rust/src/libcore/atomics.rs

693 lines
22 KiB
Rust
Raw Normal View History

2014-05-12 23:30:48 -05:00
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Core atomic primitives
use intrinsics;
use std::kinds::marker;
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 21:10:12 -05:00
use cell::UnsafeCell;
2014-05-12 23:30:48 -05:00
/// An atomic boolean type.
pub struct AtomicBool {
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 21:10:12 -05:00
v: UnsafeCell<uint>,
2014-05-12 23:30:48 -05:00
nocopy: marker::NoCopy
}
/// A signed atomic integer type, supporting basic atomic arithmetic operations
pub struct AtomicInt {
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 21:10:12 -05:00
v: UnsafeCell<int>,
2014-05-12 23:30:48 -05:00
nocopy: marker::NoCopy
}
/// An unsigned atomic integer type, supporting basic atomic arithmetic operations
pub struct AtomicUint {
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 21:10:12 -05:00
v: UnsafeCell<uint>,
2014-05-12 23:30:48 -05:00
nocopy: marker::NoCopy
}
/// An unsafe atomic pointer. Only supports basic atomic operations
pub struct AtomicPtr<T> {
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 21:10:12 -05:00
p: UnsafeCell<uint>,
2014-05-12 23:30:48 -05:00
nocopy: marker::NoCopy
}
/// Atomic memory orderings
///
/// Memory orderings limit the ways that both the compiler and CPU may reorder
/// instructions around atomic operations. At its most restrictive,
/// "sequentially consistent" atomics allow neither reads nor writes
/// to be moved either before or after the atomic operation; on the other end
/// "relaxed" atomics allow all reorderings.
///
/// Rust's memory orderings are the same as in C++[1].
///
/// 1: http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync
pub enum Ordering {
/// No ordering constraints, only atomic operations
Relaxed,
/// When coupled with a store, all previous writes become visible
/// to another thread that performs a load with `Acquire` ordering
/// on the same value
Release,
/// When coupled with a load, all subsequent loads will see data
/// written before a store with `Release` ordering on the same value
/// in another thread
Acquire,
/// When coupled with a load, uses `Acquire` ordering, and with a store
/// `Release` ordering
AcqRel,
/// Like `AcqRel` with the additional guarantee that all threads see all
/// sequentially consistent operations in the same order.
SeqCst
}
/// An `AtomicBool` initialized to `false`
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 21:10:12 -05:00
pub static INIT_ATOMIC_BOOL: AtomicBool =
AtomicBool { v: UnsafeCell { value: 0 }, nocopy: marker::NoCopy };
2014-05-12 23:30:48 -05:00
/// An `AtomicInt` initialized to `0`
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 21:10:12 -05:00
pub static INIT_ATOMIC_INT: AtomicInt =
AtomicInt { v: UnsafeCell { value: 0 }, nocopy: marker::NoCopy };
2014-05-12 23:30:48 -05:00
/// An `AtomicUint` initialized to `0`
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 21:10:12 -05:00
pub static INIT_ATOMIC_UINT: AtomicUint =
AtomicUint { v: UnsafeCell { value: 0, }, nocopy: marker::NoCopy };
2014-05-12 23:30:48 -05:00
// NB: Needs to be -1 (0b11111111...) to make fetch_nand work correctly
static UINT_TRUE: uint = -1;
impl AtomicBool {
/// Create a new `AtomicBool`
pub fn new(v: bool) -> AtomicBool {
let val = if v { UINT_TRUE } else { 0 };
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 21:10:12 -05:00
AtomicBool { v: UnsafeCell::new(val), nocopy: marker::NoCopy }
2014-05-12 23:30:48 -05:00
}
/// Load the value
#[inline]
pub fn load(&self, order: Ordering) -> bool {
2014-06-25 14:47:34 -05:00
unsafe { atomic_load(self.v.get() as *const uint, order) > 0 }
2014-05-12 23:30:48 -05:00
}
/// Store the value
#[inline]
pub fn store(&self, val: bool, order: Ordering) {
let val = if val { UINT_TRUE } else { 0 };
unsafe { atomic_store(self.v.get(), val, order); }
}
/// Store a value, returning the old value
#[inline]
pub fn swap(&self, val: bool, order: Ordering) -> bool {
let val = if val { UINT_TRUE } else { 0 };
unsafe { atomic_swap(self.v.get(), val, order) > 0 }
}
/// If the current value is the same as expected, store a new value
///
/// Compare the current value with `old`; if they are the same then
/// replace the current value with `new`. Return the previous value.
