rust/src/librustdoc/visit_ast.rs

580 lines
22 KiB
Rust
Raw Normal View History

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2013-08-15 16:28:54 -04:00
//! Rust AST Visitor. Extracts useful information and massages it into a form
//! usable for clean
use std::mem;
use rustc_target::spec::abi;
use syntax::ast;
use syntax::attr;
use syntax_pos::Span;
2013-08-15 16:28:54 -04:00
2016-03-29 08:50:44 +03:00
use rustc::hir::map as hir_map;
use rustc::hir::def::Def;
use rustc::hir::def_id::{DefId, LOCAL_CRATE};
use rustc::middle::cstore::{LoadedMacro, CrateStore};
use rustc::middle::privacy::AccessLevel;
use rustc::ty::Visibility;
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
use rustc::util::nodemap::{FxHashSet, FxHashMap};
2016-03-29 08:50:44 +03:00
use rustc::hir;
2015-07-31 00:04:06 -07:00
use core;
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
use clean::{self, AttributesExt, NestedAttributesExt, def_id_to_path};
2013-08-15 16:28:54 -04:00
use doctree::*;
// looks to me like the first two of these are actually
// output parameters, maybe only mutated once; perhaps
// better simply to have the visit method return a tuple
// containing them?
// also, is there some reason that this doesn't use the 'visit'
// framework from syntax?
2017-12-28 10:52:40 -06:00
pub struct RustdocVisitor<'a, 'tcx: 'a, 'rcx: 'a> {
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
pub cstore: &'a CrateStore,
pub module: Module,
pub attrs: hir::HirVec<ast::Attribute>,
2017-12-28 10:52:40 -06:00
pub cx: &'a core::DocContext<'a, 'tcx, 'rcx>,
view_item_stack: FxHashSet<ast::NodeId>,
inlining: bool,
/// Is the current module and all of its parents public?
inside_public_path: bool,
2018-02-15 17:21:26 -05:00
exact_paths: Option<FxHashMap<DefId, Vec<String>>>,
2013-08-15 16:28:54 -04:00
}
2017-12-28 10:52:40 -06:00
impl<'a, 'tcx, 'rcx> RustdocVisitor<'a, 'tcx, 'rcx> {
pub fn new(cstore: &'a CrateStore,
2017-12-28 10:52:40 -06:00
cx: &'a core::DocContext<'a, 'tcx, 'rcx>) -> RustdocVisitor<'a, 'tcx, 'rcx> {
// If the root is re-exported, terminate all recursion.
let mut stack = FxHashSet();
stack.insert(ast::CRATE_NODE_ID);
2013-08-15 16:28:54 -04:00
RustdocVisitor {
module: Module::new(None),
attrs: hir::HirVec::new(),
cx,
view_item_stack: stack,
inlining: false,
inside_public_path: true,
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
exact_paths: Some(FxHashMap()),
cstore,
2013-08-15 16:28:54 -04:00
}
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
fn store_path(&mut self, did: DefId) {
// We can't use the entry api, as that keeps the mutable borrow of self active
// when we try to use cx
let exact_paths = self.exact_paths.as_mut().unwrap();
if exact_paths.get(&did).is_none() {
let path = def_id_to_path(self.cx, did, self.cx.crate_name.clone());
exact_paths.insert(did, path);
}
}
fn stability(&self, id: ast::NodeId) -> Option<attr::Stability> {
self.cx.tcx.hir.opt_local_def_id(id)
.and_then(|def_id| self.cx.tcx.lookup_stability(def_id)).cloned()
}
2015-12-12 23:01:27 +03:00
fn deprecation(&self, id: ast::NodeId) -> Option<attr::Deprecation> {
self.cx.tcx.hir.opt_local_def_id(id)
.and_then(|def_id| self.cx.tcx.lookup_deprecation(def_id))
2015-12-12 23:01:27 +03:00
}
2015-07-31 00:04:06 -07:00
pub fn visit(&mut self, krate: &hir::Crate) {
self.attrs = krate.attrs.clone();
self.module = self.visit_mod_contents(krate.span,
krate.attrs.clone(),
2015-07-31 00:04:06 -07:00
hir::Public,
ast::CRATE_NODE_ID,
&krate.module,
None);
