Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2490 lines
64 KiB
Rust
Raw Normal View History

use core::alloc::{Allocator, Layout};
use core::iter::IntoIterator;
use core::ptr::NonNull;
use std::alloc::System;
use std::assert_matches::assert_matches;
use std::borrow::Cow;
2020-09-10 15:41:16 +02:00
use std::cell::Cell;
use std::collections::TryReserveErrorKind::*;
use std::fmt::Debug;
use std::iter::InPlaceIterable;
2020-10-03 19:03:38 +02:00
use std::mem::{size_of, swap};
2020-08-04 00:00:00 +00:00
use std::ops::Bound::*;
use std::panic::{catch_unwind, AssertUnwindSafe};
2020-01-25 17:55:47 +01:00
use std::rc::Rc;
use std::sync::atomic::{AtomicU32, Ordering};
use std::vec::{Drain, IntoIter};
struct DropCounter<'a> {
count: &'a mut u32,
}
2019-02-02 12:23:15 +01:00
impl Drop for DropCounter<'_> {
fn drop(&mut self) {
*self.count += 1;
}
}
#[test]
fn test_small_vec_struct() {
2020-06-05 16:56:51 +08:00
assert_eq!(size_of::<Vec<u8>>(), size_of::<usize>() * 3);
}
#[test]
fn test_double_drop() {
struct TwoVec<T> {
x: Vec<T>,
y: Vec<T>,
}
let (mut count_x, mut count_y) = (0, 0);
{
let mut tv = TwoVec { x: Vec::new(), y: Vec::new() };
tv.x.push(DropCounter { count: &mut count_x });
tv.y.push(DropCounter { count: &mut count_y });
// If Vec had a drop flag, here is where it would be zeroed.
// Instead, it should rely on its internal state to prevent
// doing anything significant when dropped multiple times.
drop(tv.x);
// Here tv goes out of scope, tv.y should be dropped, but not tv.x.
}
assert_eq!(count_x, 1);
assert_eq!(count_y, 1);
}
#[test]
fn test_reserve() {
let mut v = Vec::new();
assert_eq!(v.capacity(), 0);
v.reserve(2);
assert!(v.capacity() >= 2);
for i in 0..16 {
v.push(i);
}
assert!(v.capacity() >= 16);
v.reserve(16);
assert!(v.capacity() >= 32);
v.push(16);
v.reserve(16);
assert!(v.capacity() >= 33)
}
#[test]
fn test_zst_capacity() {
2020-06-02 07:59:11 +00:00
assert_eq!(Vec::<()>::new().capacity(), usize::MAX);
}
#[test]
fn test_indexing() {
let v: Vec<isize> = vec![10, 20];
assert_eq!(v[0], 10);
assert_eq!(v[1], 20);
let mut x: usize = 0;
assert_eq!(v[x], 10);
assert_eq!(v[x + 1], 20);
x = x + 1;
assert_eq!(v[x], 20);
assert_eq!(v[x - 1], 10);
}
#[test]
fn test_debug_fmt() {
let vec1: Vec<isize> = vec![];
assert_eq!("[]", format!("{:?}", vec1));
let vec2 = vec![0, 1];
assert_eq!("[0, 1]", format!("{:?}", vec2));
let slice: &[isize] = &[4, 5];
assert_eq!("[4, 5]", format!("{slice:?}"));
}
#[test]
fn test_push() {
let mut v = vec![];
v.push(1);
assert_eq!(v, [1]);
v.push(2);
assert_eq!(v, [1, 2]);
v.push(3);
assert_eq!(v, [1, 2, 3]);
}
#[test]
fn test_extend() {
let mut v = Vec::new();
let mut w = Vec::new();
v.extend(w.clone());
assert_eq!(v, &[]);
v.extend(0..3);
for i in 0..3 {
w.push(i)
}
assert_eq!(v, w);
v.extend(3..10);
for i in 3..10 {
w.push(i)
}
assert_eq!(v, w);
v.extend(w.clone()); // specializes to `append`
assert!(v.iter().eq(w.iter().chain(w.iter())));
// Zero sized types
#[derive(PartialEq, Debug)]
struct Foo;
let mut a = Vec::new();
let b = vec![Foo, Foo];
a.extend(b);
assert_eq!(a, &[Foo, Foo]);
// Double drop
let mut count_x = 0;
{
let mut x = Vec::new();
let y = vec![DropCounter { count: &mut count_x }];
x.extend(y);
}
assert_eq!(count_x, 1);
}
#[test]
fn test_extend_from_slice() {
let a: Vec<isize> = vec![1, 2, 3, 4, 5];
let b: Vec<isize> = vec![6, 7, 8, 9, 0];
let mut v: Vec<isize> = a;
v.extend_from_slice(&b);
assert_eq!(v, [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]);
}
2015-06-03 12:38:42 +02:00
#[test]
fn test_extend_ref() {
let mut v = vec![1, 2];
v.extend(&[3, 4, 5]);
assert_eq!(v.len(), 5);
assert_eq!(v, [1, 2, 3, 4, 5]);
let w = vec![6, 7];
v.extend(&w);
assert_eq!(v.len(), 7);
assert_eq!(v, [1, 2, 3, 4, 5, 6, 7]);
}
#[test]
fn test_slice_from_ref() {
let values = vec![1, 2, 3, 4, 5];
let slice = &values[1..3];
assert_eq!(slice, [2, 3]);
}
#[test]
fn test_slice_from_mut() {
let mut values = vec![1, 2, 3, 4, 5];
{
let slice = &mut values[2..];
assert!(slice == [3, 4, 5]);
for p in slice {
*p += 2;
}
}
assert!(values == [1, 2, 5, 6, 7]);
}
#[test]
fn test_slice_to_mut() {
let mut values = vec![1, 2, 3, 4, 5];
{
let slice = &mut values[..2];
assert!(slice == [1, 2]);
for p in slice {
*p += 1;
}
}
assert!(values == [2, 3, 3, 4, 5]);
}
#[test]
fn test_split_at_mut() {
let mut values = vec![1, 2, 3, 4, 5];
{
let (left, right) = values.split_at_mut(2);
{
let left: &[_] = left;
assert!(&left[..left.len()] == &[1, 2]);
}
for p in left {
*p += 1;
}
{
let right: &[_] = right;
assert!(&right[..right.len()] == &[3, 4, 5]);
}
for p in right {
*p += 2;
}
}
assert_eq!(values, [2, 3, 5, 6, 7]);
}
#[test]
fn test_clone() {
let v: Vec<i32> = vec![];
let w = vec![1, 2, 3];
assert_eq!(v, v.clone());
let z = w.clone();
assert_eq!(w, z);
// they should be disjoint in memory.
assert!(w.as_ptr() != z.as_ptr())
}
#[test]
fn test_clone_from() {
let mut v = vec![];
let three: Vec<Box<_>> = vec![Box::new(1), Box::new(2), Box::new(3)];
let two: Vec<Box<_>> = vec![Box::new(4), Box::new(5)];
// zero, long
v.clone_from(&three);
assert_eq!(v, three);
// equal
v.clone_from(&three);
assert_eq!(v, three);
// long, short
v.clone_from(&two);
assert_eq!(v, two);
// short, long
v.clone_from(&three);
assert_eq!(v, three)
}
#[test]
fn test_retain() {
let mut vec = vec![1, 2, 3, 4];
vec.retain(|&x| x % 2 == 0);
assert_eq!(vec, [2, 4]);
}
#[test]
fn test_retain_predicate_order() {
for to_keep in [true, false] {
let mut number_of_executions = 0;
let mut vec = vec![1, 2, 3, 4];
let mut next_expected = 1;
vec.retain(|&x| {
assert_eq!(next_expected, x);
next_expected += 1;
number_of_executions += 1;
to_keep
});
assert_eq!(number_of_executions, 4);
}
}
2021-01-18 00:51:37 +08:00
#[test]
2021-01-23 04:00:55 +08:00
fn test_retain_pred_panic_with_hole() {
let v = (0..5).map(Rc::new).collect::<Vec<_>>();
catch_unwind(AssertUnwindSafe(|| {
let mut v = v.clone();
v.retain(|r| match **r {
0 => true,
1 => false,
2 => true,
_ => panic!(),
});
}))
.unwrap_err();
// Everything is dropped when predicate panicked.
assert!(v.iter().all(|r| Rc::strong_count(r) == 1));
}
2021-01-18 00:51:37 +08:00
2021-01-23 04:00:55 +08:00
#[test]
fn test_retain_pred_panic_no_hole() {
let v = (0..5).map(Rc::new).collect::<Vec<_>>();
catch_unwind(AssertUnwindSafe(|| {
let mut v = v.clone();
v.retain(|r| match **r {
0 | 1 | 2 => true,
2021-01-18 00:51:37 +08:00
_ => panic!(),
});
2021-01-23 04:00:55 +08:00
}))
.unwrap_err();
2021-01-18 00:51:37 +08:00
// Everything is dropped when predicate panicked.
2021-01-23 04:00:55 +08:00
assert!(v.iter().all(|r| Rc::strong_count(r) == 1));
2021-01-18 00:51:37 +08:00
}
#[test]
fn test_retain_drop_panic() {
2021-01-23 04:00:55 +08:00
struct Wrap(Rc<i32>);
2021-01-18 00:51:37 +08:00
2021-01-23 04:00:55 +08:00
impl Drop for Wrap {
2021-01-18 00:51:37 +08:00
fn drop(&mut self) {
2021-01-23 04:00:55 +08:00
if *self.0 == 3 {
2021-01-18 00:51:37 +08:00
panic!();
}
}
}
2021-01-23 04:00:55 +08:00
let v = (0..5).map(|x| Rc::new(x)).collect::<Vec<_>>();
catch_unwind(AssertUnwindSafe(|| {
let mut v = v.iter().map(|r| Wrap(r.clone())).collect::<Vec<_>>();
v.retain(|w| match *w.0 {
0 => true,
1 => false,
2 => true,
3 => false, // Drop panic.
2021-01-18 00:51:37 +08:00
_ => true,
});
2021-01-23 04:00:55 +08:00
}))
.unwrap_err();
2021-01-18 00:51:37 +08:00
// Other elements are dropped when `drop` of one element panicked.
2021-01-23 04:00:55 +08:00
// The panicked wrapper also has its Rc dropped.
assert!(v.iter().all(|r| Rc::strong_count(r) == 1));
2021-01-18 00:51:37 +08:00
}
#[test]
fn test_retain_maybeuninits() {
// This test aimed to be run under miri.
use core::mem::MaybeUninit;
let mut vec: Vec<_> = [1i32, 2, 3, 4].map(|v| MaybeUninit::new(vec![v])).into();
vec.retain(|x| {
// SAFETY: Retain must visit every element of Vec in original order and exactly once.
