700 lines
25 KiB
Rust
Raw Normal View History

2021-03-09 11:44:52 +09:00
mod cast_lossless;
mod cast_possible_truncation;
mod cast_possible_wrap;
mod cast_precision_loss;
2021-03-09 12:37:46 +09:00
mod cast_sign_loss;
mod utils;
use std::borrow::Cow;
use if_chain::if_chain;
use rustc_ast::{LitFloatType, LitIntType, LitKind};
use rustc_errors::Applicability;
use rustc_hir::{Expr, ExprKind, GenericArg, Lit, MutTy, Mutability, TyKind, UnOp};
use rustc_lint::{LateContext, LateLintPass, LintContext};
use rustc_middle::lint::in_external_macro;
use rustc_middle::ty::{self, FloatTy, InferTy, Ty, TypeAndMut, UintTy};
use rustc_semver::RustcVersion;
use rustc_session::{declare_lint_pass, declare_tool_lint, impl_lint_pass};
use rustc_span::symbol::sym;
use rustc_target::abi::LayoutOf;
use crate::utils::sugg::Sugg;
use crate::utils::{
is_hir_ty_cfg_dependant, meets_msrv, numeric_literal::NumericLiteral, snippet_opt, snippet_with_applicability,
span_lint, span_lint_and_sugg, span_lint_and_then,
};
use utils::int_ty_to_nbits;
declare_clippy_lint! {
/// **What it does:** Checks for casts from any numerical to a float type where
/// the receiving type cannot store all values from the original type without
/// rounding errors. This possible rounding is to be expected, so this lint is
/// `Allow` by default.
///
/// Basically, this warns on casting any integer with 32 or more bits to `f32`
/// or any 64-bit integer to `f64`.
///
/// **Why is this bad?** It's not bad at all. But in some applications it can be
/// helpful to know where precision loss can take place. This lint can help find
/// those places in the code.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let x = u64::MAX;
/// x as f64;
/// ```
pub CAST_PRECISION_LOSS,
pedantic,
"casts that cause loss of precision, e.g., `x as f32` where `x: u64`"
}
declare_clippy_lint! {
/// **What it does:** Checks for casts from a signed to an unsigned numerical
/// type. In this case, negative values wrap around to large positive values,
/// which can be quite surprising in practice. However, as the cast works as
/// defined, this lint is `Allow` by default.
///
/// **Why is this bad?** Possibly surprising results. You can activate this lint
/// as a one-time check to see where numerical wrapping can arise.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let y: i8 = -1;
/// y as u128; // will return 18446744073709551615
/// ```
pub CAST_SIGN_LOSS,
pedantic,
"casts from signed types to unsigned types, e.g., `x as u32` where `x: i32`"
}
declare_clippy_lint! {
/// **What it does:** Checks for casts between numerical types that may
/// truncate large values. This is expected behavior, so the cast is `Allow` by
/// default.
///
/// **Why is this bad?** In some problem domains, it is good practice to avoid
/// truncation. This lint can be activated to help assess where additional
/// checks could be beneficial.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// fn as_u8(x: u64) -> u8 {
/// x as u8
/// }
/// ```
pub CAST_POSSIBLE_TRUNCATION,
pedantic,
"casts that may cause truncation of the value, e.g., `x as u8` where `x: u32`, or `x as i32` where `x: f32`"
}
declare_clippy_lint! {
/// **What it does:** Checks for casts from an unsigned type to a signed type of
/// the same size. Performing such a cast is a 'no-op' for the compiler,
/// i.e., nothing is changed at the bit level, and the binary representation of
/// the value is reinterpreted. This can cause wrapping if the value is too big
/// for the target signed type. However, the cast works as defined, so this lint
/// is `Allow` by default.
///
/// **Why is this bad?** While such a cast is not bad in itself, the results can
/// be surprising when this is not the intended behavior, as demonstrated by the
/// example below.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// u32::MAX as i32; // will yield a value of `-1`
/// ```
pub CAST_POSSIBLE_WRAP,
pedantic,
"casts that may cause wrapping around the value, e.g., `x as i32` where `x: u32` and `x > i32::MAX`"
}
declare_clippy_lint! {
/// **What it does:** Checks for casts between numerical types that may
/// be replaced by safe conversion functions.