// attach the crate's exported macros to the top-level module:
2016-10-29 07:31:07 +00:00
let macro_exports: Vec<_> =
krate.exported_macros.iter().map(|def| self.visit_local_macro(def)).collect();
2016-10-29 07:31:07 +00:00
self.module.macros.extend(macro_exports);
self.module.is_crate = true;
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
self.cx.renderinfo.borrow_mut().exact_paths = self.exact_paths.take().unwrap();
}
pub fn visit_variant_data(&mut self, item: &hir::Item,
name: ast::Name, sd: &hir::VariantData,
2015-07-31 00:04:06 -07:00
generics: &hir::Generics) -> Struct {
debug!("Visiting struct");
2014-05-16 10:15:33 -07:00
let struct_type = struct_type_from_def(&*sd);
Struct {
id: item.id,
struct_type,
name,
vis: item.vis.clone(),
stab: self.stability(item.id),
2015-12-12 23:01:27 +03:00
depr: self.deprecation(item.id),
attrs: item.attrs.clone(),
generics: generics.clone(),
fields: sd.fields().iter().cloned().collect(),
whence: item.span
2013-08-15 16:28:54 -04:00
}
}
2013-08-15 16:28:54 -04:00
2016-08-10 21:00:17 +03:00
pub fn visit_union_data(&mut self, item: &hir::Item,
name: ast::Name, sd: &hir::VariantData,
generics: &hir::Generics) -> Union {
debug!("Visiting union");
let struct_type = struct_type_from_def(&*sd);
Union {
id: item.id,
struct_type,
name,
2016-08-10 21:00:17 +03:00
vis: item.vis.clone(),
stab: self.stability(item.id),
depr: self.deprecation(item.id),
attrs: item.attrs.clone(),
generics: generics.clone(),
fields: sd.fields().iter().cloned().collect(),
whence: item.span
}
}
2015-07-31 00:04:06 -07:00
pub fn visit_enum_def(&mut self, it: &hir::Item,
2015-09-20 04:50:30 +03:00
name: ast::Name, def: &hir::EnumDef,
2015-07-31 00:04:06 -07:00
params: &hir::Generics) -> Enum {
debug!("Visiting enum");
Enum {
name,
variants: def.variants.iter().map(|v| Variant {
name: v.node.name,
attrs: v.node.attrs.clone(),
2015-10-10 03:28:40 +03:00
stab: self.stability(v.node.data.id()),
2015-12-12 23:01:27 +03:00
depr: self.deprecation(v.node.data.id()),
def: v.node.data.clone(),
whence: v.span,
}).collect(),
vis: it.vis.clone(),
stab: self.stability(it.id),
2015-12-12 23:01:27 +03:00
depr: self.deprecation(it.id),
generics: params.clone(),
attrs: it.attrs.clone(),
id: it.id,
whence: it.span,
2013-08-15 16:28:54 -04:00
}
}
2013-08-15 16:28:54 -04:00
2015-07-31 00:04:06 -07:00
pub fn visit_fn(&mut self, item: &hir::Item,
2015-09-20 04:50:30 +03:00
name: ast::Name, fd: &hir::FnDecl,
2015-07-31 00:04:06 -07:00
unsafety: &hir::Unsafety,
constness: hir::Constness,
abi: &abi::Abi,
gen: &hir::Generics,
body: hir::BodyId) -> Function {
debug!("Visiting fn");
Function {
id: item.id,
vis: item.vis.clone(),
stab: self.stability(item.id),
2015-12-12 23:01:27 +03:00
depr: self.deprecation(item.id),
attrs: item.attrs.clone(),
decl: fd.clone(),
name,
whence: item.span,
generics: gen.clone(),
2014-12-09 10:36:46 -05:00
unsafety: *unsafety,
constness,
abi: *abi,
body,
2013-08-15 16:28:54 -04:00
}
}
2013-08-15 16:28:54 -04:00
pub fn visit_mod_contents(&mut self, span: Span, attrs: hir::HirVec<ast::Attribute>,
2015-07-31 00:04:06 -07:00
vis: hir::Visibility, id: ast::NodeId,
m: &hir::Mod,
2015-09-20 04:50:30 +03:00
name: Option<ast::Name>) -> Module {
let mut om = Module::new(name);
om.where_outer = span;
om.where_inner = m.inner;
om.attrs = attrs;
om.vis = vis.clone();
om.stab = self.stability(id);
2015-12-12 23:01:27 +03:00
om.depr = self.deprecation(id);
om.id = id;
// Keep track of if there were any private modules in the path.