/// If the return value is equal to `old` then the value was updated.
///
/// # Examples
///
/// ```rust
/// use std::sync::Arc;
2014-05-12 23:30:48 -05:00
/// use std::sync::atomics::{AtomicBool, SeqCst};
/// use std::task::deschedule;
2014-05-12 23:30:48 -05:00
///
/// fn main() {
/// let spinlock = Arc::new(AtomicBool::new(false));
/// let spinlock_clone = spinlock.clone();
2014-05-12 23:30:48 -05:00
///
/// spawn(proc() {
/// with_lock(&spinlock, || println!("task 1 in lock"));
/// });
///
/// spawn(proc() {
/// with_lock(&spinlock_clone, || println!("task 2 in lock"));
/// });
/// }
///
/// fn with_lock(spinlock: &Arc<AtomicBool>, f: || -> ()) {
/// // CAS loop until we are able to replace `false` with `true`
/// while spinlock.compare_and_swap(false, true, SeqCst) != false {
2014-05-12 23:30:48 -05:00
/// // Since tasks may not be preemptive (if they are green threads)
/// // yield to the scheduler to let the other task run. Low level
/// // concurrent code needs to take into account Rust's two threading
/// // models.
/// deschedule();
/// }
///
/// // Now we have the spinlock
/// f();
///
/// // Release the lock
/// spinlock.store(false, SeqCst);
2014-05-12 23:30:48 -05:00
/// }
/// ```
#[inline]
pub fn compare_and_swap(&self, old: bool, new: bool, order: Ordering) -> bool {
let old = if old { UINT_TRUE } else { 0 };
let new = if new { UINT_TRUE } else { 0 };
unsafe { atomic_compare_and_swap(self.v.get(), old, new, order) > 0 }
}
/// A logical "and" operation
///
/// Performs a logical "and" operation on the current value and the
/// argument `val`, and sets the new value to the result.
/// Returns the previous value.
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicBool, SeqCst};
///
/// let foo = AtomicBool::new(true);
/// assert_eq!(true, foo.fetch_and(false, SeqCst));
/// assert_eq!(false, foo.load(SeqCst));
///
/// let foo = AtomicBool::new(true);
/// assert_eq!(true, foo.fetch_and(true, SeqCst));
/// assert_eq!(true, foo.load(SeqCst));
///
/// let foo = AtomicBool::new(false);
/// assert_eq!(false, foo.fetch_and(false, SeqCst));
/// assert_eq!(false, foo.load(SeqCst));
/// ```
#[inline]
pub fn fetch_and(&self, val: bool, order: Ordering) -> bool {
let val = if val { UINT_TRUE } else { 0 };
unsafe { atomic_and(self.v.get(), val, order) > 0 }
}
/// A logical "nand" operation
///
/// Performs a logical "nand" operation on the current value and the
/// argument `val`, and sets the new value to the result.
/// Returns the previous value.
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicBool, SeqCst};
///
/// let foo = AtomicBool::new(true);
/// assert_eq!(true, foo.fetch_nand(false, SeqCst));
/// assert_eq!(true, foo.load(SeqCst));
///
/// let foo = AtomicBool::new(true);
/// assert_eq!(true, foo.fetch_nand(true, SeqCst));
/// assert_eq!(0, foo.load(SeqCst) as int);
/// assert_eq!(false, foo.load(SeqCst));
///
/// let foo = AtomicBool::new(false);
/// assert_eq!(false, foo.fetch_nand(false, SeqCst));
/// assert_eq!(true, foo.load(SeqCst));
/// ```
#[inline]
pub fn fetch_nand(&self, val: bool, order: Ordering) -> bool {
let val = if val { UINT_TRUE } else { 0 };
unsafe { atomic_nand(self.v.get(), val, order) > 0 }
}
/// A logical "or" operation
///
/// Performs a logical "or" operation on the current value and the
/// argument `val`, and sets the new value to the result.