///
/// **Why is this bad?** Rust's `as` keyword will perform many kinds of
/// conversions, including silently lossy conversions. Conversion functions such
/// as `i32::from` will only perform lossless conversions. Using the conversion
/// functions prevents conversions from turning into silent lossy conversions if
/// the types of the input expressions ever change, and make it easier for
/// people reading the code to know that the conversion is lossless.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// fn as_u64(x: u8) -> u64 {
/// x as u64
/// }
/// ```
///
/// Using `::from` would look like this:
///
/// ```rust
/// fn as_u64(x: u8) -> u64 {
/// u64::from(x)
/// }
/// ```
pub CAST_LOSSLESS,
pedantic,
"casts using `as` that are known to be lossless, e.g., `x as u64` where `x: u8`"
}
declare_clippy_lint! {
/// **What it does:** Checks for casts to the same type, casts of int literals to integer types
/// and casts of float literals to float types.
///
/// **Why is this bad?** It's just unnecessary.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let _ = 2i32 as i32;
/// let _ = 0.5 as f32;
/// ```
///
/// Better:
///
/// ```rust
/// let _ = 2_i32;
/// let _ = 0.5_f32;
/// ```
pub UNNECESSARY_CAST,
complexity,
"cast to the same type, e.g., `x as i32` where `x: i32`"
}
declare_clippy_lint! {
/// **What it does:** Checks for casts, using `as` or `pointer::cast`,
/// from a less-strictly-aligned pointer to a more-strictly-aligned pointer
///
/// **Why is this bad?** Dereferencing the resulting pointer may be undefined
/// behavior.
///
/// **Known problems:** Using `std::ptr::read_unaligned` and `std::ptr::write_unaligned` or similar
/// on the resulting pointer is fine. Is over-zealous: Casts with manual alignment checks or casts like
/// u64-> u8 -> u16 can be fine. Miri is able to do a more in-depth analysis.
///
/// **Example:**
/// ```rust
/// let _ = (&1u8 as *const u8) as *const u16;
/// let _ = (&mut 1u8 as *mut u8) as *mut u16;
///
/// (&1u8 as *const u8).cast::<u16>();
/// (&mut 1u8 as *mut u8).cast::<u16>();
/// ```
pub CAST_PTR_ALIGNMENT,
pedantic,
"cast from a pointer to a more-strictly-aligned pointer"
}
declare_clippy_lint! {
/// **What it does:** Checks for casts of function pointers to something other than usize
///
/// **Why is this bad?**
/// Casting a function pointer to anything other than usize/isize is not portable across
/// architectures, because you end up losing bits if the target type is too small or end up with a
/// bunch of extra bits that waste space and add more instructions to the final binary than
/// strictly necessary for the problem
///
/// Casting to isize also doesn't make sense since there are no signed addresses.
///
/// **Example**
///
/// ```rust
/// // Bad
/// fn fun() -> i32 { 1 }
/// let a = fun as i64;
///
/// // Good
/// fn fun2() -> i32 { 1 }
/// let a = fun2 as usize;
/// ```
pub FN_TO_NUMERIC_CAST,
style,
"casting a function pointer to a numeric type other than usize"
}
declare_clippy_lint! {
/// **What it does:** Checks for casts of a function pointer to a numeric type not wide enough to
/// store address.
///
/// **Why is this bad?**
/// Such a cast discards some bits of the function's address. If this is intended, it would be more
/// clearly expressed by casting to usize first, then casting the usize to the intended type (with
/// a comment) to perform the truncation.