// Our values is initialized at creation of Vec.
let v = unsafe { x.assume_init_ref()[0] };
if v & 1 == 0 {
return true;
}
// SAFETY: Value is initialized.
// Value wouldn't be dropped by `Vec::retain`
// because `MaybeUninit` doesn't drop content.
drop(unsafe { x.assume_init_read() });
false
});
let vec: Vec<i32> = vec
.into_iter()
.map(|x| unsafe {
// SAFETY: All values dropped in retain predicate must be removed by `Vec::retain`.
// Remaining values are initialized.
x.assume_init()[0]
})
.collect();
assert_eq!(vec, [2, 4]);
}
#[test]
fn test_dedup() {
fn case(a: Vec<i32>, b: Vec<i32>) {
let mut v = a;
v.dedup();
assert_eq!(v, b);
}
case(vec![], vec![]);
case(vec![1], vec![1]);
case(vec![1, 1], vec![1]);
case(vec![1, 2, 3], vec![1, 2, 3]);
case(vec![1, 1, 2, 3], vec![1, 2, 3]);
case(vec![1, 2, 2, 3], vec![1, 2, 3]);
case(vec![1, 2, 3, 3], vec![1, 2, 3]);
case(vec![1, 1, 2, 2, 2, 3, 3], vec![1, 2, 3]);
}
#[test]
fn test_dedup_by_key() {
fn case(a: Vec<i32>, b: Vec<i32>) {
let mut v = a;
v.dedup_by_key(|i| *i / 10);
assert_eq!(v, b);
}
case(vec![], vec![]);
case(vec![10], vec![10]);
case(vec![10, 11], vec![10]);
case(vec![10, 20, 30], vec![10, 20, 30]);
case(vec![10, 11, 20, 30], vec![10, 20, 30]);
case(vec![10, 20, 21, 30], vec![10, 20, 30]);
case(vec![10, 20, 30, 31], vec![10, 20, 30]);
case(vec![10, 11, 20, 21, 22, 30, 31], vec![10, 20, 30]);
}
#[test]
fn test_dedup_by() {
let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
let mut vec = vec![("foo", 1), ("foo", 2), ("bar", 3), ("bar", 4), ("bar", 5)];
vec.dedup_by(|a, b| {
a.0 == b.0 && {
b.1 += a.1;
true
2019-12-22 17:42:04 -05:00
}
});
assert_eq!(vec, [("foo", 3), ("bar", 12)]);
}
#[test]
fn test_dedup_unique() {
let mut v0: Vec<Box<_>> = vec![Box::new(1), Box::new(1), Box::new(2), Box::new(3)];
v0.dedup();
let mut v1: Vec<Box<_>> = vec![Box::new(1), Box::new(2), Box::new(2), Box::new(3)];
v1.dedup();
let mut v2: Vec<Box<_>> = vec![Box::new(1), Box::new(2), Box::new(3), Box::new(3)];
v2.dedup();
// If the boxed pointers were leaked or otherwise misused, valgrind
// and/or rt should raise errors.
}
#[test]
fn zero_sized_values() {
let mut v = Vec::new();
assert_eq!(v.len(), 0);
v.push(());
assert_eq!(v.len(), 1);
v.push(());
assert_eq!(v.len(), 2);
assert_eq!(v.pop(), Some(()));
assert_eq!(v.pop(), Some(()));
assert_eq!(v.pop(), None);
assert_eq!(v.iter().count(), 0);
v.push(());
assert_eq!(v.iter().count(), 1);
v.push(());
assert_eq!(v.iter().count(), 2);
for &() in &v {}
assert_eq!(v.iter_mut().count(), 2);
v.push(());
assert_eq!(v.iter_mut().count(), 3);
v.push(());
assert_eq!(v.iter_mut().count(), 4);
for &mut () in &mut v {}
unsafe {
v.set_len(0);
}
assert_eq!(v.iter_mut().count(), 0);
}
#[test]
fn test_partition() {
assert_eq!([].into_iter().partition(|x: &i32| *x < 3), (vec![], vec![]));
assert_eq!([1, 2, 3].into_iter().partition(|x| *x < 4), (vec![1, 2, 3], vec![]));
assert_eq!([1, 2, 3].into_iter().partition(|x| *x < 2), (vec![1], vec![2, 3]));
assert_eq!([1, 2, 3].into_iter().partition(|x| *x < 0), (vec![], vec![1, 2, 3]));
}
#[test]
fn test_zip_unzip() {
let z1 = vec![(1, 4), (2, 5), (3, 6)];
let (left, right): (Vec<_>, Vec<_>) = z1.iter().cloned().unzip();
assert_eq!((1, 4), (left[0], right[0]));
assert_eq!((2, 5), (left[1], right[1]));
assert_eq!((3, 6), (left[2], right[2]));
}
2020-09-04 17:18:26 +05:30
#[test]
fn test_cmp() {
let x: &[isize] = &[1, 2, 3, 4, 5];
let cmp: &[isize] = &[1, 2, 3, 4, 5];
assert_eq!(&x[..], cmp);
let cmp: &[isize] = &[3, 4, 5];
assert_eq!(&x[2..], cmp);
let cmp: &[isize] = &[1, 2, 3];
assert_eq!(&x[..3], cmp);
let cmp: &[isize] = &[2, 3, 4];
assert_eq!(&x[1..4], cmp);
let x: Vec<isize> = vec![1, 2, 3, 4, 5];
let cmp: &[isize] = &[1, 2, 3, 4, 5];
assert_eq!(&x[..], cmp);
let cmp: &[isize] = &[3, 4, 5];
assert_eq!(&x[2..], cmp);
let cmp: &[isize] = &[1, 2, 3];
assert_eq!(&x[..3], cmp);
let cmp: &[isize] = &[2, 3, 4];
assert_eq!(&x[1..4], cmp);
}
#[test]
fn test_vec_truncate_drop() {
2016-10-14 15:07:18 +03:00
static mut DROPS: u32 = 0;
struct Elem(i32);
impl Drop for Elem {
fn drop(&mut self) {
unsafe {
2016-10-14 15:07:18 +03:00
DROPS += 1;
}
}
}
let mut v = vec![Elem(1), Elem(2), Elem(3), Elem(4), Elem(5)];
2016-10-14 15:07:18 +03:00
assert_eq!(unsafe { DROPS }, 0);
v.truncate(3);
2016-10-14 15:07:18 +03:00
assert_eq!(unsafe { DROPS }, 2);
v.truncate(0);
2016-10-14 15:07:18 +03:00
assert_eq!(unsafe { DROPS }, 5);
}
#[test]
#[should_panic]
fn test_vec_truncate_fail() {
struct BadElem(i32);
impl Drop for BadElem {
fn drop(&mut self) {
let BadElem(ref mut x) = *self;
if *x == 0xbadbeef {
panic!("BadElem panic: 0xbadbeef")
}
}
}
let mut v = vec![BadElem(1), BadElem(2), BadElem(0xbadbeef), BadElem(4)];
v.truncate(0);
}
#[test]
fn test_index() {
let vec = vec![1, 2, 3];
assert!(vec[1] == 2);
}
#[test]
#[should_panic]
fn test_index_out_of_bounds() {
let vec = vec![1, 2, 3];
let _ = vec[3];
}
#[test]
#[should_panic]
fn test_slice_out_of_bounds_1() {
let x = vec![1, 2, 3, 4, 5];
let _ = &x[!0..];
}
#[test]
#[should_panic]
fn test_slice_out_of_bounds_2() {
let x = vec![1, 2, 3, 4, 5];
let _ = &x[..6];
}
#[test]
#[should_panic]
fn test_slice_out_of_bounds_3() {
let x = vec![1, 2, 3, 4, 5];
let _ = &x[!0..4];
}
#[test]
#[should_panic]
fn test_slice_out_of_bounds_4() {
let x = vec![1, 2, 3, 4, 5];
let _ = &x[1..6];
}
#[test]
#[should_panic]
fn test_slice_out_of_bounds_5() {
let x = vec![1, 2, 3, 4, 5];
let _ = &x[3..2];
}
#[test]
#[should_panic]
fn test_swap_remove_empty() {
let mut vec = Vec::<i32>::new();
vec.swap_remove(0);
}
#[test]
fn test_move_items() {
let vec = vec![1, 2, 3];
let mut vec2 = vec![];
for i in vec {
vec2.push(i);
}
assert_eq!(vec2, [1, 2, 3]);
}
#[test]
fn test_move_items_reverse() {
let vec = vec![1, 2, 3];
let mut vec2 = vec![];
for i in vec.into_iter().rev() {
vec2.push(i);
}
assert_eq!(vec2, [3, 2, 1]);
}
#[test]
fn test_move_items_zero_sized() {
let vec = vec![(), (), ()];
let mut vec2 = vec![];
for i in vec {
vec2.push(i);
}
assert_eq!(vec2, [(), (), ()]);
}
#[test]
fn test_drain_empty_vec() {
let mut vec: Vec<i32> = vec![];
let mut vec2: Vec<i32> = vec![];
for i in vec.drain(..) {
vec2.push(i);
}
assert!(vec.is_empty());
assert!(vec2.is_empty());
}
#[test]
fn test_drain_items() {
let mut vec = vec![1, 2, 3];
let mut vec2 = vec![];
for i in vec.drain(..) {
vec2.push(i);
}
assert_eq!(vec, []);
assert_eq!(vec2, [1, 2, 3]);
}
#[test]
fn test_drain_items_reverse() {
let mut vec = vec![1, 2, 3];
let mut vec2 = vec![];
for i in vec.drain(..).rev() {
vec2.push(i);
}
assert_eq!(vec, []);
assert_eq!(vec2, [3, 2, 1]);
}
#[test]
fn test_drain_items_zero_sized() {
let mut vec = vec![(), (), ()];
let mut vec2 = vec![];
for i in vec.drain(..) {
vec2.push(i);
}
assert_eq!(vec, []);
assert_eq!(vec2, [(), (), ()]);
}
#[test]
#[should_panic]
fn test_drain_out_of_bounds() {
let mut v = vec![1, 2, 3, 4, 5];
v.drain(5..6);
}
#[test]
fn test_drain_range() {
let mut v = vec![1, 2, 3, 4, 5];
for _ in v.drain(4..) {}
assert_eq!(v, &[1, 2, 3, 4]);
let mut v: Vec<_> = (1..6).map(|x| x.to_string()).collect();
for _ in v.drain(1..4) {}
assert_eq!(v, &[1.to_string(), 5.to_string()]);
let mut v: Vec<_> = (1..6).map(|x| x.to_string()).collect();
for _ in v.drain(1..4).rev() {}
assert_eq!(v, &[1.to_string(), 5.to_string()]);
let mut v: Vec<_> = vec![(); 5];
for _ in v.drain(1..4).rev() {}
assert_eq!(v, &[(), ()]);
}
#[test]
fn test_drain_inclusive_range() {
let mut v = vec!['a', 'b', 'c', 'd', 'e'];
for _ in v.drain(1..=3) {}
assert_eq!(v, &['a', 'e']);
let mut v: Vec<_> = (0..=5).map(|x| x.to_string()).collect();
for _ in v.drain(1..=5) {}
assert_eq!(v, &["0".to_string()]);
let mut v: Vec<String> = (0..=5).map(|x| x.to_string()).collect();
for _ in v.drain(0..=5) {}
assert_eq!(v, Vec::<String>::new());
let mut v: Vec<_> = (0..=5).map(|x| x.to_string()).collect();
for _ in v.drain(0..=3) {}
assert_eq!(v, &["4".to_string(), "5".to_string()]);
2017-02-18 20:58:12 +00:00
let mut v: Vec<_> = (0..=1).map(|x| x.to_string()).collect();
for _ in v.drain(..=0) {}
2017-02-18 20:58:12 +00:00
assert_eq!(v, &["1".to_string()]);
}
#[test]
fn test_drain_max_vec_size() {
2020-06-02 07:59:11 +00:00
let mut v = Vec::<()>::with_capacity(usize::MAX);
unsafe {
2020-06-02 07:59:11 +00:00
v.set_len(usize::MAX);
}
2020-06-02 07:59:11 +00:00
for _ in v.drain(usize::MAX - 1..) {}
assert_eq!(v.len(), usize::MAX - 1);
2020-06-02 07:59:11 +00:00