/// Returns the previous value.
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicBool, SeqCst};
///
/// let foo = AtomicBool::new(true);
/// assert_eq!(true, foo.fetch_or(false, SeqCst));
/// assert_eq!(true, foo.load(SeqCst));
///
/// let foo = AtomicBool::new(true);
/// assert_eq!(true, foo.fetch_or(true, SeqCst));
/// assert_eq!(true, foo.load(SeqCst));
///
/// let foo = AtomicBool::new(false);
/// assert_eq!(false, foo.fetch_or(false, SeqCst));
/// assert_eq!(false, foo.load(SeqCst));
/// ```
#[inline]
pub fn fetch_or(&self, val: bool, order: Ordering) -> bool {
let val = if val { UINT_TRUE } else { 0 };
unsafe { atomic_or(self.v.get(), val, order) > 0 }
}
/// A logical "xor" operation
///
/// Performs a logical "xor" operation on the current value and the
/// argument `val`, and sets the new value to the result.
/// Returns the previous value.
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicBool, SeqCst};
///
/// let foo = AtomicBool::new(true);
/// assert_eq!(true, foo.fetch_xor(false, SeqCst));
/// assert_eq!(true, foo.load(SeqCst));
///
/// let foo = AtomicBool::new(true);
/// assert_eq!(true, foo.fetch_xor(true, SeqCst));
/// assert_eq!(false, foo.load(SeqCst));
///
/// let foo = AtomicBool::new(false);
/// assert_eq!(false, foo.fetch_xor(false, SeqCst));
/// assert_eq!(false, foo.load(SeqCst));
/// ```
#[inline]
pub fn fetch_xor(&self, val: bool, order: Ordering) -> bool {
let val = if val { UINT_TRUE } else { 0 };
unsafe { atomic_xor(self.v.get(), val, order) > 0 }
}
}
impl AtomicInt {
/// Create a new `AtomicInt`
pub fn new(v: int) -> AtomicInt {
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 21:10:12 -05:00
AtomicInt {v: UnsafeCell::new(v), nocopy: marker::NoCopy}
2014-05-12 23:30:48 -05:00
}
/// Load the value
#[inline]
pub fn load(&self, order: Ordering) -> int {
2014-06-25 14:47:34 -05:00
unsafe { atomic_load(self.v.get() as *const int, order) }
2014-05-12 23:30:48 -05:00
}
/// Store the value
#[inline]
pub fn store(&self, val: int, order: Ordering) {
unsafe { atomic_store(self.v.get(), val, order); }
}
/// Store a value, returning the old value
#[inline]
pub fn swap(&self, val: int, order: Ordering) -> int {
unsafe { atomic_swap(self.v.get(), val, order) }
}
/// If the current value is the same as expected, store a new value
///
/// Compare the current value with `old`; if they are the same then
/// replace the current value with `new`. Return the previous value.
/// If the return value is equal to `old` then the value was updated.
