rust/src/rustc/middle/trans/build.rs

826 lines
26 KiB
Rust
Raw Normal View History

import std::map::{hashmap, str_hash};
import libc::{c_uint, c_int};
import lib::llvm::llvm;
import syntax::codemap;
import codemap::span;
import lib::llvm::{ValueRef, TypeRef, BasicBlockRef, BuilderRef, ModuleRef};
import lib::llvm::{Opcode, IntPredicate, RealPredicate, True, False,
CallConv, TypeKind, AtomicBinOp, AtomicOrdering};
import common::*;
import driver::session::session;
fn B(cx: block) -> BuilderRef {
let b = cx.fcx.ccx.builder.B;
llvm::LLVMPositionBuilderAtEnd(b, cx.llbb);
ret b;
}
fn count_insn(cx: block, category: ~str) {
if cx.ccx().sess.count_llvm_insns() {
let h = cx.ccx().stats.llvm_insns;
let v = cx.ccx().stats.llvm_insn_ctxt;
// Build version of path with cycles removed.
// Pass 1: scan table mapping str -> rightmost pos.
let mm = str_hash();
let len = vec::len(*v);
let mut i = 0u;
while i < len {
mm.insert(copy v[i], i);
i += 1u;
}
// Pass 2: concat strings for each elt, skipping
// forwards over any cycles by advancing to rightmost
// occurrence of each element in path.
let mut s = ~".";
i = 0u;
while i < len {
let e = v[i];
i = mm.get(e);
s += ~"/";
s += e;
i += 1u;
}
s += ~"/";
s += category;
let n = alt h.find(s) { some(n) { n } _ { 0u } };
h.insert(s, n+1u);
}
}
// The difference between a block being unreachable and being terminated is
// somewhat obscure, and has to do with error checking. When a block is
// terminated, we're saying that trying to add any further statements in the
// block is an error. On the other hand, if something is unreachable, that
// means that the block was terminated in some way that we don't want to check
// for (fail/break/ret statements, call to diverging functions, etc), and
// further instructions to the block should simply be ignored.
fn RetVoid(cx: block) {
if cx.unreachable { ret; }
2011-09-02 17:34:58 -05:00
assert (!cx.terminated);
cx.terminated = true;
count_insn(cx, ~"retvoid");
llvm::LLVMBuildRetVoid(B(cx));
}
fn Ret(cx: block, V: ValueRef) {
if cx.unreachable { ret; }
2011-09-02 17:34:58 -05:00
assert (!cx.terminated);
cx.terminated = true;
count_insn(cx, ~"ret");
llvm::LLVMBuildRet(B(cx), V);
}
fn AggregateRet(cx: block, RetVals: ~[ValueRef]) {
if cx.unreachable { ret; }
2011-09-02 17:34:58 -05:00
assert (!cx.terminated);
cx.terminated = true;
unsafe {
llvm::LLVMBuildAggregateRet(B(cx), vec::unsafe::to_ptr(RetVals),
RetVals.len() as c_uint);
}
}
fn Br(cx: block, Dest: BasicBlockRef) {
if cx.unreachable { ret; }
2011-09-02 17:34:58 -05:00
assert (!cx.terminated);
cx.terminated = true;
count_insn(cx, ~"br");
llvm::LLVMBuildBr(B(cx), Dest);
}
fn CondBr(cx: block, If: ValueRef, Then: BasicBlockRef,
Else: BasicBlockRef) {
if cx.unreachable { ret; }
2011-09-02 17:34:58 -05:00
assert (!cx.terminated);
cx.terminated = true;
count_insn(cx, ~"condbr");
llvm::LLVMBuildCondBr(B(cx), If, Then, Else);
}
fn Switch(cx: block, V: ValueRef, Else: BasicBlockRef, NumCases: uint)
-> ValueRef {
if cx.unreachable { ret _Undef(V); }
assert !cx.terminated;
cx.terminated = true;
ret llvm::LLVMBuildSwitch(B(cx), V, Else, NumCases as c_uint);
}
fn AddCase(S: ValueRef, OnVal: ValueRef, Dest: BasicBlockRef) {
if llvm::LLVMIsUndef(S) == lib::llvm::True { ret; }
llvm::LLVMAddCase(S, OnVal, Dest);
}
fn IndirectBr(cx: block, Addr: ValueRef, NumDests: uint) {
if cx.unreachable { ret; }
2011-09-02 17:34:58 -05:00
assert (!cx.terminated);
cx.terminated = true;
count_insn(cx, ~"indirectbr");
llvm::LLVMBuildIndirectBr(B(cx), Addr, NumDests as c_uint);
}
// This is a really awful way to get a zero-length c-string, but better (and a
// lot more efficient) than doing str::as_c_str("", ...) every time.