let mut v = Vec::<()>::with_capacity(usize::MAX);
unsafe {
2020-06-02 07:59:11 +00:00
v.set_len(usize::MAX);
}
2020-06-02 07:59:11 +00:00
for _ in v.drain(usize::MAX - 1..=usize::MAX - 1) {}
assert_eq!(v.len(), usize::MAX - 1);
}
2020-08-04 00:00:00 +00:00
#[test]
#[should_panic]
fn test_drain_index_overflow() {
let mut v = Vec::<()>::with_capacity(usize::MAX);
unsafe {
v.set_len(usize::MAX);
}
v.drain(0..=usize::MAX);
}
#[test]
#[should_panic]
fn test_drain_inclusive_out_of_bounds() {
let mut v = vec![1, 2, 3, 4, 5];
v.drain(5..=5);
}
2020-08-04 00:00:00 +00:00
#[test]
#[should_panic]
fn test_drain_start_overflow() {
let mut v = vec![1, 2, 3];
v.drain((Excluded(usize::MAX), Included(0)));
}
#[test]
#[should_panic]
fn test_drain_end_overflow() {
let mut v = vec![1, 2, 3];
v.drain((Included(0), Included(usize::MAX)));
}
#[test]
fn test_drain_leak() {
static mut DROPS: i32 = 0;
#[derive(Debug, PartialEq)]
struct D(u32, bool);
impl Drop for D {
fn drop(&mut self) {
unsafe {
DROPS += 1;
}
if self.1 {
panic!("panic in `drop`");
}
}
}
let mut v = vec![
D(0, false),
D(1, false),
D(2, false),
D(3, false),
D(4, true),
D(5, false),
D(6, false),
];
catch_unwind(AssertUnwindSafe(|| {
v.drain(2..=5);
}))
.ok();
assert_eq!(unsafe { DROPS }, 4);
assert_eq!(v, vec![D(0, false), D(1, false), D(6, false),]);
}
#[test]
fn test_drain_keep_rest() {
let mut v = vec![0, 1, 2, 3, 4, 5, 6];
let mut drain = v.drain(1..6);
assert_eq!(drain.next(), Some(1));
assert_eq!(drain.next_back(), Some(5));
assert_eq!(drain.next(), Some(2));
drain.keep_rest();
assert_eq!(v, &[0, 3, 4, 6]);
}
#[test]
fn test_drain_keep_rest_all() {
let mut v = vec![0, 1, 2, 3, 4, 5, 6];
v.drain(1..6).keep_rest();
assert_eq!(v, &[0, 1, 2, 3, 4, 5, 6]);
}
#[test]
fn test_drain_keep_rest_none() {
let mut v = vec![0, 1, 2, 3, 4, 5, 6];
let mut drain = v.drain(1..6);
drain.by_ref().for_each(drop);
drain.keep_rest();
assert_eq!(v, &[0, 6]);
}
2017-04-08 15:55:53 -05:00
#[test]
2017-04-08 16:04:30 -05:00
fn test_splice() {
2017-04-08 15:55:53 -05:00
let mut v = vec![1, 2, 3, 4, 5];
let a = [10, 11, 12];
v.splice(2..4, a);
2017-04-08 15:55:53 -05:00
assert_eq!(v, &[1, 2, 10, 11, 12, 5]);
v.splice(1..3, Some(20));
assert_eq!(v, &[1, 20, 11, 12, 5]);
}
2017-04-08 16:04:30 -05:00
#[test]
fn test_splice_inclusive_range() {
let mut v = vec![1, 2, 3, 4, 5];
let a = [10, 11, 12];
let t1: Vec<_> = v.splice(2..=3, a).collect();
2017-04-08 16:04:30 -05:00
assert_eq!(v, &[1, 2, 10, 11, 12, 5]);
assert_eq!(t1, &[3, 4]);
let t2: Vec<_> = v.splice(1..=2, Some(20)).collect();
2017-04-08 16:04:30 -05:00
assert_eq!(v, &[1, 20, 11, 12, 5]);
assert_eq!(t2, &[2, 10]);
}
#[test]
#[should_panic]
fn test_splice_out_of_bounds() {
let mut v = vec![1, 2, 3, 4, 5];
let a = [10, 11, 12];
v.splice(5..6, a);
2017-04-08 16:04:30 -05:00
}
#[test]
#[should_panic]
fn test_splice_inclusive_out_of_bounds() {
let mut v = vec![1, 2, 3, 4, 5];
let a = [10, 11, 12];
v.splice(5..=5, a);
2017-04-08 16:04:30 -05:00
}
#[test]
fn test_splice_items_zero_sized() {
let mut vec = vec![(), (), ()];
let vec2 = vec![];
let t: Vec<_> = vec.splice(1..2, vec2.iter().cloned()).collect();
assert_eq!(vec, &[(), ()]);
assert_eq!(t, &[()]);
}
#[test]
fn test_splice_unbounded() {
let mut vec = vec![1, 2, 3, 4, 5];
let t: Vec<_> = vec.splice(.., None).collect();
assert_eq!(vec, &[]);
assert_eq!(t, &[1, 2, 3, 4, 5]);
}
2017-04-24 09:49:29 -05:00
#[test]
fn test_splice_forget() {
let mut v = vec![1, 2, 3, 4, 5];
let a = [10, 11, 12];
std::mem::forget(v.splice(2..4, a));
2017-04-24 09:49:29 -05:00
assert_eq!(v, &[1, 2]);
}
#[test]
fn test_into_boxed_slice() {
let xs = vec![1, 2, 3];
let ys = xs.into_boxed_slice();
assert_eq!(&*ys, [1, 2, 3]);
}
#[test]
fn test_append() {
let mut vec = vec![1, 2, 3];
let mut vec2 = vec![4, 5, 6];
vec.append(&mut vec2);
assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
assert_eq!(vec2, []);
}
#[test]
fn test_split_off() {
let mut vec = vec![1, 2, 3, 4, 5, 6];
Optimize behavior of vec.split_off(0) (take all) Optimization improvement to `split_off()` so the performance meets the intuitively expected behavior when `at == 0`, avoiding the current behavior of copying the entire vector. The change honors documented behavior that the method leaves the original vector's "previous capacity unchanged". This improvement better supports the pattern for building and flushing a buffer of elements, such as the following: ```rust let mut vec = Vec::new(); loop { vec.push(something); if condition_is_met { process(vec.split_off(0)); } } ``` `Option` wrapping is the first alternative I thought of, but is much less obvious and more verbose: ```rust let mut capacity = 1; let mut vec: Option<Vec<Stuff>> = None; loop { vec.get_or_insert_with(|| Vec::with_capacity(capacity)).push(something); if condition_is_met { capacity = vec.capacity(); process(vec.take().unwrap()); } } ``` Directly applying `mem::replace()` could work, but `mem::` functions are typically a last resort, when a developer is actively seeking better performance than the standard library provides, for example. The benefit of the approach to this change is it does not change the existing API contract, but improves the peformance of `split_off(0)` for `Vec`, `String` (which delegates `split_off()` to `Vec`), and any other existing use cases. This change adds tests to validate the behavior of `split_off()` with regard to capacity, as originally documented, and confirm that behavior still holds, when `at == 0`. The change is an implementation detail, and does not require a documentation change, but documenting the new behavior as part of its API contract may benefit future users. (Let me know if I should make that documentation update.) Note, for future consideration: I think it would be helpful to introduce an additional method to `Vec` (if not also to `String`): ``` pub fn take_all(&mut self) -> Self { self.split_off(0) } ``` This would make it more clear how `Vec` supports the pattern, and make it easier to find, since the behavior is similar to other `take()` methods in the Rust standard library.
2020-09-13 11:58:43 -07:00
let orig_capacity = vec.capacity();
let vec2 = vec.split_off(4);
assert_eq!(vec, [1, 2, 3, 4]);
assert_eq!(vec2, [5, 6]);
Optimize behavior of vec.split_off(0) (take all) Optimization improvement to `split_off()` so the performance meets the intuitively expected behavior when `at == 0`, avoiding the current behavior of copying the entire vector. The change honors documented behavior that the method leaves the original vector's "previous capacity unchanged". This improvement better supports the pattern for building and flushing a buffer of elements, such as the following: ```rust let mut vec = Vec::new(); loop { vec.push(something); if condition_is_met { process(vec.split_off(0)); } } ``` `Option` wrapping is the first alternative I thought of, but is much less obvious and more verbose: ```rust let mut capacity = 1; let mut vec: Option<Vec<Stuff>> = None; loop { vec.get_or_insert_with(|| Vec::with_capacity(capacity)).push(something); if condition_is_met { capacity = vec.capacity(); process(vec.take().unwrap()); } } ``` Directly applying `mem::replace()` could work, but `mem::` functions are typically a last resort, when a developer is actively seeking better performance than the standard library provides, for example. The benefit of the approach to this change is it does not change the existing API contract, but improves the peformance of `split_off(0)` for `Vec`, `String` (which delegates `split_off()` to `Vec`), and any other existing use cases. This change adds tests to validate the behavior of `split_off()` with regard to capacity, as originally documented, and confirm that behavior still holds, when `at == 0`. The change is an implementation detail, and does not require a documentation change, but documenting the new behavior as part of its API contract may benefit future users. (Let me know if I should make that documentation update.) Note, for future consideration: I think it would be helpful to introduce an additional method to `Vec` (if not also to `String`): ``` pub fn take_all(&mut self) -> Self { self.split_off(0) } ``` This would make it more clear how `Vec` supports the pattern, and make it easier to find, since the behavior is similar to other `take()` methods in the Rust standard library.
