852 lines
29 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! # Standalone Tests for the Inference Module
use diagnostic;
use diagnostic::Emitter;
use driver;
use rustc_resolve as resolve;
use rustc_typeck::middle::lang_items;
Added DestructionScope variant to CodeExtent, representing the area immediately surrounding a node that is a terminating_scope (e.g. statements, looping forms) during which the destructors run (the destructors for temporaries from the execution of that node, that is). Introduced DestructionScopeData newtype wrapper around ast::NodeId, to preserve invariant that FreeRegion and ScopeChain::BlockScope carry destruction scopes (rather than arbitrary CodeExtents). Insert DestructionScope and block Remainder into enclosing CodeExtents hierarchy. Add more doc for DestructionScope, complete with ASCII art. Switch to constructing DestructionScope rather than Misc in a number of places, mostly related to `ty::ReFree` creation, and use destruction-scopes of node-ids at various calls to liberate_late_bound_regions. middle::resolve_lifetime: Map BlockScope to DestructionScope in `fn resolve_free_lifetime`. Add the InnermostDeclaringBlock and InnermostEnclosingExpr enums that are my attempt to clarify the region::Context structure, and that later commmts build upon. Improve the debug output for `CodeExtent` attached to `ty::Region::ReScope`. Loosened an assertion in `rustc_trans::trans::cleanup` to account for `DestructionScope`. (Perhaps this should just be switched entirely over to `DestructionScope`, rather than allowing for either `Misc` or `DestructionScope`.) ---- Even though the DestructionScope is new, this particular commit should not actually change the semantics of any current code.
2014-11-25 17:02:20 +01:00
use rustc_typeck::middle::region::{self, CodeExtent, DestructionScopeData};
use rustc_typeck::middle::resolve_lifetime;
use rustc_typeck::middle::stability;
use rustc_typeck::middle::subst;
use rustc_typeck::middle::subst::Subst;
2015-01-03 22:42:21 -05:00
use rustc_typeck::middle::ty::{self, Ty};
use rustc_typeck::middle::infer::combine::Combine;
use rustc_typeck::middle::infer;
use rustc_typeck::middle::infer::lub::Lub;
use rustc_typeck::middle::infer::glb::Glb;
use rustc_typeck::middle::infer::sub::Sub;
use rustc_typeck::util::ppaux::{ty_to_string, Repr, UserString};
2015-01-03 22:42:21 -05:00
use rustc::session::{self,config};
use syntax::{abi, ast, ast_map};
use syntax::codemap;
use syntax::codemap::{Span, CodeMap, DUMMY_SP};
use syntax::diagnostic::{Level, RenderSpan, Bug, Fatal, Error, Warning, Note, Help};
use syntax::parse::token;
struct Env<'a, 'tcx: 'a> {
infcx: &'a infer::InferCtxt<'a, 'tcx>,
}
struct RH<'a> {
id: ast::NodeId,
sub: &'a [RH<'a>]
}
static EMPTY_SOURCE_STR: &'static str = "#![feature(no_std)] #![no_std]";
struct ExpectErrorEmitter {
messages: Vec<String>
}
fn remove_message(e: &mut ExpectErrorEmitter, msg: &str, lvl: Level) {
match lvl {
Bug | Fatal | Error => { }
Warning | Note | Help => { return; }
}
debug!("Error: {}", msg);
match e.messages.iter().position(|m| msg.contains(m)) {
Some(i) => {
e.messages.remove(i);
}
None => {
2015-01-07 18:53:58 -08:00
panic!("Unexpected error: {} Expected: {:?}",
msg, e.messages);
}
}
}
impl Emitter for ExpectErrorEmitter {
fn emit(&mut self,
_cmsp: Option<(&codemap::CodeMap, Span)>,
msg: &str,
_: Option<&str>,
lvl: Level)
{
remove_message(self, msg, lvl);
}
fn custom_emit(&mut self,
_cm: &codemap::CodeMap,
_sp: RenderSpan,
msg: &str,
lvl: Level)
{
remove_message(self, msg, lvl);
}
}
fn errors(msgs: &[&str]) -> (Box<Emitter+Send>, uint) {
let v = msgs.iter().map(|m| m.to_string()).collect();
(box ExpectErrorEmitter { messages: v } as Box<Emitter+Send>, msgs.len())
}
2014-12-09 16:32:45 -05:00
fn test_env<F>(source_string: &str,
