rust/src/librustc_trans/trans/callee.rs

1168 lines
44 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2013-06-29 05:11:14 -05:00
/*!
* Handles translation of callees as well as other call-related
* things. Callees are a superset of normal rust values and sometimes
* have different representations. In particular, top-level fn items
* and methods are represented as just a fn ptr and not a full
* closure.
*/
pub use self::AutorefArg::*;
pub use self::CalleeData::*;
pub use self::CallArgs::*;
use arena::TypedArena;
use back::abi;
use back::link;
use session;
use llvm::{ValueRef, get_param};
use llvm;
use metadata::csearch;
use middle::def;
use middle::subst;
use middle::subst::{Subst};
use trans::adt;
use trans::base;
use trans::base::*;
use trans::build::*;
use trans::callee;
use trans::cleanup;
use trans::cleanup::CleanupMethods;
use trans::closure;
use trans::common;
use trans::common::*;
use trans::datum::*;
use trans::expr;
use trans::glue;
use trans::inline;
use trans::foreign;
use trans::intrinsic;
use trans::meth;
use trans::monomorphize;
use trans::type_::Type;
use trans::type_of;
use middle::ty::{mod, Ty};
use middle::typeck::coherence::make_substs_for_receiver_types;
use middle::typeck::MethodCall;
use util::ppaux::Repr;
DST coercions and DST structs [breaking-change] 1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code. 2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible. 3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
2014-08-04 07:20:11 -05:00
use util::ppaux::ty_to_string;
use syntax::abi as synabi;
use syntax::ast;
use syntax::ast_map;
2014-09-07 12:09:06 -05:00
use syntax::ptr::P;
pub struct MethodData {
pub llfn: ValueRef,
pub llself: ValueRef,
}
pub enum CalleeData {
Closure(Datum<Lvalue>),
// Constructor for enum variant/tuple-like-struct
// i.e. Some, Ok
NamedTupleConstructor(subst::Substs, ty::Disr),
// Represents a (possibly monomorphized) top-level fn item or method
// item. Note that this is just the fn-ptr and is not a Rust closure
// value (which is a pair).
Fn(/* llfn */ ValueRef),
Intrinsic(ast::NodeId, subst::Substs),
TraitItem(MethodData)
}
pub struct Callee<'blk, 'tcx: 'blk> {
pub bcx: Block<'blk, 'tcx>,
pub data: CalleeData,
}
fn trans<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &ast::Expr)
-> Callee<'blk, 'tcx> {
let _icx = push_ctxt("trans_callee");
debug!("callee::trans(expr={})", expr.repr(bcx.tcx()));
// pick out special kinds of expressions that can be called:
match expr.node {
ast::ExprPath(_) => {
return trans_def(bcx, bcx.def(expr.id), expr);
}
_ => {}
}
// any other expressions are closures:
return datum_callee(bcx, expr);
fn datum_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &ast::Expr)
-> Callee<'blk, 'tcx> {
let DatumBlock {mut bcx, datum} = expr::trans(bcx, expr);
match ty::get(datum.ty).sty {
2013-11-28 14:22:53 -06:00
ty::ty_bare_fn(..) => {
let llval = datum.to_llscalarish(bcx);
return Callee {
bcx: bcx,
data: Fn(llval),
};
}
2013-11-28 14:22:53 -06:00
ty::ty_closure(..) => {
let datum = unpack_datum!(
bcx, datum.to_lvalue_datum(bcx, "callee", expr.id));
return Callee {
bcx: bcx,
data: Closure(datum),
};
}
_ => {
bcx.tcx().sess.span_bug(
expr.span,
format!("type of callee is neither bare-fn nor closure: \
{}",
bcx.ty_to_string(datum.ty)).as_slice());
}
}
}
fn fn_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, llfn: ValueRef)
-> Callee<'blk, 'tcx> {
return Callee {
bcx: bcx,
data: Fn(llfn),
};
}
fn trans_def<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
def: def::Def,
ref_expr: &ast::Expr)
-> Callee<'blk, 'tcx> {
debug!("trans_def(def={}, ref_expr={})", def.repr(bcx.tcx()), ref_expr.repr(bcx.tcx()));
let expr_ty = node_id_type(bcx, ref_expr.id);
match def {
def::DefFn(did, _) if {
let maybe_def_id = inline::get_local_instance(bcx.ccx(), did);
let maybe_ast_node = maybe_def_id.and_then(|def_id| bcx.tcx().map
.find(def_id.node));
match maybe_ast_node {
Some(ast_map::NodeStructCtor(_)) => true,
_ => false
}
} => {
let substs = node_id_substs(bcx, ExprId(ref_expr.id));
Callee {
bcx: bcx,
data: NamedTupleConstructor(substs, 0)
}
}
def::DefFn(did, _) if match ty::get(expr_ty).sty {
ty::ty_bare_fn(ref f) => f.abi == synabi::RustIntrinsic,
_ => false
} => {
let substs = node_id_substs(bcx, ExprId(ref_expr.id));
2014-09-05 19:39:51 -05:00
let def_id = inline::maybe_instantiate_inline(bcx.ccx(), did);
Callee { bcx: bcx, data: Intrinsic(def_id.node, substs) }
}
def::DefFn(did, _) | def::DefMethod(did, _, def::FromImpl(_)) |
def::DefStaticMethod(did, def::FromImpl(_)) => {
fn_callee(bcx, trans_fn_ref(bcx, did, ExprId(ref_expr.id)))
}