fn noname() -> *libc::c_char unsafe {
const cnull: uint = 0u;
ret unsafe::reinterpret_cast(ptr::addr_of(cnull));
}
fn Invoke(cx: block, Fn: ValueRef, Args: ~[ValueRef],
Then: BasicBlockRef, Catch: BasicBlockRef) {
if cx.unreachable { ret; }
2011-09-02 17:34:58 -05:00
assert (!cx.terminated);
cx.terminated = true;
#debug["Invoke(%s with arguments (%s))",
val_str(cx.ccx().tn, Fn),
2012-06-30 18:19:07 -05:00
str::connect(vec::map(Args, |a| val_str(cx.ccx().tn, a)),
~", ")];
unsafe {
count_insn(cx, ~"invoke");
llvm::LLVMBuildInvoke(B(cx), Fn, vec::unsafe::to_ptr(Args),
Args.len() as c_uint, Then, Catch,
noname());
}
}
fn FastInvoke(cx: block, Fn: ValueRef, Args: ~[ValueRef],
Then: BasicBlockRef, Catch: BasicBlockRef) {
if cx.unreachable { ret; }
assert (!cx.terminated);
cx.terminated = true;
unsafe {
count_insn(cx, ~"fastinvoke");
let v = llvm::LLVMBuildInvoke(B(cx), Fn, vec::unsafe::to_ptr(Args),
Args.len() as c_uint,
Then, Catch, noname());
lib::llvm::SetInstructionCallConv(v, lib::llvm::FastCallConv);
}
}
fn Unreachable(cx: block) {
if cx.unreachable { ret; }
cx.unreachable = true;
if !cx.terminated {
count_insn(cx, ~"unreachable");
llvm::LLVMBuildUnreachable(B(cx));
}
}
fn _Undef(val: ValueRef) -> ValueRef {
ret llvm::LLVMGetUndef(val_ty(val));
}
/* Arithmetic */
fn Add(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"add");
ret llvm::LLVMBuildAdd(B(cx), LHS, RHS, noname());
}
fn NSWAdd(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"nswadd");
ret llvm::LLVMBuildNSWAdd(B(cx), LHS, RHS, noname());
}
fn NUWAdd(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"nuwadd");
ret llvm::LLVMBuildNUWAdd(B(cx), LHS, RHS, noname());
}
fn FAdd(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"fadd");
ret llvm::LLVMBuildFAdd(B(cx), LHS, RHS, noname());
}
fn Sub(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"sub");
ret llvm::LLVMBuildSub(B(cx), LHS, RHS, noname());
}
fn NSWSub(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"nwsub");
ret llvm::LLVMBuildNSWSub(B(cx), LHS, RHS, noname());
}
fn NUWSub(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"nuwsub");
ret llvm::LLVMBuildNUWSub(B(cx), LHS, RHS, noname());
}
fn FSub(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"sub");
ret llvm::LLVMBuildFSub(B(cx), LHS, RHS, noname());
}
fn Mul(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"mul");
ret llvm::LLVMBuildMul(B(cx), LHS, RHS, noname());
}
fn NSWMul(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"nswmul");
ret llvm::LLVMBuildNSWMul(B(cx), LHS, RHS, noname());
}
fn NUWMul(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"nuwmul");
ret llvm::LLVMBuildNUWMul(B(cx), LHS, RHS, noname());
}
fn FMul(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"fmul");
ret llvm::LLVMBuildFMul(B(cx), LHS, RHS, noname());
}
fn UDiv(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"udiv");
ret llvm::LLVMBuildUDiv(B(cx), LHS, RHS, noname());
}
fn SDiv(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"sdiv");
ret llvm::LLVMBuildSDiv(B(cx), LHS, RHS, noname());
}