///
/// **Example**
///
/// ```rust
/// // Bad
/// fn fn1() -> i16 {
/// 1
/// };
/// let _ = fn1 as i32;
///
/// // Better: Cast to usize first, then comment with the reason for the truncation
/// fn fn2() -> i16 {
/// 1
/// };
/// let fn_ptr = fn2 as usize;
/// let fn_ptr_truncated = fn_ptr as i32;
/// ```
pub FN_TO_NUMERIC_CAST_WITH_TRUNCATION,
style,
"casting a function pointer to a numeric type not wide enough to store the address"
}
declare_lint_pass!(Casts => [
CAST_PRECISION_LOSS,
CAST_SIGN_LOSS,
CAST_POSSIBLE_TRUNCATION,
CAST_POSSIBLE_WRAP,
CAST_LOSSLESS,
UNNECESSARY_CAST,
CAST_PTR_ALIGNMENT,
FN_TO_NUMERIC_CAST,
FN_TO_NUMERIC_CAST_WITH_TRUNCATION,
]);
/// Check if the given type is either `core::ffi::c_void` or
/// one of the platform specific `libc::<platform>::c_void` of libc.
fn is_c_void(cx: &LateContext<'_>, ty: Ty<'_>) -> bool {
if let ty::Adt(adt, _) = ty.kind() {
let names = cx.get_def_path(adt.did);
if names.is_empty() {
return false;
}
if names[0] == sym::libc || names[0] == sym::core && *names.last().unwrap() == sym!(c_void) {
return true;
}
}
false
}
/// Returns the mantissa bits wide of a fp type.
/// Will return 0 if the type is not a fp
fn fp_ty_mantissa_nbits(typ: Ty<'_>) -> u32 {
match typ.kind() {
ty::Float(FloatTy::F32) => 23,
ty::Float(FloatTy::F64) | ty::Infer(InferTy::FloatVar(_)) => 52,
_ => 0,
}
}
impl<'tcx> LateLintPass<'tcx> for Casts {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
if expr.span.from_expansion() {
return;
}
if let ExprKind::Cast(ref ex, cast_to) = expr.kind {
if is_hir_ty_cfg_dependant(cx, cast_to) {
return;
}
let (cast_from, cast_to) = (cx.typeck_results().expr_ty(ex), cx.typeck_results().expr_ty(expr));
lint_fn_to_numeric_cast(cx, expr, ex, cast_from, cast_to);
if let Some(lit) = get_numeric_literal(ex) {
let literal_str = snippet_opt(cx, ex.span).unwrap_or_default();
if_chain! {
if let LitKind::Int(n, _) = lit.node;
if let Some(src) = snippet_opt(cx, lit.span);
if cast_to.is_floating_point();
if let Some(num_lit) = NumericLiteral::from_lit_kind(&src, &lit.node);
let from_nbits = 128 - n.leading_zeros();
let to_nbits = fp_ty_mantissa_nbits(cast_to);
if from_nbits != 0 && to_nbits != 0 && from_nbits <= to_nbits && num_lit.is_decimal();
then {
let literal_str = if is_unary_neg(ex) { format!("-{}", num_lit.integer) } else { num_lit.integer.into() };
show_unnecessary_cast(cx, expr, &literal_str, cast_from, cast_to);
return;
}
}
match lit.node {
LitKind::Int(_, LitIntType::Unsuffixed) if cast_to.is_integral() => {
show_unnecessary_cast(cx, expr, &literal_str, cast_from, cast_to);
},
LitKind::Float(_, LitFloatType::Unsuffixed) if cast_to.is_floating_point() => {
show_unnecessary_cast(cx, expr, &literal_str, cast_from, cast_to);
},
LitKind::Int(_, LitIntType::Unsuffixed) | LitKind::Float(_, LitFloatType::Unsuffixed) => {},
_ => {
if cast_from.kind() == cast_to.kind() && !in_external_macro(cx.sess(), expr.span) {
span_lint(
cx,
UNNECESSARY_CAST,
expr.span,
&format!(
"casting to the same type is unnecessary (`{}` -> `{}`)",
cast_from, cast_to
),
);
}
},
}
}
if cast_from.is_numeric() && cast_to.is_numeric() && !in_external_macro(cx.sess(), expr.span) {
lint_numeric_casts(cx, expr, ex, cast_from, cast_to);
}
lint_cast_ptr_alignment(cx, expr, cast_from, cast_to);
} else if let ExprKind::MethodCall(method_path, _, args, _) = expr.kind {
if_chain! {
if method_path.ident.name == sym!(cast);
if let Some(generic_args) = method_path.args;
if let [GenericArg::Type(cast_to)] = generic_args.args;
// There probably is no obvious reason to do this, just to be consistent with `as` cases.