def::DefStaticMethod(meth_did, def::FromTrait(trait_did)) |
def::DefMethod(meth_did, _, def::FromTrait(trait_did)) => {
fn_callee(bcx, meth::trans_static_method_callee(bcx, meth_did,
trait_did,
ref_expr.id))
}
def::DefVariant(tid, vid, _) => {
let vinfo = ty::enum_variant_with_id(bcx.tcx(), tid, vid);
let substs = node_id_substs(bcx, ExprId(ref_expr.id));
// Nullary variants are not callable
assert!(vinfo.args.len() > 0u);
Callee {
bcx: bcx,
data: NamedTupleConstructor(substs, vinfo.disr_val)
}
}
def::DefStruct(_) => {
let substs = node_id_substs(bcx, ExprId(ref_expr.id));
Callee {
bcx: bcx,
data: NamedTupleConstructor(substs, 0)
}
}
def::DefStatic(..) |
rustc: Add `const` globals to the language This change is an implementation of [RFC 69][rfc] which adds a third kind of global to the language, `const`. This global is most similar to what the old `static` was, and if you're unsure about what to use then you should use a `const`. The semantics of these three kinds of globals are: * A `const` does not represent a memory location, but only a value. Constants are translated as rvalues, which means that their values are directly inlined at usage location (similar to a #define in C/C++). Constant values are, well, constant, and can not be modified. Any "modification" is actually a modification to a local value on the stack rather than the actual constant itself. Almost all values are allowed inside constants, whether they have interior mutability or not. There are a few minor restrictions listed in the RFC, but they should in general not come up too often. * A `static` now always represents a memory location (unconditionally). Any references to the same `static` are actually a reference to the same memory location. Only values whose types ascribe to `Sync` are allowed in a `static`. This restriction is in place because many threads may access a `static` concurrently. Lifting this restriction (and allowing unsafe access) is a future extension not implemented at this time. * A `static mut` continues to always represent a memory location. All references to a `static mut` continue to be `unsafe`. This is a large breaking change, and many programs will need to be updated accordingly. A summary of the breaking changes is: * Statics may no longer be used in patterns. Statics now always represent a memory location, which can sometimes be modified. To fix code, repurpose the matched-on-`static` to a `const`. static FOO: uint = 4; match n { FOO => { /* ... */ } _ => { /* ... */ } } change this code to: const FOO: uint = 4; match n { FOO => { /* ... */ } _ => { /* ... */ } } * Statics may no longer refer to other statics by value. Due to statics being able to change at runtime, allowing them to reference one another could possibly lead to confusing semantics. If you are in this situation, use a constant initializer instead. Note, however, that statics may reference other statics by address, however. * Statics may no longer be used in constant expressions, such as array lengths. This is due to the same restrictions as listed above. Use a `const` instead. [breaking-change] [rfc]: https://github.com/rust-lang/rfcs/pull/246
2014-10-06 10:17:01 -05:00
def::DefConst(..) |
def::DefLocal(..) |
def::DefUpvar(..) => {
datum_callee(bcx, ref_expr)
}
def::DefMod(..) | def::DefForeignMod(..) | def::DefTrait(..) |
def::DefTy(..) | def::DefPrimTy(..) | def::DefAssociatedTy(..) |
def::DefUse(..) | def::DefTyParamBinder(..) |
def::DefRegion(..) | def::DefLabel(..) | def::DefTyParam(..) |
def::DefSelfTy(..) => {
bcx.tcx().sess.span_bug(
ref_expr.span,
2014-10-15 01:25:34 -05:00
format!("cannot translate def {} \
to a callable thing!", def).as_slice());
}
}
}
}
pub fn trans_fn_ref(bcx: Block, def_id: ast::DefId, node: ExprOrMethodCall) -> ValueRef {
/*!
* Translates a reference (with id `ref_id`) to the fn/method
* with id `def_id` into a function pointer. This may require
* monomorphization or inlining.
*/
let _icx = push_ctxt("trans_fn_ref");
let substs = node_id_substs(bcx, node);
2014-10-15 01:25:34 -05:00
debug!("trans_fn_ref(def_id={}, node={}, substs={})",
def_id.repr(bcx.tcx()),
node,
substs.repr(bcx.tcx()));
trans_fn_ref_with_substs(bcx, def_id, node, substs)
}
fn trans_fn_ref_with_substs_to_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
def_id: ast::DefId,
ref_id: ast::NodeId,
substs: subst::Substs)
-> Callee<'blk, 'tcx> {
Callee {
bcx: bcx,
data: Fn(trans_fn_ref_with_substs(bcx,
def_id,
ExprId(ref_id),
substs)),
}
}
/// Translates the adapter that deconstructs a `Box<Trait>` object into
/// `Trait` so that a by-value self method can be called.