(emitter, expected_err_count): (Box<Emitter+Send>, uint),
body: F) where
F: FnOnce(Env),
{
let mut options =
config::basic_options();
options.debugging_opts.verbose = true;
let codemap =
CodeMap::new();
let diagnostic_handler =
diagnostic::mk_handler(true, emitter);
let span_diagnostic_handler =
diagnostic::mk_span_handler(diagnostic_handler, codemap);
let sess = session::build_session_(options, None, span_diagnostic_handler);
let krate_config = Vec::new();
let input = config::Input::Str(source_string.to_string());
let krate = driver::phase_1_parse_input(&sess, krate_config, &input);
2014-09-07 20:09:06 +03:00
let krate = driver::phase_2_configure_and_expand(&sess, krate, "test", None)
.expect("phase 2 aborted");
let mut forest = ast_map::Forest::new(krate);
let arenas = ty::CtxtArenas::new();
2014-09-07 20:09:06 +03:00
let ast_map = driver::assign_node_ids_and_map(&sess, &mut forest);
let krate = ast_map.krate();
// run just enough stuff to build a tcx:
2014-09-07 20:09:06 +03:00
let lang_items = lang_items::collect_language_items(krate, &sess);
let resolve::CrateMap { def_map, freevars, .. } =
resolve::resolve_crate(&sess, &ast_map, &lang_items, krate, resolve::MakeGlobMap::No);
let named_region_map = resolve_lifetime::krate(&sess, krate, &def_map);
2014-09-07 20:09:06 +03:00
let region_map = region::resolve_crate(&sess, krate);
let tcx = ty::mk_ctxt(sess,
&arenas,
def_map,
named_region_map,
ast_map,
freevars,
region_map,
lang_items,
2015-02-04 03:46:36 +05:30
stability::Index::new(krate));
let infcx = infer::new_infer_ctxt(&tcx);
2014-09-07 20:09:06 +03:00
body(Env { infcx: &infcx });
2014-12-17 11:26:52 -08:00
infcx.resolve_regions_and_report_errors(ast::CRATE_NODE_ID);
assert_eq!(tcx.sess.err_count(), expected_err_count);
}
impl<'a, 'tcx> Env<'a, 'tcx> {
pub fn tcx(&self) -> &ty::ctxt<'tcx> {
self.infcx.tcx
}
pub fn create_region_hierarchy(&self, rh: &RH) {
2015-01-31 12:20:46 -05:00
for child_rh in rh.sub {
self.create_region_hierarchy(child_rh);
self.infcx.tcx.region_maps.record_encl_scope(
CodeExtent::from_node_id(child_rh.id),
CodeExtent::from_node_id(rh.id));
}
}
pub fn create_simple_region_hierarchy(&self) {
// creates a region hierarchy where 1 is root, 10 and 11 are
// children of 1, etc
self.create_region_hierarchy(
&RH {id: 1,
sub: &[RH {id: 10,
sub: &[]},
RH {id: 11,
sub: &[]}]});
}
#[allow(dead_code)] // this seems like it could be useful, even if we don't use it now
pub fn lookup_item(&self, names: &[String]) -> ast::NodeId {
2014-09-07 20:09:06 +03:00
return match search_mod(self, &self.infcx.tcx.map.krate().module, 0, names) {
Some(id) => id,
None => {
panic!("no item found: `{}`", names.connect("::"));
}
};
fn search_mod(this: &Env,
m: &ast::Mod,
idx: uint,
names: &[String])
-> Option<ast::NodeId> {
2013-03-28 18:39:09 -07:00
assert!(idx < names.len());
2015-01-31 12:20:46 -05:00
for item in &m.items {
if item.ident.user_string(this.infcx.tcx) == names[idx] {
return search(this, &**item, idx+1, names);
}
}
return None;
}
fn search(this: &Env,
it: &ast::Item,
idx: uint,
names: &[String])
-> Option<ast::NodeId> {
if idx == names.len() {
return Some(it.id);
}
return match it.node {
ast::ItemUse(..) | ast::ItemExternCrate(..) |
rustc: Add `const` globals to the language This change is an implementation of [RFC 69][rfc] which adds a third kind of global to the language, `const`. This global is most similar to what the old `static` was, and if you're unsure about what to use then you should use a `const`. The semantics of these three kinds of globals are: * A `const` does not represent a memory location, but only a value. Constants are translated as rvalues, which means that their values are directly inlined at usage location (similar to a #define in C/C++). Constant values are, well, constant, and can not be modified. Any "modification" is actually a modification to a local value on the stack rather than the actual constant itself. Almost all values are allowed inside constants, whether they have interior mutability or not. There are a few minor restrictions listed in the RFC, but they should in general not come up too often. * A `static` now always represents a memory location (unconditionally). Any references to the same `static` are actually a reference to the same memory location. Only values whose types ascribe to `Sync` are allowed in a `static`. This restriction is in place because many threads may access a `static` concurrently. Lifting this restriction (and allowing unsafe access) is a future extension not implemented at this time. * A `static mut` continues to always represent a memory location. All references to a `static mut` continue to be `unsafe`. This is a large breaking change, and many programs will need to be updated accordingly. A summary of the breaking changes is: * Statics may no longer be used in patterns. Statics now always represent a memory location, which can sometimes be modified. To fix code, repurpose the matched-on-`static` to a `const`. static FOO: uint = 4; match n { FOO => { /* ... */ } _ => { /* ... */ } } change this code to: const FOO: uint = 4; match n { FOO => { /* ... */ } _ => { /* ... */ } } * Statics may no longer refer to other statics by value. Due to statics being able to change at runtime, allowing them to reference one another could possibly lead to confusing semantics. If you are in this situation, use a constant initializer instead. Note, however, that statics may reference other statics by address, however. * Statics may no longer be used in constant expressions, such as array lengths. This is due to the same restrictions as listed above. Use a `const` instead. [breaking-change] [rfc]: https://github.com/rust-lang/rfcs/pull/246
2014-10-06 08:17:01 -07:00
ast::ItemConst(..) | ast::ItemStatic(..) | ast::ItemFn(..) |
ast::ItemForeignMod(..) | ast::ItemTy(..) => {
None
}
ast::ItemEnum(..) | ast::ItemStruct(..) |
ast::ItemTrait(..) | ast::ItemImpl(..) |
ast::ItemMac(..) => {
None
}
ast::ItemMod(ref m) => {
search_mod(this, m, idx, names)
}
};
}
}
pub fn make_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match infer::mk_subty(self.infcx, true, infer::Misc(DUMMY_SP), a, b) {
Ok(_) => true,
Err(ref e) => panic!("Encountered error: {}",
ty::type_err_to_str(self.infcx.tcx, e))
}
}
pub fn is_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match infer::can_mk_subty(self.infcx, a, b) {
Ok(_) => true,
Err(_) => false
}
}
pub fn assert_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) {
if !self.is_subtype(a, b) {
panic!("{} is not a subtype of {}, but it should be",
self.ty_to_string(a),
self.ty_to_string(b));
}
}
pub fn assert_eq(&self, a: Ty<'tcx>, b: Ty<'tcx>) {
self.assert_subtype(a, b);
self.assert_subtype(b, a);
}
pub fn ty_to_string(&self, a: Ty<'tcx>) -> String {
ty_to_string(self.infcx.tcx, a)
}
pub fn t_fn(&self,
input_tys: &[Ty<'tcx>],
output_ty: Ty<'tcx>)
-> Ty<'tcx>
{
let input_args = input_tys.iter().map(|ty| *ty).collect();
ty::mk_bare_fn(self.infcx.tcx,
None,
2014-12-26 22:33:56 +11:00
self.infcx.tcx.mk_bare_fn(ty::BareFnTy {
unsafety: ast::Unsafety::Normal,
abi: abi::Rust,
sig: ty::Binder(ty::FnSig {
inputs: input_args,
output: ty::FnConverging(output_ty),
variadic: false
})
2014-12-26 22:33:56 +11:00
}))
}
pub fn t_nil(&self) -> Ty<'tcx> {
ty::mk_nil(self.infcx.tcx)
}
pub fn t_pair(&self, ty1: Ty<'tcx>, ty2: Ty<'tcx>) -> Ty<'tcx> {
ty::mk_tup(self.infcx.tcx, vec![ty1, ty2])
}
2014-12-26 17:52:57 +11:00
pub fn t_param(&self, space: subst::ParamSpace, index: u32) -> Ty<'tcx> {
let name = format!("T{}", index);
ty::mk_param(self.infcx.tcx, space, index, token::intern(&name[..]))