fn ExactSDiv(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"extractsdiv");
ret llvm::LLVMBuildExactSDiv(B(cx), LHS, RHS, noname());
}
fn FDiv(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"fdiv");
ret llvm::LLVMBuildFDiv(B(cx), LHS, RHS, noname());
}
fn URem(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"urem");
ret llvm::LLVMBuildURem(B(cx), LHS, RHS, noname());
}
fn SRem(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"srem");
ret llvm::LLVMBuildSRem(B(cx), LHS, RHS, noname());
}
fn FRem(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"frem");
ret llvm::LLVMBuildFRem(B(cx), LHS, RHS, noname());
}
fn Shl(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"shl");
ret llvm::LLVMBuildShl(B(cx), LHS, RHS, noname());
}
fn LShr(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"lshr");
ret llvm::LLVMBuildLShr(B(cx), LHS, RHS, noname());
}
fn AShr(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"ashr");
ret llvm::LLVMBuildAShr(B(cx), LHS, RHS, noname());
}
fn And(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"and");
ret llvm::LLVMBuildAnd(B(cx), LHS, RHS, noname());
}
fn Or(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"or");
ret llvm::LLVMBuildOr(B(cx), LHS, RHS, noname());
}
fn Xor(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"xor");
ret llvm::LLVMBuildXor(B(cx), LHS, RHS, noname());
}
fn BinOp(cx: block, Op: Opcode, LHS: ValueRef, RHS: ValueRef) ->
2011-09-02 17:34:58 -05:00
ValueRef {
if cx.unreachable { ret _Undef(LHS); }
count_insn(cx, ~"binop");
ret llvm::LLVMBuildBinOp(B(cx), Op, LHS, RHS, noname());
}
fn Neg(cx: block, V: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(V); }
count_insn(cx, ~"neg");
ret llvm::LLVMBuildNeg(B(cx), V, noname());
}
fn NSWNeg(cx: block, V: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(V); }
count_insn(cx, ~"nswneg");
ret llvm::LLVMBuildNSWNeg(B(cx), V, noname());
}
fn NUWNeg(cx: block, V: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(V); }
count_insn(cx, ~"nuwneg");
ret llvm::LLVMBuildNUWNeg(B(cx), V, noname());
}
fn FNeg(cx: block, V: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(V); }
count_insn(cx, ~"fneg");
ret llvm::LLVMBuildFNeg(B(cx), V, noname());
}
fn Not(cx: block, V: ValueRef) -> ValueRef {
if cx.unreachable { ret _Undef(V); }
count_insn(cx, ~"not");
ret llvm::LLVMBuildNot(B(cx), V, noname());
}
/* Memory */
fn Malloc(cx: block, Ty: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_i8())); }
count_insn(cx, ~"malloc");
ret llvm::LLVMBuildMalloc(B(cx), Ty, noname());
}
fn ArrayMalloc(cx: block, Ty: TypeRef, Val: ValueRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_i8())); }
count_insn(cx, ~"arraymalloc");
ret llvm::LLVMBuildArrayMalloc(B(cx), Ty, Val, noname());
}
fn Alloca(cx: block, Ty: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(Ty)); }
count_insn(cx, ~"alloca");
ret llvm::LLVMBuildAlloca(B(cx), Ty, noname());
}
fn ArrayAlloca(cx: block, Ty: TypeRef, Val: ValueRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(Ty)); }
count_insn(cx, ~"arrayalloca");