pub fn trans_unboxing_shim(bcx: Block,
llshimmedfn: ValueRef,
fty: &ty::BareFnTy,
method_id: ast::DefId,
substs: &subst::Substs)
-> ValueRef {
let _icx = push_ctxt("trans_unboxing_shim");
let ccx = bcx.ccx();
let tcx = bcx.tcx();
let fty = fty.subst(tcx, substs);
// Transform the self type to `Box<self_type>`.
let self_type = fty.sig.inputs[0];
let boxed_self_type = ty::mk_uniq(tcx, self_type);
let boxed_function_type = ty::FnSig {
inputs: fty.sig.inputs.iter().enumerate().map(|(i, typ)| {
if i == 0 {
boxed_self_type
} else {
*typ
}
}).collect(),
output: fty.sig.output,
variadic: false,
};
let boxed_function_type = ty::BareFnTy {
fn_style: fty.fn_style,
abi: fty.abi,
sig: boxed_function_type,
};
let boxed_function_type = ty::mk_bare_fn(tcx, boxed_function_type);
let function_type = match fty.abi {
synabi::RustCall => {
// We're passing through to a RustCall ABI function, but
// because the shim will already perform untupling, we
// need to pretend the shimmed function does not use
// RustCall so the untupled arguments can be passed
// through verbatim. This is kind of ugly.
let fake_ty = ty::FnSig {
inputs: type_of::untuple_arguments_if_necessary(ccx,
fty.sig.inputs.as_slice(),
fty.abi),
output: fty.sig.output,
variadic: false,
};
let fake_ty = ty::BareFnTy {
fn_style: fty.fn_style,
abi: synabi::Rust,
sig: fake_ty,
};
ty::mk_bare_fn(tcx, fake_ty)
}
_ => {
ty::mk_bare_fn(tcx, fty)
}
};
let function_name = ty::with_path(tcx, method_id, |path| {
link::mangle_internal_name_by_path_and_seq(path, "unboxing_shim")
});
let llfn = decl_internal_rust_fn(ccx,
boxed_function_type,
function_name.as_slice());
let block_arena = TypedArena::new();
let empty_param_substs = param_substs::empty();
let return_type = ty::ty_fn_ret(boxed_function_type);
let fcx = new_fn_ctxt(ccx,
llfn,
ast::DUMMY_NODE_ID,
false,
return_type,
&empty_param_substs,
None,
&block_arena);
let mut bcx = init_function(&fcx, false, return_type);
// Create the substituted versions of the self type.
let arg_scope = fcx.push_custom_cleanup_scope();
let arg_scope_id = cleanup::CustomScope(arg_scope);
let boxed_arg_types = ty::ty_fn_args(boxed_function_type);
let boxed_self_type = boxed_arg_types[0];
let arg_types = ty::ty_fn_args(function_type);
let self_type = arg_types[0];
let boxed_self_kind = arg_kind(&fcx, boxed_self_type);
// Create a datum for self.
let llboxedself = get_param(fcx.llfn, fcx.arg_pos(0) as u32);
let llboxedself = Datum::new(llboxedself,
boxed_self_type,
boxed_self_kind);
let boxed_self =
unpack_datum!(bcx,
llboxedself.to_lvalue_datum_in_scope(bcx,
"boxedself",
arg_scope_id));
// This `Load` is needed because lvalue data are always by-ref.
let llboxedself = Load(bcx, boxed_self.val);
let llself = if type_is_immediate(ccx, self_type) {
let llboxedself = Load(bcx, llboxedself);
immediate_rvalue(llboxedself, self_type)
} else {
let llself = rvalue_scratch_datum(bcx, self_type, "self");
memcpy_ty(bcx, llself.val, llboxedself, self_type);
llself
};
// Make sure we don't free the box twice!
boxed_self.kind.post_store(bcx, boxed_self.val, boxed_self_type);
// Schedule a cleanup to free the box.
fcx.schedule_free_value(arg_scope_id,
llboxedself,
cleanup::HeapExchange,
self_type);
// Now call the function.
let mut llshimmedargs = vec!(llself.val);
for i in range(1, arg_types.len()) {
llshimmedargs.push(get_param(fcx.llfn, fcx.arg_pos(i) as u32));
}
assert!(!fcx.needs_ret_allocas);
let dest = fcx.llretslotptr.get().map(|_|
expr::SaveIn(fcx.get_ret_slot(bcx, return_type, "ret_slot"))
);
bcx = trans_call_inner(bcx,
None,
function_type,
|bcx, _| {
Callee {
bcx: bcx,
data: Fn(llshimmedfn),
}
},
ArgVals(llshimmedargs.as_slice()),
dest).bcx;
bcx = fcx.pop_and_trans_custom_cleanup_scope(bcx, arg_scope);
finish_fn(&fcx, bcx, return_type);
llfn
}
pub fn trans_fn_ref_with_substs(
bcx: Block, //
def_id: ast::DefId, // def id of fn
node: ExprOrMethodCall, // node id of use of fn; may be zero if N/A
substs: subst::Substs) // vtables for the call
-> ValueRef
{
/*!
* Translates a reference to a fn/method item, monomorphizing and
* inlining as it goes.
*
* # Parameters
*
* - `bcx`: the current block where the reference to the fn occurs
* - `def_id`: def id of the fn or method item being referenced
* - `node`: node id of the reference to the fn/method, if applicable.