}
pub fn re_early_bound(&self,
space: subst::ParamSpace,
2014-12-26 17:52:57 +11:00
index: u32,
name: &'static str)
-> ty::Region
{
let name = token::intern(name);
ty::ReEarlyBound(ast::DUMMY_NODE_ID, space, index, name)
}
2014-12-26 17:52:57 +11:00
pub fn re_late_bound_with_debruijn(&self, id: u32, debruijn: ty::DebruijnIndex) -> ty::Region {
ty::ReLateBound(debruijn, ty::BrAnon(id))
}
pub fn t_rptr(&self, r: ty::Region) -> Ty<'tcx> {
ty::mk_imm_rptr(self.infcx.tcx,
self.infcx.tcx.mk_region(r),
self.tcx().types.int)
}
2014-12-26 17:52:57 +11:00
pub fn t_rptr_late_bound(&self, id: u32) -> Ty<'tcx> {
let r = self.re_late_bound_with_debruijn(id, ty::DebruijnIndex::new(1));
ty::mk_imm_rptr(self.infcx.tcx,
2014-12-26 17:52:57 +11:00
self.infcx.tcx.mk_region(r),
self.tcx().types.int)
}
pub fn t_rptr_late_bound_with_debruijn(&self,
2014-12-26 17:52:57 +11:00
id: u32,
debruijn: ty::DebruijnIndex)
-> Ty<'tcx> {
2014-12-26 17:52:57 +11:00
let r = self.re_late_bound_with_debruijn(id, debruijn);
ty::mk_imm_rptr(self.infcx.tcx,
2014-12-26 17:52:57 +11:00
self.infcx.tcx.mk_region(r),
self.tcx().types.int)
}
pub fn t_rptr_scope(&self, id: ast::NodeId) -> Ty<'tcx> {
2014-12-26 17:52:57 +11:00
let r = ty::ReScope(CodeExtent::from_node_id(id));
ty::mk_imm_rptr(self.infcx.tcx, self.infcx.tcx.mk_region(r),
self.tcx().types.int)
}
2014-12-26 17:52:57 +11:00
pub fn re_free(&self, nid: ast::NodeId, id: u32) -> ty::Region {
Added DestructionScope variant to CodeExtent, representing the area immediately surrounding a node that is a terminating_scope (e.g. statements, looping forms) during which the destructors run (the destructors for temporaries from the execution of that node, that is). Introduced DestructionScopeData newtype wrapper around ast::NodeId, to preserve invariant that FreeRegion and ScopeChain::BlockScope carry destruction scopes (rather than arbitrary CodeExtents). Insert DestructionScope and block Remainder into enclosing CodeExtents hierarchy. Add more doc for DestructionScope, complete with ASCII art. Switch to constructing DestructionScope rather than Misc in a number of places, mostly related to `ty::ReFree` creation, and use destruction-scopes of node-ids at various calls to liberate_late_bound_regions. middle::resolve_lifetime: Map BlockScope to DestructionScope in `fn resolve_free_lifetime`. Add the InnermostDeclaringBlock and InnermostEnclosingExpr enums that are my attempt to clarify the region::Context structure, and that later commmts build upon. Improve the debug output for `CodeExtent` attached to `ty::Region::ReScope`. Loosened an assertion in `rustc_trans::trans::cleanup` to account for `DestructionScope`. (Perhaps this should just be switched entirely over to `DestructionScope`, rather than allowing for either `Misc` or `DestructionScope`.) ---- Even though the DestructionScope is new, this particular commit should not actually change the semantics of any current code.