let orig_inside_public_path = self.inside_public_path;
self.inside_public_path &= vis == hir::Public;
for i in &m.item_ids {
let item = self.cx.tcx.hir.expect_item(i.id);
self.visit_item(item, None, &mut om);
}
self.inside_public_path = orig_inside_public_path;
let def_id = self.cx.tcx.hir.local_def_id(id);
if let Some(exports) = self.cx.tcx.module_exports(def_id) {
for export in exports.iter().filter(|e| e.vis == Visibility::Public) {
2017-02-23 20:12:33 +10:30
if let Def::Macro(def_id, ..) = export.def {
if def_id.krate == LOCAL_CRATE {
2016-10-29 07:31:07 +00:00
continue // These are `krate.exported_macros`, handled in `self.visit()`.
}
let imported_from = self.cx.tcx.original_crate_name(def_id.krate);
let def = match self.cstore.load_macro_untracked(def_id, self.cx.sess()) {
LoadedMacro::MacroDef(macro_def) => macro_def,
// FIXME(jseyfried): document proc macro re-exports
LoadedMacro::ProcMacro(..) => continue,
};
2017-03-17 21:58:48 +00:00
let matchers = if let ast::ItemKind::MacroDef(ref def) = def.node {
let tts: Vec<_> = def.stream().into_trees().collect();
tts.chunks(4).map(|arm| arm[0].span()).collect()
} else {
unreachable!()
};
2016-10-29 07:31:07 +00:00
om.macros.push(Macro {
def_id,
2016-10-29 07:31:07 +00:00
attrs: def.attrs.clone().into(),
name: def.ident.name,
whence: def.span,
matchers,
2016-10-29 07:31:07 +00:00
stab: self.stability(def.id),
depr: self.deprecation(def.id),
imported_from: Some(imported_from),
2016-10-29 07:31:07 +00:00
})
}
}
}
om
}
/// Tries to resolve the target of a `pub use` statement and inlines the
/// target if it is defined locally and would not be documented otherwise,
/// or when it is specifically requested with `please_inline`.
/// (the latter is the case when the import is marked `doc(inline)`)
///
/// Cross-crate inlining occurs later on during crate cleaning
/// and follows different rules.
///
/// Returns true if the target has been inlined.
fn maybe_inline_local(&mut self,
id: ast::NodeId,
def: Def,
renamed: Option<ast::Name>,
glob: bool,
om: &mut Module,
please_inline: bool) -> bool {
fn inherits_doc_hidden(cx: &core::DocContext, mut node: ast::NodeId) -> bool {
while let Some(id) = cx.tcx.hir.get_enclosing_scope(node) {
node = id;
if cx.tcx.hir.attrs(node).lists("doc").has_word("hidden") {
return true;
}
if node == ast::CRATE_NODE_ID {
break;
}
}
false
}
debug!("maybe_inline_local def: {:?}", def);
let tcx = self.cx.tcx;
if def == Def::Err {
return false;
}
let def_did = def.def_id();
let use_attrs = tcx.hir.attrs(id);
// Don't inline doc(hidden) imports so they can be stripped at a later stage.
let is_no_inline = use_attrs.lists("doc").has_word("no_inline") ||
use_attrs.lists("doc").has_word("hidden");
// For cross-crate impl inlining we need to know whether items are
// reachable in documentation - a previously nonreachable item can be
// made reachable by cross-crate inlining which we're checking here.