* This parameter may be zero; but, if so, the resulting value may not
* have the right type, so it must be cast before being used.
* - `substs`: values for each of the fn/method's parameters
*/
let _icx = push_ctxt("trans_fn_ref_with_substs");
let ccx = bcx.ccx();
let tcx = bcx.tcx();
2014-10-15 01:25:34 -05:00
debug!("trans_fn_ref_with_substs(bcx={}, def_id={}, node={}, \
substs={})",
bcx.to_str(),
def_id.repr(tcx),
node,
substs.repr(tcx));
assert!(substs.types.all(|t| !ty::type_needs_infer(*t)));
assert!(substs.types.all(|t| !ty::type_has_escaping_regions(*t)));
let substs = substs.erase_regions();
// Load the info for the appropriate trait if necessary.
match ty::trait_of_item(tcx, def_id) {
None => {}
Some(trait_id) => {
ty::populate_implementations_for_trait_if_necessary(tcx, trait_id)
}
}
// We need to do a bunch of special handling for default methods.
// We need to modify the def_id and our substs in order to monomorphize
// the function.
let (is_default, def_id, substs) = match ty::provided_source(tcx, def_id) {
None => (false, def_id, substs),
Some(source_id) => {
// There are two relevant substitutions when compiling
// default methods. First, there is the substitution for
// the type parameters of the impl we are using and the
// method we are calling. This substitution is the substs
// argument we already have.
// In order to compile a default method, though, we need
// to consider another substitution: the substitution for
// the type parameters on trait; the impl we are using
// implements the trait at some particular type
// parameters, and we need to substitute for those first.
// So, what we need to do is find this substitution and
// compose it with the one we already have.
let impl_id = ty::impl_or_trait_item(tcx, def_id).container()
.id();
let impl_or_trait_item = ty::impl_or_trait_item(tcx, source_id);
match impl_or_trait_item {
ty::MethodTraitItem(method) => {
let trait_ref = ty::impl_trait_ref(tcx, impl_id).unwrap();
let trait_ref = ty::erase_late_bound_regions(tcx, &trait_ref);
// Compute the first substitution
let first_subst =
make_substs_for_receiver_types(tcx, &*trait_ref, &*method)
.erase_regions();
// And compose them
let new_substs = first_subst.subst(tcx, &substs);
debug!("trans_fn_with_vtables - default method: \
substs = {}, trait_subst = {}, \
first_subst = {}, new_subst = {}",
substs.repr(tcx), trait_ref.substs.repr(tcx),
first_subst.repr(tcx), new_substs.repr(tcx));
(true, source_id, new_substs)
}
ty::TypeTraitItem(_) => {
bcx.tcx().sess.bug("trans_fn_ref_with_vtables() tried \
to translate an associated type?!")
}
}
}
};
// If this is an unboxed closure, redirect to it.
match closure::get_or_create_declaration_if_unboxed_closure(bcx,
def_id,
&substs) {
None => {}
Some(llfn) => return llfn,
}
// Check whether this fn has an inlined copy and, if so, redirect
// def_id to the local id of the inlined copy.
2014-09-05 19:39:51 -05:00
let def_id = inline::maybe_instantiate_inline(ccx, def_id);
// We must monomorphise if the fn has type parameters, is a default method,
// or is a named tuple constructor.
let must_monomorphise = if !substs.types.is_empty() || is_default {
true
} else if def_id.krate == ast::LOCAL_CRATE {
let map_node = session::expect(
ccx.sess(),
tcx.map.find(def_id.node),
|| "local item should be in ast map".to_string());
match map_node {
ast_map::NodeVariant(v) => match v.node.kind {
ast::TupleVariantKind(ref args) => args.len() > 0,
_ => false
},
ast_map::NodeStructCtor(_) => true,
_ => false
}
} else {
false
};
2014-04-20 23:49:39 -05:00
// Create a monomorphic version of generic functions
if must_monomorphise {
// Should be either intra-crate or inlined.
assert_eq!(def_id.krate, ast::LOCAL_CRATE);
let opt_ref_id = match node {
ExprId(id) => if id != 0 { Some(id) } else { None },
MethodCall(_) => None,
};
let (val, must_cast) =
monomorphize::monomorphic_fn(ccx, def_id, &substs, opt_ref_id);
let mut val = val;
if must_cast && node != ExprId(0) {
// Monotype of the REFERENCE to the function (type params
// are subst'd)
let ref_ty = match node {
ExprId(id) => node_id_type(bcx, id),
MethodCall(method_call) => {
let t = (*bcx.tcx().method_map.borrow())[method_call].ty;
monomorphize_type(bcx, t)
}
};
val = PointerCast(
bcx, val, type_of::type_of_fn_from_ty(ccx, ref_ty).ptr_to());
}
return val;
}
// Polytype of the function item (may have type params)
let fn_tpt = ty::lookup_item_type(tcx, def_id);
// Find the actual function pointer.
let mut val = {
if def_id.krate == ast::LOCAL_CRATE {
// Internal reference.
get_item_val(ccx, def_id.node)
} else {
// External reference.
trans_external_path(ccx, def_id, fn_tpt.ty)
}
};
// This is subtle and surprising, but sometimes we have to bitcast
// the resulting fn pointer. The reason has to do with external
// functions. If you have two crates that both bind the same C
// library, they may not use precisely the same types: for
// example, they will probably each declare their own structs,
// which are distinct types from LLVM's point of view (nominal
// types).