2014-11-25 17:02:20 +01:00
ty::ReFree(ty::FreeRegion { scope: DestructionScopeData::new(nid),
bound_region: ty::BrAnon(id)})
}
2014-12-26 17:52:57 +11:00
pub fn t_rptr_free(&self, nid: ast::NodeId, id: u32) -> Ty<'tcx> {
let r = self.re_free(nid, id);
ty::mk_imm_rptr(self.infcx.tcx,
self.infcx.tcx.mk_region(r),
self.tcx().types.int)
}
pub fn t_rptr_static(&self) -> Ty<'tcx> {
ty::mk_imm_rptr(self.infcx.tcx,
self.infcx.tcx.mk_region(ty::ReStatic),
self.tcx().types.int)
}
pub fn dummy_type_trace(&self) -> infer::TypeTrace<'tcx> {
infer::TypeTrace::dummy(self.tcx())
}
pub fn sub(&self) -> Sub<'a, 'tcx> {
let trace = self.dummy_type_trace();
Sub(self.infcx.combine_fields(true, trace))
}
pub fn lub(&self) -> Lub<'a, 'tcx> {
let trace = self.dummy_type_trace();
Lub(self.infcx.combine_fields(true, trace))
}
pub fn glb(&self) -> Glb<'a, 'tcx> {
let trace = self.dummy_type_trace();
Glb(self.infcx.combine_fields(true, trace))
}
pub fn make_lub_ty(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> Ty<'tcx> {
match self.lub().tys(t1, t2) {
Ok(t) => t,
Err(ref e) => panic!("unexpected error computing LUB: {}",
ty::type_err_to_str(self.infcx.tcx, e))
}
}
/// Checks that `t1 <: t2` is true (this may register additional
/// region checks).
pub fn check_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) {
match self.sub().tys(t1, t2) {
Ok(_) => { }
Err(ref e) => {
panic!("unexpected error computing sub({},{}): {}",
t1.repr(self.infcx.tcx),
t2.repr(self.infcx.tcx),
ty::type_err_to_str(self.infcx.tcx, e));
}
}
}
/// Checks that `t1 <: t2` is false (this may register additional
/// region checks).