2020-09-13 11:58:43 -07:00
assert_eq!(vec.capacity(), orig_capacity);
}
#[test]
fn test_split_off_take_all() {
let mut vec = vec![1, 2, 3, 4, 5, 6];
let orig_ptr = vec.as_ptr();
let orig_capacity = vec.capacity();
let vec2 = vec.split_off(0);
assert_eq!(vec, []);
assert_eq!(vec2, [1, 2, 3, 4, 5, 6]);
assert_eq!(vec.capacity(), orig_capacity);
assert_eq!(vec2.as_ptr(), orig_ptr);
}
#[test]
fn test_into_iter_as_slice() {
let vec = vec!['a', 'b', 'c'];
let mut into_iter = vec.into_iter();
assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
let _ = into_iter.next().unwrap();
assert_eq!(into_iter.as_slice(), &['b', 'c']);
let _ = into_iter.next().unwrap();
let _ = into_iter.next().unwrap();
assert_eq!(into_iter.as_slice(), &[]);
}
#[test]
fn test_into_iter_as_mut_slice() {
let vec = vec!['a', 'b', 'c'];
let mut into_iter = vec.into_iter();
assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
into_iter.as_mut_slice()[0] = 'x';
into_iter.as_mut_slice()[1] = 'y';
assert_eq!(into_iter.next().unwrap(), 'x');
assert_eq!(into_iter.as_slice(), &['y', 'c']);
}
#[test]
fn test_into_iter_debug() {
let vec = vec!['a', 'b', 'c'];
let into_iter = vec.into_iter();
let debug = format!("{into_iter:?}");
assert_eq!(debug, "IntoIter(['a', 'b', 'c'])");
}
#[test]
fn test_into_iter_count() {
assert_eq!([1, 2, 3].into_iter().count(), 3);
}
#[test]
fn test_into_iter_next_chunk() {
let mut iter = b"lorem".to_vec().into_iter();
assert_eq!(iter.next_chunk().unwrap(), [b'l', b'o']); // N is inferred as 2
assert_eq!(iter.next_chunk().unwrap(), [b'r', b'e', b'm']); // N is inferred as 3
assert_eq!(iter.next_chunk::<4>().unwrap_err().as_slice(), &[]); // N is explicitly 4
}
#[test]
fn test_into_iter_clone() {
fn iter_equal<I: Iterator<Item = i32>>(it: I, slice: &[i32]) {
let v: Vec<i32> = it.collect();
assert_eq!(&v[..], slice);
}
let mut it = [1, 2, 3].into_iter();
iter_equal(it.clone(), &[1, 2, 3]);
assert_eq!(it.next(), Some(1));
let mut it = it.rev();
iter_equal(it.clone(), &[3, 2]);
assert_eq!(it.next(), Some(3));
iter_equal(it.clone(), &[2]);
assert_eq!(it.next(), Some(2));
iter_equal(it.clone(), &[]);
assert_eq!(it.next(), None);
}
#[test]
fn test_into_iter_leak() {
static mut DROPS: i32 = 0;
struct D(bool);
impl Drop for D {
fn drop(&mut self) {
unsafe {
DROPS += 1;
}
if self.0 {
panic!("panic in `drop`");
}
}
}
2020-01-19 20:50:00 +01:00
let v = vec![D(false), D(true), D(false)];
catch_unwind(move || drop(v.into_iter())).ok();
assert_eq!(unsafe { DROPS }, 3);
}
#[test]
fn test_into_iter_advance_by() {
let mut i = [1, 2, 3, 4, 5].into_iter();
i.advance_by(0).unwrap();
i.advance_back_by(0).unwrap();
assert_eq!(i.as_slice(), [1, 2, 3, 4, 5]);
i.advance_by(1).unwrap();
i.advance_back_by(1).unwrap();
assert_eq!(i.as_slice(), [2, 3, 4]);
assert_eq!(i.advance_back_by(usize::MAX), Err(3));
assert_eq!(i.advance_by(usize::MAX), Err(0));
i.advance_by(0).unwrap();
i.advance_back_by(0).unwrap();
assert_eq!(i.len(), 0);
}
#[test]
fn test_into_iter_drop_allocator() {
struct ReferenceCountedAllocator<'a>(DropCounter<'a>);
unsafe impl Allocator for ReferenceCountedAllocator<'_> {
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, core::alloc::AllocError> {
System.allocate(layout)
}
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
System.deallocate(ptr, layout)
}
}
let mut drop_count = 0;
let allocator = ReferenceCountedAllocator(DropCounter { count: &mut drop_count });
let _ = Vec::<u32, _>::new_in(allocator);
assert_eq!(drop_count, 1);
let allocator = ReferenceCountedAllocator(DropCounter { count: &mut drop_count });
let _ = Vec::<u32, _>::new_in(allocator).into_iter();
assert_eq!(drop_count, 2);
}
2022-08-31 14:21:35 +02:00
#[test]
fn test_into_iter_zst() {
for _ in vec![[0u64; 0]].into_iter() {}
for _ in vec![[0u64; 0]; 5].into_iter().rev() {}
}
#[test]
fn test_from_iter_specialization() {
let src: Vec<usize> = vec![0usize; 1];
let srcptr = src.as_ptr();
let sink = src.into_iter().collect::<Vec<_>>();
let sinkptr = sink.as_ptr();
assert_eq!(srcptr, sinkptr);
}
#[test]
2019-11-23 14:34:58 +01:00
fn test_from_iter_partially_drained_in_place_specialization() {
let src: Vec<usize> = vec![0usize; 10];
let srcptr = src.as_ptr();
let mut iter = src.into_iter();
iter.next();
iter.next();
let sink = iter.collect::<Vec<_>>();
let sinkptr = sink.as_ptr();
assert_eq!(srcptr, sinkptr);
}
#[test]
fn test_from_iter_specialization_with_iterator_adapters() {
fn assert_in_place_trait<T: InPlaceIterable>(_: &T) {}
let src: Vec<usize> = vec![0usize; 256];
let srcptr = src.as_ptr();
2019-11-27 22:19:06 +01:00
let iter = src
.into_iter()
.enumerate()
.map(|i| i.0 + i.1)
.zip(std::iter::repeat(1usize))
.map(|(a, b)| a + b)
.map_while(Option::Some)
.skip(1)
.map(|e| if e != usize::MAX { Ok(std::num::NonZeroUsize::new(e)) } else { Err(()) });
assert_in_place_trait(&iter);
2021-02-01 17:16:54 +01:00
let sink = iter.collect::<Result<Vec<_>, _>>().unwrap();
let sinkptr = sink.as_ptr();
assert_eq!(srcptr, sinkptr as *const usize);
}
2020-01-25 17:55:47 +01:00
#[test]
fn test_from_iter_specialization_head_tail_drop() {
let drop_count: Vec<_> = (0..=2).map(|_| Rc::new(())).collect();
let src: Vec<_> = drop_count.iter().cloned().collect();
let srcptr = src.as_ptr();
let iter = src.into_iter();
let sink: Vec<_> = iter.skip(1).take(1).collect();
let sinkptr = sink.as_ptr();
assert_eq!(srcptr, sinkptr, "specialization was applied");
assert_eq!(Rc::strong_count(&drop_count[0]), 1, "front was dropped");
assert_eq!(Rc::strong_count(&drop_count[1]), 2, "one element was collected");
assert_eq!(Rc::strong_count(&drop_count[2]), 1, "tail was dropped");
assert_eq!(sink.len(), 1);
}
#[test]
fn test_from_iter_specialization_panic_during_iteration_drops() {
2020-01-25 17:55:47 +01:00
let drop_count: Vec<_> = (0..=2).map(|_| Rc::new(())).collect();
let src: Vec<_> = drop_count.iter().cloned().collect();
let iter = src.into_iter();
let _ = std::panic::catch_unwind(AssertUnwindSafe(|| {
let _ = iter
.enumerate()
.filter_map(|(i, e)| {
if i == 1 {
std::panic!("aborting iteration");
}
Some(e)
})
.collect::<Vec<_>>();
}));
assert!(
drop_count.iter().map(Rc::strong_count).all(|count| count == 1),
"all items were dropped once"
);
}
#[test]
fn test_from_iter_specialization_panic_during_drop_doesnt_leak() {
2022-09-10 12:29:25 +02:00
static mut DROP_COUNTER_OLD: [usize; 5] = [0; 5];
static mut DROP_COUNTER_NEW: [usize; 2] = [0; 2];
#[derive(Debug)]
2022-09-10 12:29:25 +02:00
struct Old(usize);
2022-09-10 12:29:25 +02:00
impl Drop for Old {
fn drop(&mut self) {
2022-09-10 12:29:25 +02:00
unsafe {
DROP_COUNTER_OLD[self.0] += 1;
}
if self.0 == 3 {
panic!();
}
2022-09-10 12:29:25 +02:00
println!("Dropped Old: {}", self.0);
}
}
2022-09-10 12:29:25 +02:00
#[derive(Debug)]
struct New(usize);
impl Drop for New {
fn drop(&mut self) {
2022-09-10 12:29:25 +02:00
unsafe {
DROP_COUNTER_NEW[self.0] += 1;
}
2022-09-10 12:29:25 +02:00
println!("Dropped New: {}", self.0);
}
}
let _ = std::panic::catch_unwind(AssertUnwindSafe(|| {
2022-09-10 12:29:25 +02:00
let v = vec![Old(0), Old(1), Old(2), Old(3), Old(4)];
let _ = v.into_iter().map(|x| New(x.0)).take(2).collect::<Vec<_>>();
}));
2022-09-10 12:29:25 +02:00
assert_eq!(unsafe { DROP_COUNTER_OLD[0] }, 1);
assert_eq!(unsafe { DROP_COUNTER_OLD[1] }, 1);
assert_eq!(unsafe { DROP_COUNTER_OLD[2] }, 1);
assert_eq!(unsafe { DROP_COUNTER_OLD[3] }, 1);
assert_eq!(unsafe { DROP_COUNTER_OLD[4] }, 1);
assert_eq!(unsafe { DROP_COUNTER_NEW[0] }, 1);
assert_eq!(unsafe { DROP_COUNTER_NEW[1] }, 1);
}
2021-05-15 20:41:15 +02:00
// regression test for issue #85322. Peekable previously implemented InPlaceIterable,
// but due to an interaction with IntoIter's current Clone implementation it failed to uphold
// the contract.