//
// Now, if those two crates are linked into an application, and
// they contain inlined code, you can wind up with a situation
// where both of those functions wind up being loaded into this
// application simultaneously. In that case, the same function
// (from LLVM's point of view) requires two types. But of course
// LLVM won't allow one function to have two types.
//
// What we currently do, therefore, is declare the function with
// one of the two types (whichever happens to come first) and then
// bitcast as needed when the function is referenced to make sure
// it has the type we expect.
//
// This can occur on either a crate-local or crate-external
// reference. It also occurs when testing libcore and in some
// other weird situations. Annoying.
let llty = type_of::type_of_fn_from_ty(ccx, fn_tpt.ty);
let llptrty = llty.ptr_to();
if val_ty(val) != llptrty {
debug!("trans_fn_ref_with_vtables(): casting pointer!");
val = BitCast(bcx, val, llptrty);
} else {
debug!("trans_fn_ref_with_vtables(): not casting pointer!");
}
val
}
// ______________________________________________________________________
// Translating calls
pub fn trans_call<'blk, 'tcx>(in_cx: Block<'blk, 'tcx>,
call_ex: &ast::Expr,
f: &ast::Expr,
args: CallArgs,
dest: expr::Dest)
-> Block<'blk, 'tcx> {
let _icx = push_ctxt("trans_call");
trans_call_inner(in_cx,
Some(common::expr_info(call_ex)),
expr_ty(in_cx, f),
|cx, _| trans(cx, f),
args,
Some(dest)).bcx
}
pub fn trans_method_call<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
call_ex: &ast::Expr,
rcvr: &ast::Expr,
args: CallArgs,
dest: expr::Dest)
-> Block<'blk, 'tcx> {
let _icx = push_ctxt("trans_method_call");
debug!("trans_method_call(call_ex={})", call_ex.repr(bcx.tcx()));
let method_call = MethodCall::expr(call_ex.id);
let method_ty = (*bcx.tcx().method_map.borrow())[method_call].ty;
trans_call_inner(
bcx,
Some(common::expr_info(call_ex)),
monomorphize_type(bcx, method_ty),
|cx, arg_cleanup_scope| {
meth::trans_method_callee(cx, method_call, Some(rcvr), arg_cleanup_scope)
},
args,
Some(dest)).bcx
}
pub fn trans_lang_call<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
did: ast::DefId,
args: &[ValueRef],
dest: Option<expr::Dest>)
-> Result<'blk, 'tcx> {
let fty = if did.krate == ast::LOCAL_CRATE {
ty::node_id_to_type(bcx.tcx(), did.node)
} else {
csearch::get_type(bcx.tcx(), did).ty
};
callee::trans_call_inner(bcx,
None,
fty,
|bcx, _| {
trans_fn_ref_with_substs_to_callee(bcx,
did,
0,
subst::Substs::trans_empty())
},
ArgVals(args),
dest)
}
pub fn trans_call_inner<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
call_info: Option<NodeInfo>,
callee_ty: Ty,
get_callee: |bcx: Block<'blk, 'tcx>,
arg_cleanup_scope: cleanup::ScopeId|
-> Callee<'blk, 'tcx>,
args: CallArgs,
dest: Option<expr::Dest>)
-> Result<'blk, 'tcx> {
/*!
* This behemoth of a function translates function calls.
* Unfortunately, in order to generate more efficient LLVM
* output at -O0, it has quite a complex signature (refactoring
* this into two functions seems like a good idea).
*
* In particular, for lang items, it is invoked with a dest of
* None, and in that case the return value contains the result of
* the fn. The lang item must not return a structural type or else
* all heck breaks loose.
*
* For non-lang items, `dest` is always Some, and hence the result
* is written into memory somewhere. Nonetheless we return the
* actual return value of the function.
*/
// Introduce a temporary cleanup scope that will contain cleanups
// for the arguments while they are being evaluated. The purpose
// this cleanup is to ensure that, should a panic occur while
// evaluating argument N, the values for arguments 0...N-1 are all
// cleaned up. If no panic occurs, the values are handed off to
// the callee, and hence none of the cleanups in this temporary
// scope will ever execute.
let fcx = bcx.fcx;
let ccx = fcx.ccx;
let arg_cleanup_scope = fcx.push_custom_cleanup_scope();
let callee = get_callee(bcx, cleanup::CustomScope(arg_cleanup_scope));
let mut bcx = callee.bcx;
let (abi, ret_ty) = match ty::get(callee_ty).sty {
ty::ty_bare_fn(ref f) => (f.abi, f.sig.output),
ty::ty_closure(ref f) => (f.abi, f.sig.output),
_ => panic!("expected bare rust fn or closure in trans_call_inner")
};
let (llfn, llenv, llself) = match callee.data {
Fn(llfn) => {
(llfn, None, None)
}
TraitItem(d) => {
(d.llfn, None, Some(d.llself))
}
Closure(d) => {
// Closures are represented as (llfn, llclosure) pair:
// load the requisite values out.