#[inline]
pub fn compare_and_swap(&self, old: int, new: int, order: Ordering) -> int {
unsafe { atomic_compare_and_swap(self.v.get(), old, new, order) }
}
/// Add to the current value, returning the previous
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicInt, SeqCst};
///
/// let foo = AtomicInt::new(0);
/// assert_eq!(0, foo.fetch_add(10, SeqCst));
/// assert_eq!(10, foo.load(SeqCst));
/// ```
#[inline]
pub fn fetch_add(&self, val: int, order: Ordering) -> int {
unsafe { atomic_add(self.v.get(), val, order) }
}
/// Subtract from the current value, returning the previous
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicInt, SeqCst};
///
/// let foo = AtomicInt::new(0);
/// assert_eq!(0, foo.fetch_sub(10, SeqCst));
/// assert_eq!(-10, foo.load(SeqCst));
/// ```
#[inline]
pub fn fetch_sub(&self, val: int, order: Ordering) -> int {
unsafe { atomic_sub(self.v.get(), val, order) }
}
/// Bitwise and with the current value, returning the previous
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicUint, SeqCst};
///
/// let foo = AtomicUint::new(0b101101);
/// assert_eq!(0b101101, foo.fetch_and(0b110011, SeqCst));
/// assert_eq!(0b100001, foo.load(SeqCst));
#[inline]
pub fn fetch_and(&self, val: int, order: Ordering) -> int {
unsafe { atomic_and(self.v.get(), val, order) }
}
/// Bitwise or with the current value, returning the previous
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicUint, SeqCst};
///
/// let foo = AtomicUint::new(0b101101);
/// assert_eq!(0b101101, foo.fetch_or(0b110011, SeqCst));
/// assert_eq!(0b111111, foo.load(SeqCst));
#[inline]
pub fn fetch_or(&self, val: int, order: Ordering) -> int {
unsafe { atomic_or(self.v.get(), val, order) }
}
/// Bitwise xor with the current value, returning the previous
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicUint, SeqCst};
///
/// let foo = AtomicUint::new(0b101101);
/// assert_eq!(0b101101, foo.fetch_xor(0b110011, SeqCst));
/// assert_eq!(0b011110, foo.load(SeqCst));
#[inline]
pub fn fetch_xor(&self, val: int, order: Ordering) -> int {
unsafe { atomic_xor(self.v.get(), val, order) }
}
}
impl AtomicUint {
/// Create a new `AtomicUint`
pub fn new(v: uint) -> AtomicUint {
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 21:10:12 -05:00
AtomicUint { v: UnsafeCell::new(v), nocopy: marker::NoCopy }
2014-05-12 23:30:48 -05:00
}
/// Load the value
#[inline]
pub fn load(&self, order: Ordering) -> uint {
2014-06-25 14:47:34 -05:00
unsafe { atomic_load(self.v.get() as *const uint, order) }
2014-05-12 23:30:48 -05:00
}
/// Store the value
#[inline]
pub fn store(&self, val: uint, order: Ordering) {
unsafe { atomic_store(self.v.get(), val, order); }
}
/// Store a value, returning the old value
#[inline]
pub fn swap(&self, val: uint, order: Ordering) -> uint {
unsafe { atomic_swap(self.v.get(), val, order) }
}
/// If the current value is the same as expected, store a new value
///
/// Compare the current value with `old`; if they are the same then
/// replace the current value with `new`. Return the previous value.
/// If the return value is equal to `old` then the value was updated.
#[inline]
pub fn compare_and_swap(&self, old: uint, new: uint, order: Ordering) -> uint {
unsafe { atomic_compare_and_swap(self.v.get(), old, new, order) }
}
/// Add to the current value, returning the previous
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicUint, SeqCst};
///
/// let foo = AtomicUint::new(0);
/// assert_eq!(0, foo.fetch_add(10, SeqCst));
/// assert_eq!(10, foo.load(SeqCst));
/// ```
#[inline]
pub fn fetch_add(&self, val: uint, order: Ordering) -> uint {
unsafe { atomic_add(self.v.get(), val, order) }
}
/// Subtract from the current value, returning the previous
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicUint, SeqCst};
///
/// let foo = AtomicUint::new(10);
/// assert_eq!(10, foo.fetch_sub(10, SeqCst));
/// assert_eq!(0, foo.load(SeqCst));
/// ```