ret llvm::LLVMBuildArrayAlloca(B(cx), Ty, Val, noname());
}
fn Free(cx: block, PointerVal: ValueRef) {
if cx.unreachable { ret; }
count_insn(cx, ~"free");
llvm::LLVMBuildFree(B(cx), PointerVal);
}
fn Load(cx: block, PointerVal: ValueRef) -> ValueRef {
let ccx = cx.fcx.ccx;
if cx.unreachable {
let ty = val_ty(PointerVal);
let eltty = if llvm::LLVMGetTypeKind(ty) == lib::llvm::Array {
llvm::LLVMGetElementType(ty) } else { ccx.int_type };
ret llvm::LLVMGetUndef(eltty);
}
count_insn(cx, ~"load");
ret llvm::LLVMBuildLoad(B(cx), PointerVal, noname());
}
fn Store(cx: block, Val: ValueRef, Ptr: ValueRef) {
if cx.unreachable { ret; }
#debug["Store %s -> %s",
val_str(cx.ccx().tn, Val),
val_str(cx.ccx().tn, Ptr)];
count_insn(cx, ~"store");
llvm::LLVMBuildStore(B(cx), Val, Ptr);
}
fn GEP(cx: block, Pointer: ValueRef, Indices: ~[ValueRef]) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_nil())); }
unsafe {
count_insn(cx, ~"gep");
ret llvm::LLVMBuildGEP(B(cx), Pointer, vec::unsafe::to_ptr(Indices),
Indices.len() as c_uint, noname());
}
}
2011-10-26 00:23:28 -05:00
// Simple wrapper around GEP that takes an array of ints and wraps them
// in C_i32()
fn GEPi(cx: block, base: ValueRef, ixs: ~[uint]) -> ValueRef {
let mut v: ~[ValueRef] = ~[];
2012-06-30 18:19:07 -05:00
for vec::each(ixs) |i| { vec::push(v, C_i32(i as i32)); }
count_insn(cx, ~"gepi");
2011-10-26 00:23:28 -05:00
ret InBoundsGEP(cx, base, v);
}
fn InBoundsGEP(cx: block, Pointer: ValueRef, Indices: ~[ValueRef]) ->
2011-09-02 17:34:58 -05:00
ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_nil())); }
unsafe {
count_insn(cx, ~"inboundsgep");
ret llvm::LLVMBuildInBoundsGEP(B(cx), Pointer,
vec::unsafe::to_ptr(Indices),
Indices.len() as c_uint,
noname());
}
}
fn StructGEP(cx: block, Pointer: ValueRef, Idx: uint) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_nil())); }
count_insn(cx, ~"structgep");
ret llvm::LLVMBuildStructGEP(B(cx), Pointer, Idx as c_uint, noname());
}
fn GlobalString(cx: block, _Str: *libc::c_char) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_i8())); }
count_insn(cx, ~"globalstring");
ret llvm::LLVMBuildGlobalString(B(cx), _Str, noname());
}
fn GlobalStringPtr(cx: block, _Str: *libc::c_char) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_i8())); }
count_insn(cx, ~"globalstringptr");
ret llvm::LLVMBuildGlobalStringPtr(B(cx), _Str, noname());
}
/* Casts */
fn Trunc(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"trunc");
ret llvm::LLVMBuildTrunc(B(cx), Val, DestTy, noname());
}
fn ZExt(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"zext");
ret llvm::LLVMBuildZExt(B(cx), Val, DestTy, noname());
}
fn SExt(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"sext");
ret llvm::LLVMBuildSExt(B(cx), Val, DestTy, noname());
}
fn FPToUI(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"fptoui");
ret llvm::LLVMBuildFPToUI(B(cx), Val, DestTy, noname());
}
fn FPToSI(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"fptosi");
ret llvm::LLVMBuildFPToSI(B(cx), Val, DestTy, noname());
}
fn UIToFP(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"uitofp");