#[test]
fn test_collect_after_iterator_clone() {
let v = vec![0; 5];
let mut i = v.into_iter().map(|i| i + 1).peekable();
2021-05-15 20:41:15 +02:00
i.peek();
let v = i.clone().collect::<Vec<_>>();
assert_eq!(v, [1, 1, 1, 1, 1]);
2021-05-15 20:41:15 +02:00
assert!(v.len() <= v.capacity());
}
#[test]
fn test_cow_from() {
let borrowed: &[_] = &["borrowed", "(slice)"];
let owned = vec!["owned", "(vec)"];
match (Cow::from(owned.clone()), Cow::from(borrowed)) {
(Cow::Owned(o), Cow::Borrowed(b)) => assert!(o == owned && b == borrowed),
_ => panic!("invalid `Cow::from`"),
}
}
#[test]
fn test_from_cow() {
let borrowed: &[_] = &["borrowed", "(slice)"];
let owned = vec!["owned", "(vec)"];
assert_eq!(Vec::from(Cow::Borrowed(borrowed)), vec!["borrowed", "(slice)"]);
assert_eq!(Vec::from(Cow::Owned(owned)), vec!["owned", "(vec)"]);
}
#[allow(dead_code)]
fn assert_covariance() {
2016-10-16 15:48:22 +05:30
fn drain<'new>(d: Drain<'static, &'static str>) -> Drain<'new, &'new str> {
d
}
fn into_iter<'new>(i: IntoIter<&'static str>) -> IntoIter<&'new str> {
i
}
}
#[test]
fn from_into_inner() {
let vec = vec![1, 2, 3];
let ptr = vec.as_ptr();
let vec = vec.into_iter().collect::<Vec<_>>();
assert_eq!(vec, [1, 2, 3]);
assert_eq!(vec.as_ptr(), ptr);
let ptr = &vec[1] as *const _;
let mut it = vec.into_iter();
it.next().unwrap();
let vec = it.collect::<Vec<_>>();
assert_eq!(vec, [2, 3]);
assert!(ptr != vec.as_ptr());
}
#[test]
fn overaligned_allocations() {
#[repr(align(256))]
struct Foo(usize);
let mut v = vec![Foo(273)];
for i in 0..0x1000 {
v.reserve_exact(i);
assert!(v[0].0 == 273);
assert!(v.as_ptr() as usize & 0xff == 0);
v.shrink_to_fit();
assert!(v[0].0 == 273);
assert!(v.as_ptr() as usize & 0xff == 0);
}
}
2017-07-14 21:54:17 -04:00
#[test]
fn drain_filter_empty() {
let mut vec: Vec<i32> = vec![];
{
let mut iter = vec.drain_filter(|_| true);
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
assert_eq!(iter.size_hint(), (0, Some(0)));
}
assert_eq!(vec.len(), 0);
assert_eq!(vec, vec![]);
}
#[test]
fn drain_filter_zst() {
let mut vec = vec![(), (), (), (), ()];
let initial_len = vec.len();
let mut count = 0;
{
let mut iter = vec.drain_filter(|_| true);
assert_eq!(iter.size_hint(), (0, Some(initial_len)));
while let Some(_) = iter.next() {
count += 1;
assert_eq!(iter.size_hint(), (0, Some(initial_len - count)));
}
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
assert_eq!(iter.size_hint(), (0, Some(0)));
}
assert_eq!(count, initial_len);
assert_eq!(vec.len(), 0);
assert_eq!(vec, vec![]);
}
#[test]
fn drain_filter_false() {
let mut vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
let initial_len = vec.len();
let mut count = 0;
{
let mut iter = vec.drain_filter(|_| false);
assert_eq!(iter.size_hint(), (0, Some(initial_len)));
for _ in iter.by_ref() {
count += 1;
}
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
assert_eq!(iter.size_hint(), (0, Some(0)));
}
assert_eq!(count, 0);
assert_eq!(vec.len(), initial_len);
assert_eq!(vec, vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
}
#[test]
fn drain_filter_true() {
let mut vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
let initial_len = vec.len();
let mut count = 0;
{
let mut iter = vec.drain_filter(|_| true);
assert_eq!(iter.size_hint(), (0, Some(initial_len)));
while let Some(_) = iter.next() {
count += 1;
assert_eq!(iter.size_hint(), (0, Some(initial_len - count)));
}
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
assert_eq!(iter.size_hint(), (0, Some(0)));
}
assert_eq!(count, initial_len);
assert_eq!(vec.len(), 0);
assert_eq!(vec, vec![]);
}
#[test]
fn drain_filter_complex() {
{
// [+xxx++++++xxxxx++++x+x++]
let mut vec = vec![
1, 2, 4, 6, 7, 9, 11, 13, 15, 17, 18, 20, 22, 24, 26, 27, 29, 31, 33, 34, 35, 36, 37,
39,
];
let removed = vec.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
assert_eq!(removed.len(), 10);
assert_eq!(removed, vec![2, 4, 6, 18, 20, 22, 24, 26, 34, 36]);
assert_eq!(vec.len(), 14);
assert_eq!(vec, vec![1, 7, 9, 11, 13, 15, 17, 27, 29, 31, 33, 35, 37, 39]);
}
{
// [xxx++++++xxxxx++++x+x++]
let mut vec = vec![
2, 4, 6, 7, 9, 11, 13, 15, 17, 18, 20, 22, 24, 26, 27, 29, 31, 33, 34, 35, 36, 37, 39,
];
let removed = vec.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
assert_eq!(removed.len(), 10);
assert_eq!(removed, vec![2, 4, 6, 18, 20, 22, 24, 26, 34, 36]);
assert_eq!(vec.len(), 13);
assert_eq!(vec, vec![7, 9, 11, 13, 15, 17, 27, 29, 31, 33, 35, 37, 39]);
}
{
// [xxx++++++xxxxx++++x+x]
let mut vec =
vec![2, 4, 6, 7, 9, 11, 13, 15, 17, 18, 20, 22, 24, 26, 27, 29, 31, 33, 34, 35, 36];
let removed = vec.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
assert_eq!(removed.len(), 10);
assert_eq!(removed, vec![2, 4, 6, 18, 20, 22, 24, 26, 34, 36]);
assert_eq!(vec.len(), 11);
assert_eq!(vec, vec![7, 9, 11, 13, 15, 17, 27, 29, 31, 33, 35]);
}
{
// [xxxxxxxxxx+++++++++++]
let mut vec = vec![2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19];
let removed = vec.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
assert_eq!(removed.len(), 10);
assert_eq!(removed, vec![2, 4, 6, 8, 10, 12, 14, 16, 18, 20]);
assert_eq!(vec.len(), 10);
assert_eq!(vec, vec![1, 3, 5, 7, 9, 11, 13, 15, 17, 19]);
}
{
// [+++++++++++xxxxxxxxxx]
let mut vec = vec![1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20];
let removed = vec.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
assert_eq!(removed.len(), 10);
assert_eq!(removed, vec![2, 4, 6, 8, 10, 12, 14, 16, 18, 20]);
assert_eq!(vec.len(), 10);
assert_eq!(vec, vec![1, 3, 5, 7, 9, 11, 13, 15, 17, 19]);
}
}
// FIXME: re-enable emscripten once it can unwind again
#[test]
2019-11-22 23:11:56 +01:00
#[cfg(not(target_os = "emscripten"))]
fn drain_filter_consumed_panic() {
use std::rc::Rc;
use std::sync::Mutex;
struct Check {
index: usize,
drop_counts: Rc<Mutex<Vec<usize>>>,
}
impl Drop for Check {
fn drop(&mut self) {
self.drop_counts.lock().unwrap()[self.index] += 1;
println!("drop: {}", self.index);
}
}
let check_count = 10;
let drop_counts = Rc::new(Mutex::new(vec![0_usize; check_count]));
let mut data: Vec<Check> = (0..check_count)
.map(|index| Check { index, drop_counts: Rc::clone(&drop_counts) })
.collect();
let _ = std::panic::catch_unwind(move || {
let filter = |c: &mut Check| {
if c.index == 2 {
panic!("panic at index: {}", c.index);
}
// Verify that if the filter could panic again on another element
// that it would not cause a double panic and all elements of the
// vec would still be dropped exactly once.
if c.index == 4 {
panic!("panic at index: {}", c.index);
}
c.index < 6
};
let drain = data.drain_filter(filter);
2019-11-26 22:19:54 -05:00
// NOTE: The DrainFilter is explicitly consumed
drain.for_each(drop);
});
let drop_counts = drop_counts.lock().unwrap();
assert_eq!(check_count, drop_counts.len());
for (index, count) in drop_counts.iter().cloned().enumerate() {
assert_eq!(1, count, "unexpected drop count at index: {} (count: {})", index, count);
}
}
// FIXME: Re-enable emscripten once it can catch panics
#[test]
2019-11-22 23:11:56 +01:00
#[cfg(not(target_os = "emscripten"))]
fn drain_filter_unconsumed_panic() {
use std::rc::Rc;
use std::sync::Mutex;
struct Check {
index: usize,
drop_counts: Rc<Mutex<Vec<usize>>>,
}
impl Drop for Check {
fn drop(&mut self) {
self.drop_counts.lock().unwrap()[self.index] += 1;
println!("drop: {}", self.index);
}
}
let check_count = 10;
let drop_counts = Rc::new(Mutex::new(vec![0_usize; check_count]));
let mut data: Vec<Check> = (0..check_count)
.map(|index| Check { index, drop_counts: Rc::clone(&drop_counts) })
.collect();
let _ = std::panic::catch_unwind(move || {
let filter = |c: &mut Check| {
if c.index == 2 {
panic!("panic at index: {}", c.index);
}
// Verify that if the filter could panic again on another element
// that it would not cause a double panic and all elements of the
// vec would still be dropped exactly once.