if !is_hir_ty_cfg_dependant(cx, cast_to);
then {
let (cast_from, cast_to) =
(cx.typeck_results().expr_ty(&args[0]), cx.typeck_results().expr_ty(expr));
lint_cast_ptr_alignment(cx, expr, cast_from, cast_to);
}
}
}
}
}
fn is_unary_neg(expr: &Expr<'_>) -> bool {
matches!(expr.kind, ExprKind::Unary(UnOp::Neg, _))
}
fn get_numeric_literal<'e>(expr: &'e Expr<'e>) -> Option<&'e Lit> {
match expr.kind {
ExprKind::Lit(ref lit) => Some(lit),
ExprKind::Unary(UnOp::Neg, e) => {
if let ExprKind::Lit(ref lit) = e.kind {
Some(lit)
} else {
None
}
},
_ => None,
}
}
fn show_unnecessary_cast(cx: &LateContext<'_>, expr: &Expr<'_>, literal_str: &str, cast_from: Ty<'_>, cast_to: Ty<'_>) {
let literal_kind_name = if cast_from.is_integral() { "integer" } else { "float" };
span_lint_and_sugg(
cx,
UNNECESSARY_CAST,
expr.span,
&format!("casting {} literal to `{}` is unnecessary", literal_kind_name, cast_to),
"try",
format!("{}_{}", literal_str.trim_end_matches('.'), cast_to),
Applicability::MachineApplicable,
);
}
fn lint_numeric_casts<'tcx>(
cx: &LateContext<'tcx>,
expr: &Expr<'tcx>,
2021-03-09 12:37:46 +09:00
cast_op: &Expr<'_>,
cast_from: Ty<'tcx>,
cast_to: Ty<'tcx>,
) {
cast_possible_truncation::check(cx, expr, cast_from, cast_to);
cast_possible_wrap::check(cx, expr, cast_from, cast_to);
2021-03-09 12:37:46 +09:00
cast_precision_loss::check(cx, expr, cast_from, cast_to);
cast_lossless::check(cx, expr, cast_op, cast_from, cast_to);
cast_sign_loss::check(cx, expr, cast_op, cast_from, cast_to);
}
fn lint_cast_ptr_alignment<'tcx>(cx: &LateContext<'tcx>, expr: &Expr<'_>, cast_from: Ty<'tcx>, cast_to: Ty<'tcx>) {
if_chain! {
if let ty::RawPtr(from_ptr_ty) = &cast_from.kind();
if let ty::RawPtr(to_ptr_ty) = &cast_to.kind();
if let Ok(from_layout) = cx.layout_of(from_ptr_ty.ty);
if let Ok(to_layout) = cx.layout_of(to_ptr_ty.ty);
if from_layout.align.abi < to_layout.align.abi;
// with c_void, we inherently need to trust the user
if !is_c_void(cx, from_ptr_ty.ty);
// when casting from a ZST, we don't know enough to properly lint
if !from_layout.is_zst();
then {
span_lint(
cx,
CAST_PTR_ALIGNMENT,
expr.span,
&format!(
"casting from `{}` to a more-strictly-aligned pointer (`{}`) ({} < {} bytes)",
cast_from,
cast_to,
from_layout.align.abi.bytes(),
to_layout.align.abi.bytes(),
),
);
}
}
}
fn lint_fn_to_numeric_cast(
cx: &LateContext<'_>,
expr: &Expr<'_>,
cast_expr: &Expr<'_>,
cast_from: Ty<'_>,
cast_to: Ty<'_>,
) {
// We only want to check casts to `ty::Uint` or `ty::Int`
match cast_to.kind() {
ty::Uint(_) | ty::Int(..) => { /* continue on */ },
_ => return,
}
match cast_from.kind() {
ty::FnDef(..) | ty::FnPtr(_) => {
let mut applicability = Applicability::MaybeIncorrect;
let from_snippet = snippet_with_applicability(cx, cast_expr.span, "x", &mut applicability);
let to_nbits = int_ty_to_nbits(cast_to, cx.tcx);
if to_nbits < cx.tcx.data_layout.pointer_size.bits() {
span_lint_and_sugg(
cx,
FN_TO_NUMERIC_CAST_WITH_TRUNCATION,
expr.span,
&format!(
"casting function pointer `{}` to `{}`, which truncates the value",
from_snippet, cast_to
),
"try",
format!("{} as usize", from_snippet),
applicability,
);
} else if *cast_to.kind() != ty::Uint(UintTy::Usize) {
span_lint_and_sugg(
cx,
FN_TO_NUMERIC_CAST,
expr.span,
&format!("casting function pointer `{}` to `{}`", from_snippet, cast_to),