#[inline]
pub fn fetch_sub(&self, val: uint, order: Ordering) -> uint {
unsafe { atomic_sub(self.v.get(), val, order) }
}
/// Bitwise and with the current value, returning the previous
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicUint, SeqCst};
///
/// let foo = AtomicUint::new(0b101101);
/// assert_eq!(0b101101, foo.fetch_and(0b110011, SeqCst));
/// assert_eq!(0b100001, foo.load(SeqCst));
#[inline]
pub fn fetch_and(&self, val: uint, order: Ordering) -> uint {
unsafe { atomic_and(self.v.get(), val, order) }
}
/// Bitwise or with the current value, returning the previous
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicUint, SeqCst};
///
/// let foo = AtomicUint::new(0b101101);
/// assert_eq!(0b101101, foo.fetch_or(0b110011, SeqCst));
/// assert_eq!(0b111111, foo.load(SeqCst));
#[inline]
pub fn fetch_or(&self, val: uint, order: Ordering) -> uint {
unsafe { atomic_or(self.v.get(), val, order) }
}
/// Bitwise xor with the current value, returning the previous
///
/// # Examples
///
/// ```
/// use std::sync::atomics::{AtomicUint, SeqCst};
///
/// let foo = AtomicUint::new(0b101101);
/// assert_eq!(0b101101, foo.fetch_xor(0b110011, SeqCst));
/// assert_eq!(0b011110, foo.load(SeqCst));
#[inline]
pub fn fetch_xor(&self, val: uint, order: Ordering) -> uint {
unsafe { atomic_xor(self.v.get(), val, order) }
}
}
impl<T> AtomicPtr<T> {
/// Create a new `AtomicPtr`
pub fn new(p: *mut T) -> AtomicPtr<T> {
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 21:10:12 -05:00
AtomicPtr { p: UnsafeCell::new(p as uint), nocopy: marker::NoCopy }
2014-05-12 23:30:48 -05:00
}
/// Load the value
#[inline]
pub fn load(&self, order: Ordering) -> *mut T {
unsafe {
2014-06-25 14:47:34 -05:00
atomic_load(self.p.get() as *const *mut T, order) as *mut T
2014-05-12 23:30:48 -05:00
}
}
/// Store the value
#[inline]
pub fn store(&self, ptr: *mut T, order: Ordering) {
unsafe { atomic_store(self.p.get(), ptr as uint, order); }
}
/// Store a value, returning the old value
#[inline]
pub fn swap(&self, ptr: *mut T, order: Ordering) -> *mut T {
unsafe { atomic_swap(self.p.get(), ptr as uint, order) as *mut T }
}
/// If the current value is the same as expected, store a new value
///
/// Compare the current value with `old`; if they are the same then
/// replace the current value with `new`. Return the previous value.
/// If the return value is equal to `old` then the value was updated.
#[inline]
pub fn compare_and_swap(&self, old: *mut T, new: *mut T, order: Ordering) -> *mut T {
unsafe {
atomic_compare_and_swap(self.p.get(), old as uint,
new as uint, order) as *mut T
}
}
}
#[inline]
unsafe fn atomic_store<T>(dst: *mut T, val: T, order:Ordering) {
match order {
Release => intrinsics::atomic_store_rel(dst, val),
Relaxed => intrinsics::atomic_store_relaxed(dst, val),
_ => intrinsics::atomic_store(dst, val)
}
}
#[inline]
2014-06-25 14:47:34 -05:00
unsafe fn atomic_load<T>(dst: *const T, order:Ordering) -> T {
2014-05-12 23:30:48 -05:00
match order {
Acquire => intrinsics::atomic_load_acq(dst),
Relaxed => intrinsics::atomic_load_relaxed(dst),
_ => intrinsics::atomic_load(dst)
}
}
#[inline]
unsafe fn atomic_swap<T>(dst: *mut T, val: T, order: Ordering) -> T {
match order {
Acquire => intrinsics::atomic_xchg_acq(dst, val),
Release => intrinsics::atomic_xchg_rel(dst, val),
AcqRel => intrinsics::atomic_xchg_acqrel(dst, val),
Relaxed => intrinsics::atomic_xchg_relaxed(dst, val),
_ => intrinsics::atomic_xchg(dst, val)
}
}
/// Returns the old value (like __sync_fetch_and_add).
#[inline]
unsafe fn atomic_add<T>(dst: *mut T, val: T, order: Ordering) -> T {
match order {
Acquire => intrinsics::atomic_xadd_acq(dst, val),
Release => intrinsics::atomic_xadd_rel(dst, val),
AcqRel => intrinsics::atomic_xadd_acqrel(dst, val),
Relaxed => intrinsics::atomic_xadd_relaxed(dst, val),
_ => intrinsics::atomic_xadd(dst, val)
}
}
/// Returns the old value (like __sync_fetch_and_sub).