// (this is done here because we need to know this upfront)
if !def_did.is_local() && !is_no_inline {
let attrs = clean::inline::load_attrs(self.cx, def_did);
let self_is_hidden = attrs.lists("doc").has_word("hidden");
match def {
Def::Trait(did) |
Def::Struct(did) |
2016-08-10 21:00:17 +03:00
Def::Union(did) |
Def::Enum(did) |
Def::TyForeign(did) |
Def::TyAlias(did) if !self_is_hidden => {
self.cx.access_levels.borrow_mut().map.insert(did, AccessLevel::Public);
},
Def::Mod(did) => if !self_is_hidden {
::visit_lib::LibEmbargoVisitor::new(self.cx).visit_mod(did);
},
_ => {},
}
return false
}
let def_node_id = match tcx.hir.as_local_node_id(def_did) {
Some(n) => n, None => return false
};
let is_private = !self.cx.access_levels.borrow().is_public(def_did);
let is_hidden = inherits_doc_hidden(self.cx, def_node_id);
// Only inline if requested or if the item would otherwise be stripped
if (!please_inline && !is_private && !is_hidden) || is_no_inline {
return false
}
if !self.view_item_stack.insert(def_node_id) { return false }
let ret = match tcx.hir.get(def_node_id) {
hir_map::NodeItem(&hir::Item { node: hir::ItemMod(ref m), .. }) if glob => {
let prev = mem::replace(&mut self.inlining, true);
for i in &m.item_ids {
let i = self.cx.tcx.hir.expect_item(i.id);
self.visit_item(i, None, om);
}
self.inlining = prev;
true
}
hir_map::NodeItem(it) if !glob => {
let prev = mem::replace(&mut self.inlining, true);
self.visit_item(it, renamed, om);
self.inlining = prev;
true
2013-08-15 16:28:54 -04:00
}
hir_map::NodeForeignItem(it) if !glob => {
// generate a fresh `extern {}` block if we want to inline a foreign item.
om.foreigns.push(hir::ForeignMod {
abi: tcx.hir.get_foreign_abi(it.id),
items: vec![hir::ForeignItem {
name: renamed.unwrap_or(it.name),
.. it.clone()
}].into(),
});
true
}
_ => false,
};
self.view_item_stack.remove(&def_node_id);
2016-10-01 16:47:43 -04:00
ret
}
2013-08-15 16:28:54 -04:00
2015-07-31 00:04:06 -07:00
pub fn visit_item(&mut self, item: &hir::Item,
renamed: Option<ast::Name>, om: &mut Module) {
debug!("Visiting item {:?}", item);
let name = renamed.unwrap_or(item.name);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
if item.vis == hir::Public {
let def_id = self.cx.tcx.hir.local_def_id(item.id);
self.store_path(def_id);
}
match item.node {
hir::ItemForeignMod(ref fm) => {
// If inlining we only want to include public functions.
om.foreigns.push(if self.inlining {
hir::ForeignMod {
abi: fm.abi,
items: fm.items.iter().filter(|i| i.vis == hir::Public).cloned().collect(),
}
} else {
fm.clone()
});
}
// If we're inlining, skip private items.
_ if self.inlining && item.vis != hir::Public => {}
2017-03-15 21:27:40 -05:00
hir::ItemGlobalAsm(..) => {}
hir::ItemExternCrate(orig_name) => {
let def_id = self.cx.tcx.hir.local_def_id(item.id);
om.extern_crates.push(ExternCrate {
cnum: self.cx.tcx.extern_mod_stmt_cnum(def_id)
.unwrap_or(LOCAL_CRATE),
name,
path: orig_name.map(|x|x.to_string()),
vis: item.vis.clone(),
attrs: item.attrs.clone(),
whence: item.span,
})
}
hir::ItemUse(_, hir::UseKind::ListStem) => {}
hir::ItemUse(ref path, kind) => {
let is_glob = kind == hir::UseKind::Glob;
// If there was a private module in the current path then don't bother inlining
// anything as it will probably be stripped anyway.