if c.index == 4 {
panic!("panic at index: {}", c.index);
}
c.index < 6
};
let _drain = data.drain_filter(filter);
// NOTE: The DrainFilter is dropped without being consumed
});
let drop_counts = drop_counts.lock().unwrap();
assert_eq!(check_count, drop_counts.len());
for (index, count) in drop_counts.iter().cloned().enumerate() {
assert_eq!(1, count, "unexpected drop count at index: {} (count: {})", index, count);
}
}
2019-05-27 11:47:14 -04:00
#[test]
fn drain_filter_unconsumed() {
let mut vec = vec![1, 2, 3, 4];
let drain = vec.drain_filter(|&mut x| x % 2 != 0);
drop(drain);
assert_eq!(vec, [2, 4]);
}
#[test]
fn test_drain_filter_keep_rest() {
let mut v = vec![0, 1, 2, 3, 4, 5, 6];
let mut drain = v.drain_filter(|&mut x| x % 2 == 0);
assert_eq!(drain.next(), Some(0));
assert_eq!(drain.next(), Some(2));
drain.keep_rest();
assert_eq!(v, &[1, 3, 4, 5, 6]);
}
#[test]
fn test_drain_filter_keep_rest_all() {
let mut v = vec![0, 1, 2, 3, 4, 5, 6];
v.drain_filter(|_| true).keep_rest();
assert_eq!(v, &[0, 1, 2, 3, 4, 5, 6]);
}
#[test]
fn test_drain_filter_keep_rest_none() {
let mut v = vec![0, 1, 2, 3, 4, 5, 6];
let mut drain = v.drain_filter(|_| true);
drain.by_ref().for_each(drop);
drain.keep_rest();
assert_eq!(v, &[]);
}
#[test]
fn test_reserve_exact() {
// This is all the same as test_reserve
let mut v = Vec::new();
assert_eq!(v.capacity(), 0);
v.reserve_exact(2);
assert!(v.capacity() >= 2);
for i in 0..16 {
v.push(i);
}
assert!(v.capacity() >= 16);
v.reserve_exact(16);
assert!(v.capacity() >= 32);
v.push(16);
v.reserve_exact(16);
assert!(v.capacity() >= 33)
}
#[test]
#[cfg_attr(miri, ignore)] // Miri does not support signalling OOM
2020-04-09 15:55:12 +01:00
#[cfg_attr(target_os = "android", ignore)] // Android used in CI has a broken dlmalloc
fn test_try_reserve() {
// These are the interesting cases:
// * exactly isize::MAX should never trigger a CapacityOverflow (can be OOM)
// * > isize::MAX should always fail
// * On 16/32-bit should CapacityOverflow
// * On 64-bit should OOM
// * overflow may trigger when adding `len` to `cap` (in number of elements)
// * overflow may trigger when multiplying `new_cap` by size_of::<T> (to get bytes)
const MAX_CAP: usize = isize::MAX as usize;
const MAX_USIZE: usize = usize::MAX;
{
// Note: basic stuff is checked by test_reserve
let mut empty_bytes: Vec<u8> = Vec::new();
// Check isize::MAX doesn't count as an overflow
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP).map_err(|e| e.kind()) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
// Play it again, frank! (just to be sure)
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP).map_err(|e| e.kind()) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
// Check isize::MAX + 1 does count as overflow
assert_matches!(
empty_bytes.try_reserve(MAX_CAP + 1).map_err(|e| e.kind()),
Err(CapacityOverflow),
"isize::MAX + 1 should trigger an overflow!"
);
// Check usize::MAX does count as overflow
assert_matches!(
empty_bytes.try_reserve(MAX_USIZE).map_err(|e| e.kind()),
Err(CapacityOverflow),
"usize::MAX should trigger an overflow!"
);
}
{
// Same basic idea, but with non-zero len
let mut ten_bytes: Vec<u8> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10).map_err(|e| e.kind()) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10).map_err(|e| e.kind()) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
assert_matches!(
ten_bytes.try_reserve(MAX_CAP - 9).map_err(|e| e.kind()),
Err(CapacityOverflow),
"isize::MAX + 1 should trigger an overflow!"
);
// Should always overflow in the add-to-len
assert_matches!(
ten_bytes.try_reserve(MAX_USIZE).map_err(|e| e.kind()),
Err(CapacityOverflow),
"usize::MAX should trigger an overflow!"
);
}
{
// Same basic idea, but with interesting type size
let mut ten_u32s: Vec<u32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP / 4 - 10).map_err(|e| e.kind())
{
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP / 4 - 10).map_err(|e| e.kind())
{
panic!("isize::MAX shouldn't trigger an overflow!");
}
assert_matches!(
ten_u32s.try_reserve(MAX_CAP / 4 - 9).map_err(|e| e.kind()),
Err(CapacityOverflow),
"isize::MAX + 1 should trigger an overflow!"
);
// Should fail in the mul-by-size
assert_matches!(
ten_u32s.try_reserve(MAX_USIZE - 20).map_err(|e| e.kind()),
Err(CapacityOverflow),
"usize::MAX should trigger an overflow!"
);
}
}
#[test]
#[cfg_attr(miri, ignore)] // Miri does not support signalling OOM
2020-04-09 15:55:12 +01:00
#[cfg_attr(target_os = "android", ignore)] // Android used in CI has a broken dlmalloc
fn test_try_reserve_exact() {
// This is exactly the same as test_try_reserve with the method changed.
// See that test for comments.
const MAX_CAP: usize = isize::MAX as usize;
const MAX_USIZE: usize = usize::MAX;
{
let mut empty_bytes: Vec<u8> = Vec::new();
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP).map_err(|e| e.kind())
{
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP).map_err(|e| e.kind())
{
panic!("isize::MAX shouldn't trigger an overflow!");
}
assert_matches!(
empty_bytes.try_reserve_exact(MAX_CAP + 1).map_err(|e| e.kind()),
Err(CapacityOverflow),
"isize::MAX + 1 should trigger an overflow!"
);
assert_matches!(
empty_bytes.try_reserve_exact(MAX_USIZE).map_err(|e| e.kind()),
Err(CapacityOverflow),
"usize::MAX should trigger an overflow!"
);
}
{
let mut ten_bytes: Vec<u8> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
if let Err(CapacityOverflow) =
ten_bytes.try_reserve_exact(MAX_CAP - 10).map_err(|e| e.kind())
{
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) =
ten_bytes.try_reserve_exact(MAX_CAP - 10).map_err(|e| e.kind())
{
panic!("isize::MAX shouldn't trigger an overflow!");
}
assert_matches!(
ten_bytes.try_reserve_exact(MAX_CAP - 9).map_err(|e| e.kind()),
Err(CapacityOverflow),
"isize::MAX + 1 should trigger an overflow!"
);
assert_matches!(
ten_bytes.try_reserve_exact(MAX_USIZE).map_err(|e| e.kind()),
Err(CapacityOverflow),
"usize::MAX should trigger an overflow!"
);
}
{
let mut ten_u32s: Vec<u32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
if let Err(CapacityOverflow) =
ten_u32s.try_reserve_exact(MAX_CAP / 4 - 10).map_err(|e| e.kind())
{
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) =
ten_u32s.try_reserve_exact(MAX_CAP / 4 - 10).map_err(|e| e.kind())
{
panic!("isize::MAX shouldn't trigger an overflow!");
}
assert_matches!(
ten_u32s.try_reserve_exact(MAX_CAP / 4 - 9).map_err(|e| e.kind()),
Err(CapacityOverflow),
"isize::MAX + 1 should trigger an overflow!"
);
assert_matches!(
ten_u32s.try_reserve_exact(MAX_USIZE - 20).map_err(|e| e.kind()),
Err(CapacityOverflow),
"usize::MAX should trigger an overflow!"
);
}
}
#[test]
2020-03-30 11:53:36 +02:00
fn test_stable_pointers() {
/// Pull an element from the iterator, then drop it.
/// Useful to cover both the `next` and `drop` paths of an iterator.
fn next_then_drop<I: Iterator>(mut i: I) {
i.next().unwrap();
drop(i);
}
// Test that, if we reserved enough space, adding and removing elements does not
// invalidate references into the vector (such as `v0`). This test also
// runs in Miri, which would detect such problems.
// Note that this test does *not* constitute a stable guarantee that all these functions do not
// reallocate! Only what is explicitly documented at
// <https://doc.rust-lang.org/nightly/std/vec/struct.Vec.html#guarantees> is stably guaranteed.
2020-03-30 11:53:36 +02:00
let mut v = Vec::with_capacity(128);
v.push(13);
2020-03-30 11:53:36 +02:00
// Laundering the lifetime -- we take care that `v` does not reallocate, so that's okay.
let v0 = &mut v[0];
let v0 = unsafe { &mut *(v0 as *mut _) };
// Now do a bunch of things and occasionally use `v0` again to assert it is still valid.
2020-03-30 11:53:36 +02:00
// Pushing/inserting and popping/removing
v.push(1);
v.push(2);
v.insert(1, 1);
assert_eq!(*v0, 13);
v.remove(1);
v.pop().unwrap();
assert_eq!(*v0, 13);
2020-03-30 13:31:16 +02:00
v.push(1);
v.swap_remove(1);
assert_eq!(v.len(), 2);
v.swap_remove(1); // swap_remove the last element
assert_eq!(*v0, 13);
2020-03-30 11:53:36 +02:00
2020-03-30 11:57:31 +02:00
// Appending
v.append(&mut vec![27, 19]);
assert_eq!(*v0, 13);
2020-03-30 11:53:36 +02:00
// Extending
2020-03-30 11:57:31 +02:00
v.extend_from_slice(&[1, 2]);
2020-03-30 11:53:36 +02:00
v.extend(&[1, 2]); // `slice::Iter` (with `T: Copy`) specialization
v.extend(vec![2, 3]); // `vec::IntoIter` specialization
v.extend(std::iter::once(3)); // `TrustedLen` specialization
v.extend(std::iter::empty::<i32>()); // `TrustedLen` specialization with empty iterator
v.extend(std::iter::once(3).filter(|_| true)); // base case
v.extend(std::iter::once(&3)); // `cloned` specialization
assert_eq!(*v0, 13);
// Truncation
v.truncate(2);
assert_eq!(*v0, 13);
2020-03-30 11:57:31 +02:00
// Resizing
v.resize_with(v.len() + 10, || 42);
assert_eq!(*v0, 13);
v.resize_with(2, || panic!());
assert_eq!(*v0, 13);
// No-op reservation
v.reserve(32);
v.reserve_exact(32);
assert_eq!(*v0, 13);
// Partial draining
v.resize_with(10, || 42);
next_then_drop(v.drain(5..));
2020-03-30 11:57:31 +02:00
assert_eq!(*v0, 13);
// Splicing
v.resize_with(10, || 42);
next_then_drop(v.splice(5.., vec![1, 2, 3, 4, 5])); // empty tail after range
2020-03-30 11:57:31 +02:00
assert_eq!(*v0, 13);
next_then_drop(v.splice(5..8, vec![1])); // replacement is smaller than original range
2020-03-30 11:57:31 +02:00
assert_eq!(*v0, 13);
next_then_drop(v.splice(5..6, [1; 10].into_iter().filter(|_| true))); // lower bound not exact
2020-03-30 11:57:31 +02:00
assert_eq!(*v0, 13);
// spare_capacity_mut
v.spare_capacity_mut();
assert_eq!(*v0, 13);
// Smoke test that would fire even outside Miri if an actual relocation happened.