"try",
format!("{} as usize", from_snippet),
applicability,
);
}
},
_ => {},
}
}
declare_clippy_lint! {
/// **What it does:** Checks for casts of `&T` to `&mut T` anywhere in the code.
///
/// **Why is this bad?** Its basically guaranteed to be undefined behaviour.
/// `UnsafeCell` is the only way to obtain aliasable data that is considered
/// mutable.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust,ignore
/// fn x(r: &i32) {
/// unsafe {
/// *(r as *const _ as *mut _) += 1;
/// }
/// }
/// ```
///
/// Instead consider using interior mutability types.
///
/// ```rust
/// use std::cell::UnsafeCell;
///
/// fn x(r: &UnsafeCell<i32>) {
/// unsafe {
/// *r.get() += 1;
/// }
/// }
/// ```
pub CAST_REF_TO_MUT,
correctness,
"a cast of reference to a mutable pointer"
}
declare_lint_pass!(RefToMut => [CAST_REF_TO_MUT]);
impl<'tcx> LateLintPass<'tcx> for RefToMut {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
if_chain! {
if let ExprKind::Unary(UnOp::Deref, e) = &expr.kind;
if let ExprKind::Cast(e, t) = &e.kind;
if let TyKind::Ptr(MutTy { mutbl: Mutability::Mut, .. }) = t.kind;
if let ExprKind::Cast(e, t) = &e.kind;
if let TyKind::Ptr(MutTy { mutbl: Mutability::Not, .. }) = t.kind;
if let ty::Ref(..) = cx.typeck_results().node_type(e.hir_id).kind();
then {
span_lint(
cx,
CAST_REF_TO_MUT,
expr.span,
"casting `&T` to `&mut T` may cause undefined behavior, consider instead using an `UnsafeCell`",
);
}
}
}
}
const PTR_AS_PTR_MSRV: RustcVersion = RustcVersion::new(1, 38, 0);
declare_clippy_lint! {
/// **What it does:** Checks for expressions where a character literal is cast
/// to `u8` and suggests using a byte literal instead.
///
/// **Why is this bad?** In general, casting values to smaller types is
/// error-prone and should be avoided where possible. In the particular case of
/// converting a character literal to u8, it is easy to avoid by just using a
/// byte literal instead. As an added bonus, `b'a'` is even slightly shorter
/// than `'a' as u8`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust,ignore
/// 'x' as u8
/// ```
///
/// A better version, using the byte literal:
///
/// ```rust,ignore
/// b'x'
/// ```
pub CHAR_LIT_AS_U8,
complexity,
"casting a character literal to `u8` truncates"
}
declare_lint_pass!(CharLitAsU8 => [CHAR_LIT_AS_U8]);
impl<'tcx> LateLintPass<'tcx> for CharLitAsU8 {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
if_chain! {
if !expr.span.from_expansion();
if let ExprKind::Cast(e, _) = &expr.kind;
if let ExprKind::Lit(l) = &e.kind;
if let LitKind::Char(c) = l.node;
if ty::Uint(UintTy::U8) == *cx.typeck_results().expr_ty(expr).kind();
then {
let mut applicability = Applicability::MachineApplicable;
let snippet = snippet_with_applicability(cx, e.span, "'x'", &mut applicability);
span_lint_and_then(
cx,
CHAR_LIT_AS_U8,
expr.span,
"casting a character literal to `u8` truncates",
|diag| {
diag.note("`char` is four bytes wide, but `u8` is a single byte");
if c.is_ascii() {
diag.span_suggestion(
expr.span,
"use a byte literal instead",
format!("b{}", snippet),
applicability,
);
}
});
}
}
}
}
declare_clippy_lint! {
/// **What it does:**
/// Checks for `as` casts between raw pointers without changing its mutability,
/// namely `*const T` to `*const U` and `*mut T` to `*mut U`.