let pair = d.to_llref();
2014-11-17 02:39:01 -06:00
let llfn = GEPi(bcx, pair, &[0u, abi::fn_field_code]);
let llfn = Load(bcx, llfn);
2014-11-17 02:39:01 -06:00
let llenv = GEPi(bcx, pair, &[0u, abi::fn_field_box]);
let llenv = Load(bcx, llenv);
(llfn, Some(llenv), None)
}
Intrinsic(node, substs) => {
assert!(abi == synabi::RustIntrinsic);
assert!(dest.is_some());
let call_info = call_info.expect("no call info for intrinsic call?");
return intrinsic::trans_intrinsic_call(bcx, node, callee_ty,
arg_cleanup_scope, args,
dest.unwrap(), substs,
call_info);
}
NamedTupleConstructor(substs, disr) => {
assert!(dest.is_some());
fcx.pop_custom_cleanup_scope(arg_cleanup_scope);
let ctor_ty = callee_ty.subst(bcx.tcx(), &substs);
return base::trans_named_tuple_constructor(bcx,
ctor_ty,
disr,
args,
dest.unwrap(),
call_info);
}
};
// Intrinsics should not become actual functions.
// We trans them in place in `trans_intrinsic_call`
assert!(abi != synabi::RustIntrinsic);
let is_rust_fn = abi == synabi::Rust || abi == synabi::RustCall;
// Generate a location to store the result. If the user does
// not care about the result, just make a stack slot.
let opt_llretslot = dest.and_then(|dest| match dest {
expr::SaveIn(dst) => Some(dst),
expr::Ignore => {
let ret_ty = match ret_ty {
ty::FnConverging(ret_ty) => ret_ty,
ty::FnDiverging => ty::mk_nil(ccx.tcx())
};
if !is_rust_fn ||
type_of::return_uses_outptr(ccx, ret_ty) ||
ty::type_needs_drop(bcx.tcx(), ret_ty) {
// Push the out-pointer if we use an out-pointer for this
// return type, otherwise push "undef".
if type_is_zero_size(ccx, ret_ty) {
let llty = type_of::type_of(ccx, ret_ty);
Some(C_undef(llty.ptr_to()))
} else {
Some(alloc_ty(bcx, ret_ty, "__llret"))
}
} else {
None
}
}
});
let mut llresult = unsafe {
llvm::LLVMGetUndef(Type::nil(ccx).ptr_to().to_ref())
};
// The code below invokes the function, using either the Rust
// conventions (if it is a rust fn) or the native conventions
// (otherwise). The important part is that, when all is said
// and done, either the return value of the function will have been
// written in opt_llretslot (if it is Some) or `llresult` will be
// set appropriately (otherwise).
if is_rust_fn {
let mut llargs = Vec::new();
if let (ty::FnConverging(ret_ty), Some(llretslot)) = (ret_ty, opt_llretslot) {
if type_of::return_uses_outptr(ccx, ret_ty) {
llargs.push(llretslot);
}
}
// Push the environment (or a trait object's self).
match (llenv, llself) {
(Some(llenv), None) => llargs.push(llenv),
(None, Some(llself)) => llargs.push(llself),
_ => {}
}
// Push the arguments.
bcx = trans_args(bcx,
args,
callee_ty,
&mut llargs,
cleanup::CustomScope(arg_cleanup_scope),
llself.is_some(),
abi);
fcx.scopes.borrow_mut().last_mut().unwrap().drop_non_lifetime_clean();
// Invoke the actual rust fn and update bcx/llresult.
let (llret, b) = base::invoke(bcx,
llfn,
llargs,
callee_ty,
DST coercions and DST structs [breaking-change] 1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code. 2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible. 3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
2014-08-04 07:20:11 -05:00
call_info,
dest.is_none());
bcx = b;
llresult = llret;
// If the Rust convention for this type is return via
// the return value, copy it into llretslot.
match (opt_llretslot, ret_ty) {
(Some(llretslot), ty::FnConverging(ret_ty)) => {
if !type_of::return_uses_outptr(bcx.ccx(), ret_ty) &&
!type_is_zero_size(bcx.ccx(), ret_ty)
{
store_ty(bcx, llret, llretslot, ret_ty)
}
}
(_, _) => {}
}
} else {
// Lang items are the only case where dest is None, and
// they are always Rust fns.
assert!(dest.is_some());
let mut llargs = Vec::new();
let arg_tys = match args {
2014-05-16 12:15:33 -05:00
ArgExprs(a) => a.iter().map(|x| expr_ty(bcx, &**x)).collect(),
_ => panic!("expected arg exprs.")