*v0 -= 13;
assert_eq!(v[0], 0);
}
Fix `vec![x; n]` with null raw fat pointer zeroing the pointer metadata https://github.com/rust-lang/rust/pull/49496 introduced specialization based on: ``` unsafe impl<T: ?Sized> IsZero for *mut T { fn is_zero(&self) -> bool { (*self).is_null() } } ``` … to call `RawVec::with_capacity_zeroed` for creating `Vec<*mut T>`, which is incorrect for fat pointers since `<*mut T>::is_null` only looks at the data component. That is, a fat pointer can be “null” without being made entirely of zero bits. This commit fixes it by removing the `?Sized` bound on this impl (and the corresponding `*const T` one). This regresses `vec![x; n]` with `x` a null raw slice of length zero, but that seems exceptionally uncommon. (Vtable pointers are never null, so raw trait objects would not take the fast path anyway. An alternative to keep the `?Sized` bound (or even generalize to `impl<U: Copy> IsZero for U`) would be to cast to `&[u8]` of length `size_of::<U>()`, but the optimizer seems not to be able to propagate alignment information and sticks with comparing one byte at a time: https://rust.godbolt.org/z/xQFkwL ---- Without the library change, the new test fails as follows: ``` ---- vec::vec_macro_repeating_null_raw_fat_pointer stdout ---- [src/liballoc/tests/vec.rs:1301] ptr_metadata(raw_dyn) = 0x00005596ef95f9a8 [src/liballoc/tests/vec.rs:1306] ptr_metadata(vec[0]) = 0x0000000000000000 thread 'vec::vec_macro_repeating_null_raw_fat_pointer' panicked at 'assertion failed: vec[0] == null_raw_dyn', src/liballoc/tests/vec.rs:1307:5 ```
2019-09-29 10:45:47 +02:00
// https://github.com/rust-lang/rust/pull/49496 introduced specialization based on:
//
// ```
// unsafe impl<T: ?Sized> IsZero for *mut T {
// fn is_zero(&self) -> bool {
// (*self).is_null()
// }
// }
// ```
//
// … to call `RawVec::with_capacity_zeroed` for creating `Vec<*mut T>`,
// which is incorrect for fat pointers since `<*mut T>::is_null` only looks at the data component.
// That is, a fat pointer can be “null” without being made entirely of zero bits.
#[test]
fn vec_macro_repeating_null_raw_fat_pointer() {
let raw_dyn = &mut (|| ()) as &mut dyn Fn() as *mut dyn Fn();
let vtable = dbg!(ptr_metadata(raw_dyn));
let null_raw_dyn = ptr_from_raw_parts(std::ptr::null_mut(), vtable);
assert!(null_raw_dyn.is_null());
let vec = vec![null_raw_dyn; 1];
dbg!(ptr_metadata(vec[0]));
assert!(vec[0] == null_raw_dyn);
// Polyfill for https://github.com/rust-lang/rfcs/pull/2580
fn ptr_metadata(ptr: *mut dyn Fn()) -> *mut () {
unsafe { std::mem::transmute::<*mut dyn Fn(), DynRepr>(ptr).vtable }
}
fn ptr_from_raw_parts(data: *mut (), vtable: *mut ()) -> *mut dyn Fn() {
unsafe { std::mem::transmute::<DynRepr, *mut dyn Fn()>(DynRepr { data, vtable }) }
}
#[repr(C)]
struct DynRepr {
data: *mut (),
vtable: *mut (),
}
}
// This test will likely fail if you change the capacities used in
// `RawVec::grow_amortized`.
#[test]
fn test_push_growth_strategy() {
// If the element size is 1, we jump from 0 to 8, then double.
{
let mut v1: Vec<u8> = vec![];
assert_eq!(v1.capacity(), 0);
for _ in 0..8 {
v1.push(0);
assert_eq!(v1.capacity(), 8);
}
for _ in 8..16 {
v1.push(0);
assert_eq!(v1.capacity(), 16);
}
for _ in 16..32 {
v1.push(0);
assert_eq!(v1.capacity(), 32);
}
for _ in 32..64 {
v1.push(0);
assert_eq!(v1.capacity(), 64);
}
}
// If the element size is 2..=1024, we jump from 0 to 4, then double.
{
let mut v2: Vec<u16> = vec![];
let mut v1024: Vec<[u8; 1024]> = vec![];
assert_eq!(v2.capacity(), 0);
assert_eq!(v1024.capacity(), 0);
for _ in 0..4 {
v2.push(0);
v1024.push([0; 1024]);
assert_eq!(v2.capacity(), 4);
assert_eq!(v1024.capacity(), 4);
}
for _ in 4..8 {
v2.push(0);
v1024.push([0; 1024]);
assert_eq!(v2.capacity(), 8);
assert_eq!(v1024.capacity(), 8);
}
for _ in 8..16 {
v2.push(0);
v1024.push([0; 1024]);
assert_eq!(v2.capacity(), 16);
assert_eq!(v1024.capacity(), 16);
}
for _ in 16..32 {
v2.push(0);
v1024.push([0; 1024]);
assert_eq!(v2.capacity(), 32);
assert_eq!(v1024.capacity(), 32);
}
for _ in 32..64 {
v2.push(0);
v1024.push([0; 1024]);
assert_eq!(v2.capacity(), 64);
assert_eq!(v1024.capacity(), 64);
}
}
// If the element size is > 1024, we jump from 0 to 1, then double.
{
let mut v1025: Vec<[u8; 1025]> = vec![];
assert_eq!(v1025.capacity(), 0);
for _ in 0..1 {
v1025.push([0; 1025]);
assert_eq!(v1025.capacity(), 1);
}
for _ in 1..2 {
v1025.push([0; 1025]);
assert_eq!(v1025.capacity(), 2);
}
for _ in 2..4 {
v1025.push([0; 1025]);
assert_eq!(v1025.capacity(), 4);
}
for _ in 4..8 {
v1025.push([0; 1025]);
assert_eq!(v1025.capacity(), 8);
}
for _ in 8..16 {
v1025.push([0; 1025]);
assert_eq!(v1025.capacity(), 16);
}
for _ in 16..32 {
v1025.push([0; 1025]);
assert_eq!(v1025.capacity(), 32);
}
for _ in 32..64 {
v1025.push([0; 1025]);
assert_eq!(v1025.capacity(), 64);
}
}
}
macro_rules! generate_assert_eq_vec_and_prim {
($name:ident<$B:ident>($type:ty)) => {
fn $name<A: PartialEq<$B> + Debug, $B: Debug>(a: Vec<A>, b: $type) {
assert!(a == b);
assert_eq!(a, b);
}
};
}
generate_assert_eq_vec_and_prim! { assert_eq_vec_and_slice <B>(&[B]) }
generate_assert_eq_vec_and_prim! { assert_eq_vec_and_array_3<B>([B; 3]) }
#[test]
fn partialeq_vec_and_prim() {
assert_eq_vec_and_slice(vec![1, 2, 3], &[1, 2, 3]);
assert_eq_vec_and_array_3(vec![1, 2, 3], [1, 2, 3]);
}
macro_rules! assert_partial_eq_valid {
2020-07-09 11:07:17 -07:00
($a2:expr, $a3:expr; $b2:expr, $b3: expr) => {
assert!($a2 == $b2);
assert!($a2 != $b3);
assert!($a3 != $b2);
assert!($a3 == $b3);
assert_eq!($a2, $b2);
assert_ne!($a2, $b3);
assert_ne!($a3, $b2);
assert_eq!($a3, $b3);
};
}
#[test]
fn partialeq_vec_full() {
let vec2: Vec<_> = vec![1, 2];
let vec3: Vec<_> = vec![1, 2, 3];
let slice2: &[_] = &[1, 2];
let slice3: &[_] = &[1, 2, 3];
let slicemut2: &[_] = &mut [1, 2];
let slicemut3: &[_] = &mut [1, 2, 3];
let array2: [_; 2] = [1, 2];
let array3: [_; 3] = [1, 2, 3];
let arrayref2: &[_; 2] = &[1, 2];
let arrayref3: &[_; 3] = &[1, 2, 3];
assert_partial_eq_valid!(vec2,vec3; vec2,vec3);
assert_partial_eq_valid!(vec2,vec3; slice2,slice3);
assert_partial_eq_valid!(vec2,vec3; slicemut2,slicemut3);
assert_partial_eq_valid!(slice2,slice3; vec2,vec3);
assert_partial_eq_valid!(slicemut2,slicemut3; vec2,vec3);
assert_partial_eq_valid!(vec2,vec3; array2,array3);
assert_partial_eq_valid!(vec2,vec3; arrayref2,arrayref3);
2020-07-09 11:07:17 -07:00
assert_partial_eq_valid!(vec2,vec3; arrayref2[..],arrayref3[..]);
}
2020-09-10 15:41:16 +02:00
#[test]
fn test_vec_cycle() {
#[derive(Debug)]
struct C<'a> {
v: Vec<Cell<Option<&'a C<'a>>>>,
}
impl<'a> C<'a> {
fn new() -> C<'a> {
C { v: Vec::new() }
}
}
let mut c1 = C::new();
let mut c2 = C::new();
let mut c3 = C::new();
// Push
c1.v.push(Cell::new(None));
c1.v.push(Cell::new(None));
c2.v.push(Cell::new(None));
c2.v.push(Cell::new(None));
c3.v.push(Cell::new(None));
c3.v.push(Cell::new(None));
// Set
c1.v[0].set(Some(&c2));
c1.v[1].set(Some(&c3));
c2.v[0].set(Some(&c2));
c2.v[1].set(Some(&c3));
c3.v[0].set(Some(&c1));
c3.v[1].set(Some(&c2));
}
2020-09-11 23:20:24 +02:00
#[test]
fn test_vec_cycle_wrapped() {
struct Refs<'a> {
v: Vec<Cell<Option<&'a C<'a>>>>,
}
struct C<'a> {
refs: Refs<'a>,
}
impl<'a> Refs<'a> {
fn new() -> Refs<'a> {
Refs { v: Vec::new() }
}
}
impl<'a> C<'a> {
fn new() -> C<'a> {
C { refs: Refs::new() }
}
}
let mut c1 = C::new();
let mut c2 = C::new();
let mut c3 = C::new();
c1.refs.v.push(Cell::new(None));
c1.refs.v.push(Cell::new(None));
c2.refs.v.push(Cell::new(None));
c2.refs.v.push(Cell::new(None));
c3.refs.v.push(Cell::new(None));
c3.refs.v.push(Cell::new(None));
c1.refs.v[0].set(Some(&c2));
c1.refs.v[1].set(Some(&c3));
c2.refs.v[0].set(Some(&c2));
c2.refs.v[1].set(Some(&c3));
c3.refs.v[0].set(Some(&c1));
c3.refs.v[1].set(Some(&c2));
}
2020-09-14 23:35:46 +02:00