ret llvm::LLVMBuildUIToFP(B(cx), Val, DestTy, noname());
}
fn SIToFP(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"sitofp");
ret llvm::LLVMBuildSIToFP(B(cx), Val, DestTy, noname());
}
fn FPTrunc(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"fptrunc");
ret llvm::LLVMBuildFPTrunc(B(cx), Val, DestTy, noname());
}
fn FPExt(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"fpext");
ret llvm::LLVMBuildFPExt(B(cx), Val, DestTy, noname());
}
fn PtrToInt(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"ptrtoint");
ret llvm::LLVMBuildPtrToInt(B(cx), Val, DestTy, noname());
}
fn IntToPtr(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"inttoptr");
ret llvm::LLVMBuildIntToPtr(B(cx), Val, DestTy, noname());
}
fn BitCast(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"bitcast");
ret llvm::LLVMBuildBitCast(B(cx), Val, DestTy, noname());
}
fn ZExtOrBitCast(cx: block, Val: ValueRef, DestTy: TypeRef) ->
2011-09-02 17:34:58 -05:00
ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"zextorbitcast");
ret llvm::LLVMBuildZExtOrBitCast(B(cx), Val, DestTy, noname());
}
fn SExtOrBitCast(cx: block, Val: ValueRef, DestTy: TypeRef) ->
2011-09-02 17:34:58 -05:00
ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"sextorbitcast");
ret llvm::LLVMBuildSExtOrBitCast(B(cx), Val, DestTy, noname());
}
fn TruncOrBitCast(cx: block, Val: ValueRef, DestTy: TypeRef) ->
2011-09-02 17:34:58 -05:00
ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"truncorbitcast");
ret llvm::LLVMBuildTruncOrBitCast(B(cx), Val, DestTy, noname());
}
fn Cast(cx: block, Op: Opcode, Val: ValueRef, DestTy: TypeRef,
_Name: *u8) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"cast");
ret llvm::LLVMBuildCast(B(cx), Op, Val, DestTy, noname());
}
fn PointerCast(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"pointercast");
ret llvm::LLVMBuildPointerCast(B(cx), Val, DestTy, noname());
}
fn IntCast(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"intcast");
ret llvm::LLVMBuildIntCast(B(cx), Val, DestTy, noname());
}
fn FPCast(cx: block, Val: ValueRef, DestTy: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); }
count_insn(cx, ~"fpcast");
ret llvm::LLVMBuildFPCast(B(cx), Val, DestTy, noname());
}
/* Comparisons */
fn ICmp(cx: block, Op: IntPredicate, LHS: ValueRef, RHS: ValueRef)
-> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_i1()); }
count_insn(cx, ~"icmp");
ret llvm::LLVMBuildICmp(B(cx), Op as c_uint, LHS, RHS, noname());
}
fn FCmp(cx: block, Op: RealPredicate, LHS: ValueRef, RHS: ValueRef)
-> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_i1()); }
count_insn(cx, ~"fcmp");
ret llvm::LLVMBuildFCmp(B(cx), Op as c_uint, LHS, RHS, noname());
}
/* Miscellaneous instructions */
fn EmptyPhi(cx: block, Ty: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(Ty); }
count_insn(cx, ~"emptyphi");
ret llvm::LLVMBuildPhi(B(cx), Ty, noname());
}
fn Phi(cx: block, Ty: TypeRef, vals: ~[ValueRef], bbs: ~[BasicBlockRef])
-> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(Ty); }