#[inline]
unsafe fn atomic_sub<T>(dst: *mut T, val: T, order: Ordering) -> T {
match order {
Acquire => intrinsics::atomic_xsub_acq(dst, val),
Release => intrinsics::atomic_xsub_rel(dst, val),
AcqRel => intrinsics::atomic_xsub_acqrel(dst, val),
Relaxed => intrinsics::atomic_xsub_relaxed(dst, val),
_ => intrinsics::atomic_xsub(dst, val)
}
}
#[inline]
unsafe fn atomic_compare_and_swap<T>(dst: *mut T, old:T, new:T, order: Ordering) -> T {
match order {
Acquire => intrinsics::atomic_cxchg_acq(dst, old, new),
Release => intrinsics::atomic_cxchg_rel(dst, old, new),
AcqRel => intrinsics::atomic_cxchg_acqrel(dst, old, new),
Relaxed => intrinsics::atomic_cxchg_relaxed(dst, old, new),
_ => intrinsics::atomic_cxchg(dst, old, new),
}
}
#[inline]
unsafe fn atomic_and<T>(dst: *mut T, val: T, order: Ordering) -> T {
match order {
Acquire => intrinsics::atomic_and_acq(dst, val),
Release => intrinsics::atomic_and_rel(dst, val),
AcqRel => intrinsics::atomic_and_acqrel(dst, val),
Relaxed => intrinsics::atomic_and_relaxed(dst, val),
_ => intrinsics::atomic_and(dst, val)
}
}
#[inline]
unsafe fn atomic_nand<T>(dst: *mut T, val: T, order: Ordering) -> T {
match order {
Acquire => intrinsics::atomic_nand_acq(dst, val),
Release => intrinsics::atomic_nand_rel(dst, val),
AcqRel => intrinsics::atomic_nand_acqrel(dst, val),
Relaxed => intrinsics::atomic_nand_relaxed(dst, val),
_ => intrinsics::atomic_nand(dst, val)
}
}
#[inline]
unsafe fn atomic_or<T>(dst: *mut T, val: T, order: Ordering) -> T {
match order {
Acquire => intrinsics::atomic_or_acq(dst, val),
Release => intrinsics::atomic_or_rel(dst, val),
AcqRel => intrinsics::atomic_or_acqrel(dst, val),
Relaxed => intrinsics::atomic_or_relaxed(dst, val),
_ => intrinsics::atomic_or(dst, val)
}
}
#[inline]
unsafe fn atomic_xor<T>(dst: *mut T, val: T, order: Ordering) -> T {
match order {
Acquire => intrinsics::atomic_xor_acq(dst, val),
Release => intrinsics::atomic_xor_rel(dst, val),
AcqRel => intrinsics::atomic_xor_acqrel(dst, val),
Relaxed => intrinsics::atomic_xor_relaxed(dst, val),
_ => intrinsics::atomic_xor(dst, val)
}
}
/// An atomic fence.
///
/// A fence 'A' which has `Release` ordering semantics, synchronizes with a
/// fence 'B' with (at least) `Acquire` semantics, if and only if there exists
/// atomic operations X and Y, both operating on some atomic object 'M' such
/// that A is sequenced before X, Y is synchronized before B and Y observers
/// the change to M. This provides a happens-before dependence between A and B.
///
/// Atomic operations with `Release` or `Acquire` semantics can also synchronize
/// with a fence.
///
/// A fence with has `SeqCst` ordering, in addition to having both `Acquire` and
/// `Release` semantics, participates in the global program order of the other
/// `SeqCst` operations and/or fences.
///
/// Accepts `Acquire`, `Release`, `AcqRel` and `SeqCst` orderings.
///
/// # Failure
///
/// Fails if `order` is `Relaxed`
#[inline]
pub fn fence(order: Ordering) {
unsafe {
match order {
Acquire => intrinsics::atomic_fence_acq(),
Release => intrinsics::atomic_fence_rel(),
AcqRel => intrinsics::atomic_fence_acqrel(),
SeqCst => intrinsics::atomic_fence(),
Relaxed => fail!("there is no such thing as a relaxed fence")
}
}
}