Fix documentation for with_capacity and reserve families of methods Documentation for the following methods with_capacity with_capacity_in with_capacity_and_hasher reserve reserve_exact try_reserve try_reserve_exact was inconsistent and often not entirely correct where they existed on the following types Vec VecDeque String OsString PathBuf BinaryHeap HashSet HashMap BufWriter LineWriter since the allocator is allowed to allocate more than the requested capacity in all such cases, and will frequently "allocate" much more in the case of zero-sized types (I also checked BufReader, but there the docs appear to be accurate as it appears to actually allocate the exact capacity). Some effort was made to make the documentation more consistent between types as well. Fix with_capacity* methods for Vec Fix *reserve* methods for Vec Fix docs for *reserve* methods of VecDeque Fix docs for String::with_capacity Fix docs for *reserve* methods of String Fix docs for OsString::with_capacity Fix docs for *reserve* methods on OsString Fix docs for with_capacity* methods on HashSet Fix docs for *reserve methods of HashSet Fix docs for with_capacity* methods of HashMap Fix docs for *reserve methods on HashMap Fix expect messages about OOM in doctests Fix docs for BinaryHeap::with_capacity Fix docs for *reserve* methods of BinaryHeap Fix typos Fix docs for with_capacity on BufWriter and LineWriter Fix consistent use of `hasher` between `HashMap` and `HashSet` Fix warning in doc test Add test for capacity of vec with ZST Fix doc test error
2022-04-09 16:42:26 +01:00
#[test]
fn test_zero_sized_capacity() {
for len in [0, 1, 2, 4, 8, 16, 32, 64, 128, 256] {
let v = Vec::<()>::with_capacity(len);
assert_eq!(v.len(), 0);
assert_eq!(v.capacity(), usize::MAX);
}
}
2020-09-14 23:35:46 +02:00
#[test]
fn test_zero_sized_vec_push() {
const N: usize = 8;
for len in 0..N {
let mut tester = Vec::with_capacity(len);
assert_eq!(tester.len(), 0);
assert!(tester.capacity() >= len);
for _ in 0..len {
tester.push(());
}
assert_eq!(tester.len(), len);
assert_eq!(tester.iter().count(), len);
tester.clear();
}
}
2020-10-03 18:49:23 +02:00
#[test]
fn test_vec_macro_repeat() {
assert_eq!(vec![1; 3], vec![1, 1, 1]);
assert_eq!(vec![1; 2], vec![1, 1]);
assert_eq!(vec![1; 1], vec![1]);
assert_eq!(vec![1; 0], vec![]);
// from_elem syntax (see RFC 832)
let el = Box::new(1);
let n = 3;
assert_eq!(vec![el; n], vec![Box::new(1), Box::new(1), Box::new(1)]);
}
2020-10-03 19:03:38 +02:00
#[test]
fn test_vec_swap() {
let mut a: Vec<isize> = vec![0, 1, 2, 3, 4, 5, 6];
a.swap(2, 4);
assert_eq!(a[2], 4);
assert_eq!(a[4], 2);
let mut n = 42;
swap(&mut n, &mut a[0]);
assert_eq!(a[0], 42);
assert_eq!(n, 0);
}
#[test]
fn test_extend_from_within_spec() {
#[derive(Copy)]
struct CopyOnly;
impl Clone for CopyOnly {
fn clone(&self) -> Self {
panic!("extend_from_within must use specialization on copy");
}
}
vec![CopyOnly, CopyOnly].extend_from_within(..);
}
#[test]
fn test_extend_from_within_clone() {
let mut v = vec![String::from("sssss"), String::from("12334567890"), String::from("c")];
v.extend_from_within(1..);
assert_eq!(v, ["sssss", "12334567890", "c", "12334567890", "c"]);
}
#[test]
fn test_extend_from_within_complete_rande() {
let mut v = vec![0, 1, 2, 3];
v.extend_from_within(..);
assert_eq!(v, [0, 1, 2, 3, 0, 1, 2, 3]);
}
#[test]
fn test_extend_from_within_empty_rande() {
let mut v = vec![0, 1, 2, 3];
v.extend_from_within(1..1);
assert_eq!(v, [0, 1, 2, 3]);
}
#[test]
#[should_panic]
fn test_extend_from_within_out_of_rande() {
let mut v = vec![0, 1];
v.extend_from_within(..3);
}
#[test]
fn test_extend_from_within_zst() {
let mut v = vec![(); 8];
v.extend_from_within(3..7);
assert_eq!(v, [(); 12]);
}
#[test]
fn test_extend_from_within_empty_vec() {
let mut v = Vec::<i32>::new();
v.extend_from_within(..);
assert_eq!(v, []);
}
#[test]
fn test_extend_from_within() {
let mut v = vec![String::from("a"), String::from("b"), String::from("c")];
v.extend_from_within(1..=2);
v.extend_from_within(..=1);
assert_eq!(v, ["a", "b", "c", "b", "c", "a", "b"]);
}
2021-03-15 20:24:35 +01:00
#[test]
fn test_vec_dedup_by() {
let mut vec: Vec<i32> = vec![1, -1, 2, 3, 1, -5, 5, -2, 2];
vec.dedup_by(|a, b| a.abs() == b.abs());
assert_eq!(vec, [1, 2, 3, 1, -5, -2]);
}
#[test]
fn test_vec_dedup_empty() {
let mut vec: Vec<i32> = Vec::new();
vec.dedup();
assert_eq!(vec, []);
}
#[test]
fn test_vec_dedup_one() {
let mut vec = vec![12i32];
vec.dedup();
assert_eq!(vec, [12]);
}
#[test]
fn test_vec_dedup_multiple_ident() {
let mut vec = vec![12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11];
vec.dedup();
assert_eq!(vec, [12, 11]);
}
#[test]
fn test_vec_dedup_partialeq() {
#[derive(Debug)]
struct Foo(i32, i32);
impl PartialEq for Foo {
fn eq(&self, other: &Foo) -> bool {
self.0 == other.0
}
}
let mut vec = vec![Foo(0, 1), Foo(0, 5), Foo(1, 7), Foo(1, 9)];
vec.dedup();
assert_eq!(vec, [Foo(0, 1), Foo(1, 7)]);
}
#[test]
fn test_vec_dedup() {
let mut vec: Vec<bool> = Vec::with_capacity(8);
let mut template = vec.clone();
for x in 0u8..255u8 {
vec.clear();
template.clear();
let iter = (0..8).map(move |bit| (x >> bit) & 1 == 1);
vec.extend(iter);
template.extend_from_slice(&vec);
let (dedup, _) = template.partition_dedup();
vec.dedup();
assert_eq!(vec, dedup);
}
}
#[test]
fn test_vec_dedup_panicking() {
#[derive(Debug)]
struct Panic<'a> {
drop_counter: &'a Cell<u32>,
value: bool,
index: usize,
}
impl<'a> PartialEq for Panic<'a> {
fn eq(&self, other: &Self) -> bool {
self.value == other.value
}
}
impl<'a> Drop for Panic<'a> {
fn drop(&mut self) {
self.drop_counter.set(self.drop_counter.get() + 1);
if !std::thread::panicking() {
assert!(self.index != 4);
}
}
}
let drop_counter = &Cell::new(0);
let expected = [
Panic { drop_counter, value: false, index: 0 },
Panic { drop_counter, value: false, index: 5 },
Panic { drop_counter, value: true, index: 6 },
Panic { drop_counter, value: true, index: 7 },
];
let mut vec = vec![
Panic { drop_counter, value: false, index: 0 },
// these elements get deduplicated
Panic { drop_counter, value: false, index: 1 },
Panic { drop_counter, value: false, index: 2 },
Panic { drop_counter, value: false, index: 3 },
Panic { drop_counter, value: false, index: 4 },
// here it panics while dropping the item with index==4
Panic { drop_counter, value: false, index: 5 },
Panic { drop_counter, value: true, index: 6 },
Panic { drop_counter, value: true, index: 7 },
];
let _ = catch_unwind(AssertUnwindSafe(|| vec.dedup())).unwrap_err();
assert_eq!(drop_counter.get(), 4);
let ok = vec.iter().zip(expected.iter()).all(|(x, y)| x.index == y.index);
if !ok {
panic!("expected: {expected:?}\ngot: {vec:?}\n");
}
}
2021-03-15 21:51:38 +01:00
// Regression test for issue #82533
#[test]
fn test_extend_from_within_panicing_clone() {
struct Panic<'dc> {
drop_count: &'dc AtomicU32,
aaaaa: bool,
}
impl Clone for Panic<'_> {
fn clone(&self) -> Self {
if self.aaaaa {
panic!("panic! at the clone");
}
Self { ..*self }
}
}
impl Drop for Panic<'_> {
fn drop(&mut self) {
self.drop_count.fetch_add(1, Ordering::SeqCst);
}
}
let count = core::sync::atomic::AtomicU32::new(0);
let mut vec = vec![
Panic { drop_count: &count, aaaaa: false },
Panic { drop_count: &count, aaaaa: true },
Panic { drop_count: &count, aaaaa: false },
];
// This should clone&append one Panic{..} at the end, and then panic while
// cloning second Panic{..}. This means that `Panic::drop` should be called
// 4 times (3 for items already in vector, 1 for just appended).
//
// Previously just appended item was leaked, making drop_count = 3, instead of 4.
std::panic::catch_unwind(move || vec.extend_from_within(..)).unwrap_err();
assert_eq!(count.load(Ordering::SeqCst), 4);
2021-03-16 14:41:26 +01:00
}
#[test]
#[should_panic = "vec len overflow"]
fn test_into_flattened_size_overflow() {
let v = vec![[(); usize::MAX]; 2];
let _ = v.into_flattened();
}