assert vals.len() == bbs.len();
let phi = EmptyPhi(cx, Ty);
unsafe {
count_insn(cx, ~"addincoming");
llvm::LLVMAddIncoming(phi, vec::unsafe::to_ptr(vals),
vec::unsafe::to_ptr(bbs),
vals.len() as c_uint);
ret phi;
}
}
fn AddIncomingToPhi(phi: ValueRef, val: ValueRef, bb: BasicBlockRef) {
if llvm::LLVMIsUndef(phi) == lib::llvm::True { ret; }
unsafe {
let valptr = unsafe::reinterpret_cast(ptr::addr_of(val));
let bbptr = unsafe::reinterpret_cast(ptr::addr_of(bb));
llvm::LLVMAddIncoming(phi, valptr, bbptr, 1 as c_uint);
}
}
fn _UndefReturn(cx: block, Fn: ValueRef) -> ValueRef {
let ccx = cx.fcx.ccx;
let ty = val_ty(Fn);
let retty = if llvm::LLVMGetTypeKind(ty) == lib::llvm::Integer {
llvm::LLVMGetReturnType(ty) } else { ccx.int_type };
count_insn(cx, ~"");
ret llvm::LLVMGetUndef(retty);
}
fn add_span_comment(bcx: block, sp: span, text: ~str) {
let ccx = bcx.ccx();
if !ccx.sess.no_asm_comments() {
let s = text + ~" (" + codemap::span_to_str(sp, ccx.sess.codemap)
+ ~")";
log(debug, s);
add_comment(bcx, s);
2011-11-14 16:03:20 -06:00
}
}
fn add_comment(bcx: block, text: ~str) {
let ccx = bcx.ccx();
if !ccx.sess.no_asm_comments() {
let sanitized = str::replace(text, ~"$", ~"");
let comment_text = ~"# " + sanitized;
2012-06-30 18:19:07 -05:00
let asm = str::as_c_str(comment_text, |c| {
str::as_c_str(~"", |e| {
count_insn(bcx, ~"inlineasm");
llvm::LLVMConstInlineAsm(T_fn(~[], T_void()), c, e,
False, False)
})
});
Call(bcx, asm, ~[]);
2011-11-14 16:03:20 -06:00
}
}
fn Call(cx: block, Fn: ValueRef, Args: ~[ValueRef]) -> ValueRef {
2011-10-25 15:13:55 -05:00
if cx.unreachable { ret _UndefReturn(cx, Fn); }
unsafe {
count_insn(cx, ~"call");
2012-05-18 21:02:39 -05:00
#debug["Call(Fn=%s, Args=%?)",
val_str(cx.ccx().tn, Fn),
2012-06-30 18:19:07 -05:00
Args.map(|arg| val_str(cx.ccx().tn, arg))];
2012-05-18 21:02:39 -05:00
ret llvm::LLVMBuildCall(B(cx), Fn, vec::unsafe::to_ptr(Args),
Args.len() as c_uint, noname());
}
}
fn FastCall(cx: block, Fn: ValueRef, Args: ~[ValueRef]) -> ValueRef {
2011-10-25 15:13:55 -05:00
if cx.unreachable { ret _UndefReturn(cx, Fn); }
unsafe {
count_insn(cx, ~"fastcall");
let v = llvm::LLVMBuildCall(B(cx), Fn, vec::unsafe::to_ptr(Args),
Args.len() as c_uint, noname());
lib::llvm::SetInstructionCallConv(v, lib::llvm::FastCallConv);
ret v;
}
}
fn CallWithConv(cx: block, Fn: ValueRef, Args: ~[ValueRef],
Conv: CallConv) -> ValueRef {
2011-10-25 15:13:55 -05:00
if cx.unreachable { ret _UndefReturn(cx, Fn); }
unsafe {
count_insn(cx, ~"callwithconv");
let v = llvm::LLVMBuildCall(B(cx), Fn, vec::unsafe::to_ptr(Args),
Args.len() as c_uint, noname());
lib::llvm::SetInstructionCallConv(v, Conv);
ret v;
}
}
fn Select(cx: block, If: ValueRef, Then: ValueRef, Else: ValueRef) ->
2011-09-02 17:34:58 -05:00
ValueRef {
if cx.unreachable { ret _Undef(Then); }
count_insn(cx, ~"select");
ret llvm::LLVMBuildSelect(B(cx), If, Then, Else, noname());
}
fn VAArg(cx: block, list: ValueRef, Ty: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(Ty); }
count_insn(cx, ~"vaarg");
ret llvm::LLVMBuildVAArg(B(cx), list, Ty, noname());