pub fn check_not_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) {
match self.sub().tys(t1, t2) {
Err(_) => { }
Ok(_) => {
panic!("unexpected success computing sub({},{})",
t1.repr(self.infcx.tcx),
t2.repr(self.infcx.tcx));
}
}
}
/// Checks that `LUB(t1,t2) == t_lub`
pub fn check_lub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_lub: Ty<'tcx>) {
match self.lub().tys(t1, t2) {
Ok(t) => {
self.assert_eq(t, t_lub);
}
Err(ref e) => {
panic!("unexpected error in LUB: {}",
ty::type_err_to_str(self.infcx.tcx, e))
}
}
}
/// Checks that `GLB(t1,t2) == t_glb`
pub fn check_glb(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_glb: Ty<'tcx>) {
debug!("check_glb(t1={}, t2={}, t_glb={})",
self.ty_to_string(t1),
self.ty_to_string(t2),
self.ty_to_string(t_glb));
match self.glb().tys(t1, t2) {
Err(e) => {
2015-01-06 16:16:35 -08:00
panic!("unexpected error computing LUB: {:?}", e)
}
Ok(t) => {
self.assert_eq(t, t_glb);
// sanity check for good measure:
self.assert_subtype(t, t1);
self.assert_subtype(t, t2);
}
}
}
}
#[test]
fn contravariant_region_ptr_ok() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
env.create_simple_region_hierarchy();
let t_rptr1 = env.t_rptr_scope(1);
let t_rptr10 = env.t_rptr_scope(10);
env.assert_eq(t_rptr1, t_rptr1);
env.assert_eq(t_rptr10, t_rptr10);
env.make_subtype(t_rptr1, t_rptr10);
})
}
#[test]
fn contravariant_region_ptr_err() {
test_env(EMPTY_SOURCE_STR,
2014-11-17 21:39:01 +13:00
errors(&["lifetime mismatch"]),
|env| {
env.create_simple_region_hierarchy();
let t_rptr1 = env.t_rptr_scope(1);
let t_rptr10 = env.t_rptr_scope(10);
env.assert_eq(t_rptr1, t_rptr1);
env.assert_eq(t_rptr10, t_rptr10);
// will cause an error when regions are resolved
env.make_subtype(t_rptr10, t_rptr1);
})
}
#[test]
fn sub_free_bound_false() {
//! Test that:
//!
//! fn(&'a int) <: for<'b> fn(&'b int)
//!
//! does NOT hold.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_free1 = env.t_rptr_free(0, 1);
let t_rptr_bound1 = env.t_rptr_late_bound(1);
env.check_not_sub(env.t_fn(&[t_rptr_free1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
})
}
#[test]
fn sub_bound_free_true() {
//! Test that:
//!
//! for<'a> fn(&'a int) <: fn(&'b int)
//!
//! DOES hold.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(0, 1);
env.check_sub(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_free1], env.tcx().types.int));
})
}
#[test]
fn sub_free_bound_false_infer() {
//! Test that:
//!
//! fn(_#1) <: for<'b> fn(&'b int)
//!
//! does NOT hold for any instantiation of `_#1`.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_infer1 = env.infcx.next_ty_var();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
env.check_not_sub(env.t_fn(&[t_infer1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
})
}
#[test]
fn lub_free_bound_infer() {
//! Test result of:
//!
//! LUB(fn(_#1), for<'b> fn(&'b int))
//!
//! This should yield `fn(&'_ int)`. We check
//! that it yields `fn(&'x int)` for some free `'x`,
//! anyhow.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_infer1 = env.infcx.next_ty_var();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(0, 1);
env.check_lub(env.t_fn(&[t_infer1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_free1], env.tcx().types.int));
});
}
#[test]
fn lub_bound_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound2], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
})
}
#[test]
fn lub_bound_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(0, 1);
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_free1], env.tcx().types.int),
env.t_fn(&[t_rptr_free1], env.tcx().types.int));
})
}
#[test]
fn lub_bound_static() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_static = env.t_rptr_static();
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_static], env.tcx().types.int),
env.t_fn(&[t_rptr_static], env.tcx().types.int));
})
}
#[test]
fn lub_bound_bound_inverse_order() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_lub(env.t_fn(&[t_rptr_bound1, t_rptr_bound2], t_rptr_bound1),
env.t_fn(&[t_rptr_bound2, t_rptr_bound1], t_rptr_bound1),
env.t_fn(&[t_rptr_bound1, t_rptr_bound1], t_rptr_bound1));
})
}
#[test]
fn lub_free_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_free1 = env.t_rptr_free(0, 1);