///
/// **Why is this bad?**
/// Though `as` casts between raw pointers is not terrible, `pointer::cast` is safer because
/// it cannot accidentally change the pointer's mutability nor cast the pointer to other types like `usize`.
///
/// **Known problems:** None.
///
/// **Example:**
///
/// ```rust
/// let ptr: *const u32 = &42_u32;
/// let mut_ptr: *mut u32 = &mut 42_u32;
/// let _ = ptr as *const i32;
/// let _ = mut_ptr as *mut i32;
/// ```
/// Use instead:
/// ```rust
/// let ptr: *const u32 = &42_u32;
/// let mut_ptr: *mut u32 = &mut 42_u32;
/// let _ = ptr.cast::<i32>();
/// let _ = mut_ptr.cast::<i32>();
/// ```
pub PTR_AS_PTR,
pedantic,
"casting using `as` from and to raw pointers that doesn't change its mutability, where `pointer::cast` could take the place of `as`"
}
pub struct PtrAsPtr {
msrv: Option<RustcVersion>,
}
impl PtrAsPtr {
#[must_use]
pub fn new(msrv: Option<RustcVersion>) -> Self {
Self { msrv }
}
}
impl_lint_pass!(PtrAsPtr => [PTR_AS_PTR]);
impl<'tcx> LateLintPass<'tcx> for PtrAsPtr {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
if !meets_msrv(self.msrv.as_ref(), &PTR_AS_PTR_MSRV) {
return;
}
if expr.span.from_expansion() {
return;
}
if_chain! {
if let ExprKind::Cast(cast_expr, cast_to_hir_ty) = expr.kind;
let (cast_from, cast_to) = (cx.typeck_results().expr_ty(cast_expr), cx.typeck_results().expr_ty(expr));
if let ty::RawPtr(TypeAndMut { mutbl: from_mutbl, .. }) = cast_from.kind();
if let ty::RawPtr(TypeAndMut { ty: to_pointee_ty, mutbl: to_mutbl }) = cast_to.kind();
if matches!((from_mutbl, to_mutbl),
(Mutability::Not, Mutability::Not) | (Mutability::Mut, Mutability::Mut));
// The `U` in `pointer::cast` have to be `Sized`
// as explained here: https://github.com/rust-lang/rust/issues/60602.
if to_pointee_ty.is_sized(cx.tcx.at(expr.span), cx.param_env);
then {
let mut applicability = Applicability::MachineApplicable;
let cast_expr_sugg = Sugg::hir_with_applicability(cx, cast_expr, "_", &mut applicability);
let turbofish = match &cast_to_hir_ty.kind {
TyKind::Infer => Cow::Borrowed(""),
TyKind::Ptr(mut_ty) if matches!(mut_ty.ty.kind, TyKind::Infer) => Cow::Borrowed(""),
_ => Cow::Owned(format!("::<{}>", to_pointee_ty)),
};
span_lint_and_sugg(
cx,
PTR_AS_PTR,
expr.span,
"`as` casting between raw pointers without changing its mutability",
"try `pointer::cast`, a safer alternative",
format!("{}.cast{}()", cast_expr_sugg.maybe_par(), turbofish),
applicability,
);
}
}
}
extract_msrv_attr!(LateContext);
}