};
bcx = trans_args(bcx,
args,
callee_ty,
&mut llargs,
cleanup::CustomScope(arg_cleanup_scope),
false,
abi);
fcx.scopes.borrow_mut().last_mut().unwrap().drop_non_lifetime_clean();
bcx = foreign::trans_native_call(bcx, callee_ty,
llfn, opt_llretslot.unwrap(),
llargs.as_slice(), arg_tys);
}
fcx.pop_and_trans_custom_cleanup_scope(bcx, arg_cleanup_scope);
// If the caller doesn't care about the result of this fn call,
// drop the temporary slot we made.
match (dest, opt_llretslot, ret_ty) {
(Some(expr::Ignore), Some(llretslot), ty::FnConverging(ret_ty)) => {
// drop the value if it is not being saved.
bcx = glue::drop_ty(bcx, llretslot, ret_ty, call_info);
call_lifetime_end(bcx, llretslot);
}
_ => {}
}
2014-10-28 12:32:05 -05:00
if ret_ty == ty::FnDiverging {
Unreachable(bcx);
}
2014-05-03 06:14:56 -05:00
Result::new(bcx, llresult)
}
pub enum CallArgs<'a> {
// Supply value of arguments as a list of expressions that must be
// translated. This is used in the common case of `foo(bar, qux)`.
2014-09-07 12:09:06 -05:00
ArgExprs(&'a [P<ast::Expr>]),
// Supply value of arguments as a list of LLVM value refs; frequently
// used with lang items and so forth, when the argument is an internal
// value.
ArgVals(&'a [ValueRef]),
// For overloaded operators: `(lhs, Vec(rhs, rhs_id))`. `lhs`
// is the left-hand-side and `rhs/rhs_id` is the datum/expr-id of
// the right-hand-side arguments (if any).
ArgOverloadedOp(Datum<Expr>, Vec<(Datum<Expr>, ast::NodeId)>),
// Supply value of arguments as a list of expressions that must be
// translated, for overloaded call operators.
2014-09-07 12:09:06 -05:00
ArgOverloadedCall(Vec<&'a ast::Expr>),
}
fn trans_args_under_call_abi<'blk, 'tcx>(
mut bcx: Block<'blk, 'tcx>,
2014-09-07 12:09:06 -05:00
arg_exprs: &[P<ast::Expr>],
fn_ty: Ty,
llargs: &mut Vec<ValueRef>,
arg_cleanup_scope: cleanup::ScopeId,
ignore_self: bool)
-> Block<'blk, 'tcx> {
// Translate the `self` argument first.
let arg_tys = ty::ty_fn_args(fn_ty);
if !ignore_self {
let arg_datum = unpack_datum!(bcx, expr::trans(bcx, &*arg_exprs[0]));
llargs.push(unpack_result!(bcx, {
trans_arg_datum(bcx,
arg_tys[0],
arg_datum,
arg_cleanup_scope,
DontAutorefArg)
}))
}
// Now untuple the rest of the arguments.
2014-09-07 12:09:06 -05:00
let tuple_expr = &arg_exprs[1];
let tuple_type = node_id_type(bcx, tuple_expr.id);
match ty::get(tuple_type).sty {
ty::ty_tup(ref field_types) => {
let tuple_datum = unpack_datum!(bcx,
2014-09-07 12:09:06 -05:00
expr::trans(bcx, &**tuple_expr));
let tuple_lvalue_datum =
unpack_datum!(bcx,
tuple_datum.to_lvalue_datum(bcx,
"args",
tuple_expr.id));
let repr = adt::represent_type(bcx.ccx(), tuple_type);
let repr_ptr = &*repr;
for i in range(0, field_types.len()) {
let arg_datum = tuple_lvalue_datum.get_element(
2014-08-06 04:59:40 -05:00
bcx,
field_types[i],
|srcval| {
adt::trans_field_ptr(bcx, repr_ptr, srcval, 0, i)
});
let arg_datum = arg_datum.to_expr_datum();
let arg_datum =
unpack_datum!(bcx, arg_datum.to_rvalue_datum(bcx, "arg"));
let arg_datum =
unpack_datum!(bcx, arg_datum.to_appropriate_datum(bcx));
llargs.push(arg_datum.add_clean(bcx.fcx, arg_cleanup_scope));
}
}
_ => {
bcx.sess().span_bug(tuple_expr.span,
"argument to `.call()` wasn't a tuple?!")
}
};
bcx
}
fn trans_overloaded_call_args<'blk, 'tcx>(
mut bcx: Block<'blk, 'tcx>,
2014-09-07 12:09:06 -05:00
arg_exprs: Vec<&ast::Expr>,
fn_ty: Ty,
llargs: &mut Vec<ValueRef>,
arg_cleanup_scope: cleanup::ScopeId,
ignore_self: bool)
-> Block<'blk, 'tcx> {
// Translate the `self` argument first.
let arg_tys = ty::ty_fn_args(fn_ty);
if !ignore_self {
2014-09-07 12:09:06 -05:00
let arg_datum = unpack_datum!(bcx, expr::trans(bcx, arg_exprs[0]));
llargs.push(unpack_result!(bcx, {
trans_arg_datum(bcx,
arg_tys[0],
arg_datum,
arg_cleanup_scope,
DontAutorefArg)
}))
}
// Now untuple the rest of the arguments.
let tuple_type = arg_tys[1];
match ty::get(tuple_type).sty {
ty::ty_tup(ref field_types) => {
for (i, &field_type) in field_types.iter().enumerate() {
let arg_datum =
2014-09-07 12:09:06 -05:00
unpack_datum!(bcx, expr::trans(bcx, arg_exprs[i + 1]));
llargs.push(unpack_result!(bcx, {
trans_arg_datum(bcx,
field_type,
arg_datum,
arg_cleanup_scope,
DontAutorefArg)
}))
}
}
_ => {
bcx.sess().span_bug(arg_exprs[0].span,
"argument to `.call()` wasn't a tuple?!")