let t_rptr_free2 = env.t_rptr_free(0, 2);
let t_rptr_static = env.t_rptr_static();
env.check_lub(env.t_fn(&[t_rptr_free1], env.tcx().types.int),
env.t_fn(&[t_rptr_free2], env.tcx().types.int),
env.t_fn(&[t_rptr_static], env.tcx().types.int));
})
}
#[test]
fn lub_returning_scope() {
test_env(EMPTY_SOURCE_STR,
2014-11-17 21:39:01 +13:00
errors(&["cannot infer an appropriate lifetime"]), |env| {
let t_rptr_scope10 = env.t_rptr_scope(10);
let t_rptr_scope11 = env.t_rptr_scope(11);
// this should generate an error when regions are resolved
env.make_lub_ty(env.t_fn(&[], t_rptr_scope10),
env.t_fn(&[], t_rptr_scope11));
})
}
#[test]
fn glb_free_free_with_common_scope() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_free1 = env.t_rptr_free(0, 1);
let t_rptr_free2 = env.t_rptr_free(0, 2);
let t_rptr_scope = env.t_rptr_scope(0);
env.check_glb(env.t_fn(&[t_rptr_free1], env.tcx().types.int),
env.t_fn(&[t_rptr_free2], env.tcx().types.int),
env.t_fn(&[t_rptr_scope], env.tcx().types.int));
})
}
#[test]
fn glb_bound_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound2], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
})
}
#[test]
fn glb_bound_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(0, 1);
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_free1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
})
}
#[test]
fn glb_bound_free_infer() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_infer1 = env.infcx.next_ty_var();
// compute GLB(fn(_) -> int, for<'b> fn(&'b int) -> int),
// which should yield for<'b> fn(&'b int) -> int
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_infer1], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
// as a side-effect, computing GLB should unify `_` with
// `&'_ int`
let t_resolve1 = env.infcx.shallow_resolve(t_infer1);
match t_resolve1.sty {
ty::ty_rptr(..) => { }
_ => { panic!("t_resolve1={}", t_resolve1.repr(env.infcx.tcx)); }
}
})
}
#[test]
fn glb_bound_static() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_static = env.t_rptr_static();
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.int),
env.t_fn(&[t_rptr_static], env.tcx().types.int),
env.t_fn(&[t_rptr_bound1], env.tcx().types.int));
})
}
/// Test substituting a bound region into a function, which introduces another level of binding.
/// This requires adjusting the Debruijn index.
#[test]
fn subst_ty_renumber_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
let t_rptr_bound1 = env.t_rptr_late_bound(1);
// t_source = fn(A)
let t_source = {
let t_param = env.t_param(subst::TypeSpace, 0);
env.t_fn(&[t_param], env.t_nil())
};
let substs = subst::Substs::new_type(vec![t_rptr_bound1], vec![]);
let t_substituted = t_source.subst(env.infcx.tcx, &substs);
// t_expected = fn(&'a int)
let t_expected = {
let t_ptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_fn(&[t_ptr_bound2], env.t_nil())
};
debug!("subst_bound: t_source={} substs={} t_substituted={} t_expected={}",
t_source.repr(env.infcx.tcx),
substs.repr(env.infcx.tcx),
t_substituted.repr(env.infcx.tcx),
t_expected.repr(env.infcx.tcx));
assert_eq!(t_substituted, t_expected);
})
}
/// Test substituting a bound region into a function, which introduces another level of binding.
/// This requires adjusting the Debruijn index.
#[test]
fn subst_ty_renumber_some_bounds() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
let t_rptr_bound1 = env.t_rptr_late_bound(1);
// t_source = (A, fn(A))
let t_source = {
let t_param = env.t_param(subst::TypeSpace, 0);
env.t_pair(t_param, env.t_fn(&[t_param], env.t_nil()))
};
let substs = subst::Substs::new_type(vec![t_rptr_bound1], vec![]);
let t_substituted = t_source.subst(env.infcx.tcx, &substs);
// t_expected = (&'a int, fn(&'a int))
//
// but not that the Debruijn index is different in the different cases.
let t_expected = {
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_pair(t_rptr_bound1, env.t_fn(&[t_rptr_bound2], env.t_nil()))
};
debug!("subst_bound: t_source={} substs={} t_substituted={} t_expected={}",
t_source.repr(env.infcx.tcx),
substs.repr(env.infcx.tcx),
t_substituted.repr(env.infcx.tcx),
t_expected.repr(env.infcx.tcx));
assert_eq!(t_substituted, t_expected);
})
}
/// Test that we correctly compute whether a type has escaping regions or not.