if item.vis == hir::Public && self.inside_public_path {
let please_inline = item.attrs.iter().any(|item| {
match item.meta_item_list() {
Some(ref list) if item.check_name("doc") => {
list.iter().any(|i| i.check_name("inline"))
}
_ => false,
}
});
let name = if is_glob { None } else { Some(name) };
if self.maybe_inline_local(item.id,
path.def,
name,
is_glob,
om,
please_inline) {
return;
}
}
om.imports.push(Import {
name,
id: item.id,
vis: item.vis.clone(),
attrs: item.attrs.clone(),
path: (**path).clone(),
glob: is_glob,
whence: item.span,
});
}
2015-07-31 00:04:06 -07:00
hir::ItemMod(ref m) => {
om.mods.push(self.visit_mod_contents(item.span,
item.attrs.clone(),
item.vis.clone(),
item.id,
m,
Some(name)));
},
2015-07-31 00:04:06 -07:00
hir::ItemEnum(ref ed, ref gen) =>
om.enums.push(self.visit_enum_def(item, name, ed, gen)),
2015-07-31 00:04:06 -07:00
hir::ItemStruct(ref sd, ref gen) =>
om.structs.push(self.visit_variant_data(item, name, sd, gen)),
2016-08-10 21:00:17 +03:00
hir::ItemUnion(ref sd, ref gen) =>
om.unions.push(self.visit_union_data(item, name, sd, gen)),
hir::ItemFn(ref fd, ref unsafety, constness, ref abi, ref gen, body) =>
om.fns.push(self.visit_fn(item, name, &**fd, unsafety,
constness, abi, gen, body)),
2015-07-31 00:04:06 -07:00
hir::ItemTy(ref ty, ref gen) => {
let t = Typedef {
ty: ty.clone(),
gen: gen.clone(),
name,
id: item.id,
attrs: item.attrs.clone(),
whence: item.span,
vis: item.vis.clone(),
stab: self.stability(item.id),
2015-12-12 23:01:27 +03:00
depr: self.deprecation(item.id),
};
om.typedefs.push(t);
},
2015-07-31 00:04:06 -07:00
hir::ItemStatic(ref ty, ref mut_, ref exp) => {
let s = Static {
type_: ty.clone(),
mutability: mut_.clone(),
expr: exp.clone(),
id: item.id,
name,
attrs: item.attrs.clone(),
whence: item.span,
vis: item.vis.clone(),
stab: self.stability(item.id),
2015-12-12 23:01:27 +03:00
depr: self.deprecation(item.id),
};
om.statics.push(s);
},
2015-07-31 00:04:06 -07:00
hir::ItemConst(ref ty, ref exp) => {
let s = Constant {
type_: ty.clone(),
expr: exp.clone(),
id: item.id,
name,
attrs: item.attrs.clone(),
whence: item.span,
vis: item.vis.clone(),
stab: self.stability(item.id),
2015-12-12 23:01:27 +03:00
depr: self.deprecation(item.id),
};
om.constants.push(s);
},
hir::ItemTrait(is_auto, unsafety, ref gen, ref b, ref item_ids) => {
let items = item_ids.iter()
.map(|ti| self.cx.tcx.hir.trait_item(ti.id).clone())
.collect();
let t = Trait {
is_auto,
unsafety,
name,
items,
generics: gen.clone(),
bounds: b.iter().cloned().collect(),
id: item.id,
attrs: item.attrs.clone(),
whence: item.span,
vis: item.vis.clone(),
stab: self.stability(item.id),
2015-12-12 23:01:27 +03:00
depr: self.deprecation(item.id),
};
om.traits.push(t);
},
2017-12-04 00:07:15 -05:00
hir::ItemTraitAlias(..) => {
unimplemented!("trait objects are not yet implemented")
},
hir::ItemImpl(unsafety,
polarity,
defaultness,
ref gen,
ref tr,
ref ty,
ref item_ids) => {
// Don't duplicate impls when inlining, we'll pick them up
// regardless of where they're located.
if !self.inlining {
let items = item_ids.iter()
.map(|ii| self.cx.tcx.hir.impl_item(ii.id).clone())
.collect();
let i = Impl {
unsafety,
polarity,
defaultness,
generics: gen.clone(),
trait_: tr.clone(),
for_: ty.clone(),
items,
attrs: item.attrs.clone(),
id: item.id,
whence: item.span,
vis: item.vis.clone(),
stab: self.stability(item.id),
depr: self.deprecation(item.id),
};
om.impls.push(i);
}
},
}
2013-08-15 16:28:54 -04:00
}
// convert each exported_macro into a doc item
fn visit_local_macro(&self, def: &hir::MacroDef) -> Macro {
2017-02-21 05:05:59 +00:00
let tts = def.body.trees().collect::<Vec<_>>();
2015-11-26 19:14:36 +01:00
// Extract the spans of all matchers. They represent the "interface" of the macro.
2017-02-21 05:05:59 +00:00
let matchers = tts.chunks(4).map(|arm| arm[0].span()).collect();
2015-11-26 19:14:36 +01:00
Macro {
def_id: self.cx.tcx.hir.local_def_id(def.id),
attrs: def.attrs.clone(),
name: def.name,
whence: def.span,
matchers,
stab: self.stability(def.id),
2015-12-12 23:01:27 +03:00
depr: self.deprecation(def.id),
imported_from: None,
}
}
2013-08-15 16:28:54 -04:00
}