}
};
bcx
}
pub fn trans_args<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
args: CallArgs,
fn_ty: Ty,
llargs: &mut Vec<ValueRef> ,
arg_cleanup_scope: cleanup::ScopeId,
ignore_self: bool,
abi: synabi::Abi)
-> Block<'blk, 'tcx> {
debug!("trans_args(abi={})", abi);
let _icx = push_ctxt("trans_args");
let arg_tys = ty::ty_fn_args(fn_ty);
let variadic = ty::fn_is_variadic(fn_ty);
let mut bcx = cx;
// First we figure out the caller's view of the types of the arguments.
// This will be needed if this is a generic call, because the callee has
// to cast her view of the arguments to the caller's view.
match args {
ArgExprs(arg_exprs) => {
if abi == synabi::RustCall {
// This is only used for direct calls to the `call`,
// `call_mut` or `call_once` functions.
return trans_args_under_call_abi(cx,
arg_exprs,
fn_ty,
llargs,
arg_cleanup_scope,
ignore_self)
}
let num_formal_args = arg_tys.len();
2014-05-16 12:15:33 -05:00
for (i, arg_expr) in arg_exprs.iter().enumerate() {
if i == 0 && ignore_self {
continue;
}
let arg_ty = if i >= num_formal_args {
assert!(variadic);
2014-05-16 12:15:33 -05:00
expr_ty_adjusted(cx, &**arg_expr)
} else {
arg_tys[i]
};
2014-05-16 12:15:33 -05:00
let arg_datum = unpack_datum!(bcx, expr::trans(bcx, &**arg_expr));
llargs.push(unpack_result!(bcx, {
trans_arg_datum(bcx, arg_ty, arg_datum,
arg_cleanup_scope,
DontAutorefArg)
}));
}
}
ArgOverloadedCall(arg_exprs) => {
return trans_overloaded_call_args(cx,
arg_exprs,
fn_ty,
llargs,
arg_cleanup_scope,
ignore_self)
}
ArgOverloadedOp(lhs, rhs) => {
assert!(!variadic);
llargs.push(unpack_result!(bcx, {
trans_arg_datum(bcx, arg_tys[0], lhs,
arg_cleanup_scope,
DontAutorefArg)
}));
assert_eq!(arg_tys.len(), 1 + rhs.len());
for (rhs, rhs_id) in rhs.into_iter() {
llargs.push(unpack_result!(bcx, {
trans_arg_datum(bcx, arg_tys[1], rhs,
arg_cleanup_scope,
DoAutorefArg(rhs_id))
}));
}
}
ArgVals(vs) => {
llargs.push_all(vs);
}
}
bcx
}
pub enum AutorefArg {
DontAutorefArg,
DoAutorefArg(ast::NodeId)
}
pub fn trans_arg_datum<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
formal_arg_ty: Ty,
arg_datum: Datum<Expr>,
arg_cleanup_scope: cleanup::ScopeId,
autoref_arg: AutorefArg)
-> Result<'blk, 'tcx> {
let _icx = push_ctxt("trans_arg_datum");
let mut bcx = bcx;
let ccx = bcx.ccx();
debug!("trans_arg_datum({})",
formal_arg_ty.repr(bcx.tcx()));
let arg_datum_ty = arg_datum.ty;
debug!(" arg datum: {}", arg_datum.to_string(bcx.ccx()));
let mut val;
// FIXME(#3548) use the adjustments table
match autoref_arg {
DoAutorefArg(arg_id) => {
// We will pass argument by reference
// We want an lvalue, so that we can pass by reference and
let arg_datum = unpack_datum!(
bcx, arg_datum.to_lvalue_datum(bcx, "arg", arg_id));
val = arg_datum.val;
}
DontAutorefArg => {
// Make this an rvalue, since we are going to be
// passing ownership.
let arg_datum = unpack_datum!(
bcx, arg_datum.to_rvalue_datum(bcx, "arg"));
// Now that arg_datum is owned, get it into the appropriate
// mode (ref vs value).
let arg_datum = unpack_datum!(
bcx, arg_datum.to_appropriate_datum(bcx));
// Technically, ownership of val passes to the callee.
// However, we must cleanup should we panic before the
// callee is actually invoked.
val = arg_datum.add_clean(bcx.fcx, arg_cleanup_scope);
}
}
if formal_arg_ty != arg_datum_ty {
// this could happen due to e.g. subtyping
let llformal_arg_ty = type_of::type_of_explicit_arg(ccx, formal_arg_ty);
debug!("casting actual type ({}) to match formal ({})",
bcx.val_to_string(val), bcx.llty_str(llformal_arg_ty));
debug!("Rust types: {}; {}", ty_to_string(bcx.tcx(), arg_datum_ty),
ty_to_string(bcx.tcx(), formal_arg_ty));
val = PointerCast(bcx, val, llformal_arg_ty);
}
debug!("--- trans_arg_datum passing {}", bcx.val_to_string(val));
2014-05-03 06:14:56 -05:00
Result::new(bcx, val)
}