. Step 0: Tell destructor not to run. We are now it.
rc.data = ptr::null();
// Step 1 - drop our own reference.
let new_count = rustrt::rust_atomic_decrement(&mut ptr.count);
assert new_count >= 0;
if new_count == 0 {
// We were the last owner. Can unwrap immediately.
// Also we have to free the server endpoints.
2012-09-18 17:34:08 -07:00
let _server: UnwrapProto = cast::transmute(move serverp);
option::swap_unwrap(&mut ptr.data)
// drop glue takes over.
} else {
// The *next* person who sees the refcount hit 0 will wake us.
let end_result =
DeathThroes { ptr: Some(move ptr),
response: Some(move c2) };
let mut p1 = Some(move p1); // argh
do task::rekillable {
pipes::recv_one(option::swap_unwrap(&mut p1));
}
// Got here. Back in the 'unkillable' without getting killed.
// Recover ownership of ptr, then take the data out.
let ptr = option::swap_unwrap(&mut end_result.ptr);
option::swap_unwrap(&mut ptr.data)
// drop glue takes over.
}
} else {
// Somebody else was trying to unwrap. Avoid guaranteed deadlock.
2012-09-18 17:34:08 -07:00
cast::forget(move ptr);
// Also we have to free the (rejected) server endpoints.
2012-09-18 17:34:08 -07:00
let _server: UnwrapProto = cast::transmute(move serverp);
fail ~"Another task is already unwrapping this ARC!";
}
}
}
/**
* COMPLETELY UNSAFE. Used as a primitive for the safe versions in std::arc.
*
* Data races between tasks can result in crashes and, with sufficient
* cleverness, arbitrary type coercion.
*/
pub type SharedMutableState<T: Send> = ArcDestruct<T>;
pub unsafe fn shared_mutable_state<T: Send>(+data: T) ->
SharedMutableState<T> {
let data = ~ArcData { count: 1, unwrapper: 0, data: Some(move data) };
unsafe {
2012-09-18 17:34:08 -07:00
let ptr = cast::transmute(move data);
ArcDestruct(ptr)
}
}
#[inline(always)]
pub unsafe fn get_shared_mutable_state<T: Send>(rc: &a/SharedMutableState<T>)
-> &a/mut T {
unsafe {
2012-09-18 17:34:08 -07:00
let ptr: ~ArcData<T> = cast::reinterpret_cast(&(*rc).data);
assert ptr.count > 0;
// Cast us back into the correct region
2012-09-18 17:34:08 -07:00
let r = cast::transmute_region(option::get_ref(&ptr.data));
cast::forget(move ptr);
return cast::transmute_mut(r);
}
}
#[inline(always)]
pub unsafe fn get_shared_immutable_state<T: Send>(
rc: &a/SharedMutableState<T>) -> &a/T {
unsafe {
2012-09-18 17:34:08 -07:00
let ptr: ~ArcData<T> = cast::reinterpret_cast(&(*rc).data);
assert ptr.count > 0;
// Cast us back into the correct region
2012-09-18 17:34:08 -07:00
let r = cast::transmute_region(option::get_ref(&ptr.data));
cast::forget(move ptr);
return r;
}
}
pub unsafe fn clone_shared_mutable_state<T: Send>(rc: &SharedMutableState<T>)
-> SharedMutableState<T> {
unsafe {
2012-09-18 17:34:08 -07:00
let ptr: ~ArcData<T> = cast::reinterpret_cast(&(*rc).data);
let new_count = rustrt::rust_atomic_increment(&mut ptr.count);
assert new_count >= 2;
2012-09-18 17:34:08 -07:00
cast::forget(move ptr);
}
ArcDestruct((*rc).data)
}
/****************************************************************************/
#[allow(non_camel_case_types)] // runtime type
type rust_little_lock = *libc::c_void;
struct LittleLock {
l: rust_little_lock,
drop { rustrt::rust_destroy_little_lock(self.l); }
}
fn LittleLock() -> LittleLock {
LittleLock {
l: rustrt::rust_create_little_lock()
}
}
impl LittleLock {
#[inline(always)]
unsafe fn lock<T>(f: fn() -> T) -> T {
struct Unlock {
l: rust_little_lock,
drop { rustrt::rust_unlock_little_lock(self.l); }
}
fn Unlock(l: rust_little_lock) -> Unlock {
Unlock {
l: l
}
}
do atomically {
rustrt::rust_lock_little_lock(self.l);
let _r = Unlock(self.l);
f()
}
}
}
struct ExData<T: Send> { lock: LittleLock, mut failed: bool, mut data: T, }
/**
* An arc over mutable data that is protected by a lock. For library use only.