#[test]
fn escaping() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
assert!(!ty::type_has_escaping_regions(env.t_nil()));
let t_rptr_free1 = env.t_rptr_free(0, 1);
assert!(!ty::type_has_escaping_regions(t_rptr_free1));
let t_rptr_bound1 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1));
assert!(ty::type_has_escaping_regions(t_rptr_bound1));
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
assert!(ty::type_has_escaping_regions(t_rptr_bound2));
// t_fn = fn(A)
let t_param = env.t_param(subst::TypeSpace, 0);
assert!(!ty::type_has_escaping_regions(t_param));
let t_fn = env.t_fn(&[t_param], env.t_nil());
assert!(!ty::type_has_escaping_regions(t_fn));
})
}
/// Test applying a substitution where the value being substituted for an early-bound region is a
/// late-bound region.
#[test]
fn subst_region_renumber_region() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let re_bound1 = env.re_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1));
// type t_source<'a> = fn(&'a int)
let t_source = {
let re_early = env.re_early_bound(subst::TypeSpace, 0, "'a");
env.t_fn(&[env.t_rptr(re_early)], env.t_nil())
};
let substs = subst::Substs::new_type(vec![], vec![re_bound1]);
let t_substituted = t_source.subst(env.infcx.tcx, &substs);
// t_expected = fn(&'a int)
//
// but not that the Debruijn index is different in the different cases.
let t_expected = {
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_fn(&[t_rptr_bound2], env.t_nil())
};
debug!("subst_bound: t_source={} substs={} t_substituted={} t_expected={}",
t_source.repr(env.infcx.tcx),
substs.repr(env.infcx.tcx),
t_substituted.repr(env.infcx.tcx),
t_expected.repr(env.infcx.tcx));
assert_eq!(t_substituted, t_expected);
})
}
#[test]
fn walk_ty() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let tcx = env.infcx.tcx;
let int_ty = tcx.types.int;
let uint_ty = tcx.types.uint;
let tup1_ty = ty::mk_tup(tcx, vec!(int_ty, uint_ty, int_ty, uint_ty));
let tup2_ty = ty::mk_tup(tcx, vec!(tup1_ty, tup1_ty, uint_ty));
let uniq_ty = ty::mk_uniq(tcx, tup2_ty);
let walked: Vec<_> = uniq_ty.walk().collect();
assert_eq!(vec!(uniq_ty,
tup2_ty,
tup1_ty, int_ty, uint_ty, int_ty, uint_ty,
tup1_ty, int_ty, uint_ty, int_ty, uint_ty,
uint_ty),
walked);
})
}
#[test]
fn walk_ty_skip_subtree() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let tcx = env.infcx.tcx;
let int_ty = tcx.types.int;
let uint_ty = tcx.types.uint;
let tup1_ty = ty::mk_tup(tcx, vec!(int_ty, uint_ty, int_ty, uint_ty));
let tup2_ty = ty::mk_tup(tcx, vec!(tup1_ty, tup1_ty, uint_ty));
let uniq_ty = ty::mk_uniq(tcx, tup2_ty);
// types we expect to see (in order), plus a boolean saying
// whether to skip the subtree.
let mut expected = vec!((uniq_ty, false),
(tup2_ty, false),
(tup1_ty, false),
(int_ty, false),
(uint_ty, false),
(int_ty, false),
(uint_ty, false),
(tup1_ty, true), // skip the int/uint/int/uint
(uint_ty, false));
expected.reverse();
let mut walker = uniq_ty.walk();
while let Some(t) = walker.next() {
2015-01-06 16:16:35 -08:00
debug!("walked to {:?}", t);
let (expected_ty, skip) = expected.pop().unwrap();
assert_eq!(t, expected_ty);
if skip { walker.skip_current_subtree(); }
}
assert!(expected.is_empty());
})
}