}
fn ExtractElement(cx: block, VecVal: ValueRef, Index: ValueRef) ->
2011-09-02 17:34:58 -05:00
ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_nil()); }
count_insn(cx, ~"extractelement");
ret llvm::LLVMBuildExtractElement(B(cx), VecVal, Index, noname());
}
fn InsertElement(cx: block, VecVal: ValueRef, EltVal: ValueRef,
Index: ValueRef) {
if cx.unreachable { ret; }
count_insn(cx, ~"insertelement");
llvm::LLVMBuildInsertElement(B(cx), VecVal, EltVal, Index, noname());
}
fn ShuffleVector(cx: block, V1: ValueRef, V2: ValueRef,
Mask: ValueRef) {
if cx.unreachable { ret; }
count_insn(cx, ~"shufflevector");
llvm::LLVMBuildShuffleVector(B(cx), V1, V2, Mask, noname());
}
fn ExtractValue(cx: block, AggVal: ValueRef, Index: uint) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_nil()); }
count_insn(cx, ~"extractvalue");
ret llvm::LLVMBuildExtractValue(B(cx), AggVal, Index as c_uint, noname());
}
fn InsertValue(cx: block, AggVal: ValueRef, EltVal: ValueRef,
Index: uint) {
if cx.unreachable { ret; }
count_insn(cx, ~"insertvalue");
llvm::LLVMBuildInsertValue(B(cx), AggVal, EltVal, Index as c_uint,
noname());
}
fn IsNull(cx: block, Val: ValueRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_i1()); }
count_insn(cx, ~"isnull");
ret llvm::LLVMBuildIsNull(B(cx), Val, noname());
}
fn IsNotNull(cx: block, Val: ValueRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(T_i1()); }
count_insn(cx, ~"isnotnull");
ret llvm::LLVMBuildIsNotNull(B(cx), Val, noname());
}
fn PtrDiff(cx: block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
let ccx = cx.fcx.ccx;
if cx.unreachable { ret llvm::LLVMGetUndef(ccx.int_type); }
count_insn(cx, ~"ptrdiff");
ret llvm::LLVMBuildPtrDiff(B(cx), LHS, RHS, noname());
}
fn Trap(cx: block) {
if cx.unreachable { ret; }
let b = B(cx);
let BB: BasicBlockRef = llvm::LLVMGetInsertBlock(b);
let FN: ValueRef = llvm::LLVMGetBasicBlockParent(BB);
let M: ModuleRef = llvm::LLVMGetGlobalParent(FN);
let T: ValueRef = str::as_c_str(~"llvm.trap", |buf| {
llvm::LLVMGetNamedFunction(M, buf)
});
assert (T as int != 0);
let Args: ~[ValueRef] = ~[];
unsafe {
count_insn(cx, ~"trap");
llvm::LLVMBuildCall(b, T, vec::unsafe::to_ptr(Args),
Args.len() as c_uint, noname());
}
}
fn LandingPad(cx: block, Ty: TypeRef, PersFn: ValueRef,
NumClauses: uint) -> ValueRef {
assert !cx.terminated && !cx.unreachable;
count_insn(cx, ~"landingpad");
ret llvm::LLVMBuildLandingPad(B(cx), Ty, PersFn,
NumClauses as c_uint, noname());
}
fn SetCleanup(cx: block, LandingPad: ValueRef) {
count_insn(cx, ~"setcleanup");
llvm::LLVMSetCleanup(LandingPad, lib::llvm::True);
}
fn Resume(cx: block, Exn: ValueRef) -> ValueRef {
2011-09-07 16:28:02 -05:00
assert (!cx.terminated);
cx.terminated = true;
count_insn(cx, ~"resume");
ret llvm::LLVMBuildResume(B(cx), Exn);
2011-09-07 16:28:02 -05:00
}
// Atomic Operations
fn AtomicRMW(cx: block, op: AtomicBinOp,
dst: ValueRef, src: ValueRef,
order: AtomicOrdering) -> ValueRef {
llvm::LLVMBuildAtomicRMW(B(cx), op, dst, src, order)
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End:
//