*/
pub struct Exclusive<T: Send> { x: SharedMutableState<ExData<T>> }
pub fn exclusive<T:Send >(+user_data: T) -> Exclusive<T> {
let data = ExData {
lock: LittleLock(), mut failed: false, mut data: user_data
};
Exclusive { x: unsafe { shared_mutable_state(move data) } }
}
impl<T: Send> Exclusive<T> {
// Duplicate an exclusive ARC, as std::arc::clone.
fn clone() -> Exclusive<T> {
Exclusive { x: unsafe { clone_shared_mutable_state(&self.x) } }
}
// Exactly like std::arc::mutex_arc,access(), but with the little_lock
// instead of a proper mutex. Same reason for being unsafe.
//
// Currently, scheduling operations (i.e., yielding, receiving on a pipe,
// accessing the provided condition variable) are prohibited while inside
// the exclusive. Supporting that is a work in progress.
#[inline(always)]
unsafe fn with<U>(f: fn(x: &mut T) -> U) -> U {
let rec = unsafe { get_shared_mutable_state(&self.x) };
do rec.lock.lock {
if rec.failed {
fail ~"Poisoned exclusive - another task failed inside!";
}
rec.failed = true;
let result = f(&mut rec.data);
rec.failed = false;
move result
}
}
#[inline(always)]
unsafe fn with_imm<U>(f: fn(x: &T) -> U) -> U {
do self.with |x| {
2012-09-18 17:34:08 -07:00
f(cast::transmute_immut(x))
}
}
}
// FIXME(#2585) make this a by-move method on the exclusive
pub fn unwrap_exclusive<T: Send>(+arc: Exclusive<T>) -> T {
let Exclusive { x: x } <- arc;
let inner = unsafe { unwrap_shared_mutable_state(move x) };
let ExData { data: data, _ } <- inner;
move data
}
#[cfg(test)]
pub mod tests {
#[test]
pub fn exclusive_arc() {
let mut futures = ~[];
let num_tasks = 10u;
let count = 10u;
let total = exclusive(~mut 0u);
for uint::range(0u, num_tasks) |_i| {
let total = total.clone();
futures.push(future::spawn(|| {
for uint::range(0u, count) |_i| {
do total.with |count| {
**count += 1u;
}
}
}));
};
for futures.each |f| { f.get() }
do total.with |total| {
assert **total == num_tasks * count
};
}
#[test] #[should_fail] #[ignore(cfg(windows))]
pub fn exclusive_poison() {
// Tests that if one task fails inside of an exclusive, subsequent
// accesses will also fail.
let x = exclusive(1);
let x2 = x.clone();
do task::try {
do x2.with |one| {
assert *one == 2;
}
};
do x.with |one| {
assert *one == 1;
}
}
#[test]
pub fn exclusive_unwrap_basic() {
let x = exclusive(~~"hello");
assert unwrap_exclusive(x) == ~~"hello";
}
#[test]
pub fn exclusive_unwrap_contended() {
let x = exclusive(~~"hello");
let x2 = ~mut Some(x.clone());
do task::spawn {
let x2 = option::swap_unwrap(x2);
do x2.with |_hello| { }
task::yield();
}
assert unwrap_exclusive(x) == ~~"hello";
// Now try the same thing, but with the child task blocking.
let x = exclusive(~~"hello");
let x2 = ~mut Some(x.clone());
let mut res = None;
do task::task().future_result(|+r| res = Some(r)).spawn {
let x2 = option::swap_unwrap(x2);
assert unwrap_exclusive(x2) == ~~"hello";
}
// Have to get rid of our reference before blocking.
{ let _x = move x; } // FIXME(#3161) util::ignore doesn't work here
let res = option::swap_unwrap(&mut res);
future::get(&res);
}
#[test] #[should_fail] #[ignore(cfg(windows))]
pub fn exclusive_unwrap_conflict() {
let x = exclusive(~~"hello");
let x2 = ~mut Some(x.clone());
let mut res = None;
do task::task().future_result(|+r| res = Some(r)).spawn {
let x2 = option::swap_unwrap(x2);
assert unwrap_exclusive(x2) == ~~"hello";
}
assert unwrap_exclusive(x) == ~~"hello";
let res = option::swap_unwrap(&mut res);
future::get(&res);
}
#[test] #[ignore(cfg(windows))]
pub fn exclusive_unwrap_deadlock() {
// This is not guaranteed to get to the deadlock before being killed,
// but it will show up sometimes, and if the deadlock were not there,
// the test would nondeterministically fail.
let result = do task::try {
// a task that has two references to the same exclusive will
// deadlock when it unwraps. nothing to be done about that.
let x = exclusive(~~"hello");
let x2 = x.clone();
do task::spawn {
for 10.times { task::yield(); } // try to let the unwrapper go
fail; // punt it awake from its deadlock
}
let _z = unwrap_exclusive(x);
do x2.with |_hello| { }
};
assert result.is_err();
}
}