rust/src/libstd/process.rs

881 lines
29 KiB
Rust
Raw Normal View History

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Working with processes.
#![stable(feature = "process", since = "1.0.0")]
#![allow(non_upper_case_globals)]
use prelude::v1::*;
use io::prelude::*;
use ffi::OsStr;
use fmt;
use io::{self, Error, ErrorKind};
use path;
use str;
use sys::pipe::{self, AnonPipe};
use sys::process as imp;
use sys_common::{AsInner, AsInnerMut, FromInner, IntoInner};
use thread::{self, JoinHandle};
/// Representation of a running or exited child process.
///
/// This structure is used to represent and manage child processes. A child
/// process is created via the `Command` struct, which configures the spawning
/// process and can itself be constructed using a builder-style interface.
///
/// # Examples
///
/// ```should_panic
/// use std::process::Command;
///
2015-04-29 17:00:10 -04:00
/// let mut child = Command::new("/bin/cat")
/// .arg("file.txt")
/// .spawn()
/// .unwrap_or_else(|e| { panic!("failed to execute child: {}", e) });
2015-04-29 17:00:10 -04:00
///
/// let ecode = child.wait()
/// .unwrap_or_else(|e| { panic!("failed to wait on child: {}", e) });
2015-04-29 17:00:10 -04:00
///
/// assert!(ecode.success());
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub struct Child {
handle: imp::Process,
/// None until wait() or wait_with_output() is called.
status: Option<imp::ExitStatus>,
/// The handle for writing to the child's stdin, if it has been captured
#[stable(feature = "process", since = "1.0.0")]
pub stdin: Option<ChildStdin>,
/// The handle for reading from the child's stdout, if it has been captured
#[stable(feature = "process", since = "1.0.0")]
pub stdout: Option<ChildStdout>,
/// The handle for reading from the child's stderr, if it has been captured
#[stable(feature = "process", since = "1.0.0")]
pub stderr: Option<ChildStderr>,
}
impl AsInner<imp::Process> for Child {
fn as_inner(&self) -> &imp::Process { &self.handle }
}
impl IntoInner<imp::Process> for Child {
fn into_inner(self) -> imp::Process { self.handle }
}
2015-10-13 09:44:11 -04:00
/// A handle to a child process's stdin
#[stable(feature = "process", since = "1.0.0")]
pub struct ChildStdin {
inner: AnonPipe
}
#[stable(feature = "process", since = "1.0.0")]
impl Write for ChildStdin {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.inner.write(buf)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl AsInner<AnonPipe> for ChildStdin {
fn as_inner(&self) -> &AnonPipe { &self.inner }
}
impl IntoInner<AnonPipe> for ChildStdin {
fn into_inner(self) -> AnonPipe { self.inner }
}
2015-10-19 13:45:33 -04:00
/// A handle to a child process's stdout
#[stable(feature = "process", since = "1.0.0")]
pub struct ChildStdout {
inner: AnonPipe
}
#[stable(feature = "process", since = "1.0.0")]
impl Read for ChildStdout {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
}
impl AsInner<AnonPipe> for ChildStdout {
fn as_inner(&self) -> &AnonPipe { &self.inner }
}
impl IntoInner<AnonPipe> for ChildStdout {
fn into_inner(self) -> AnonPipe { self.inner }
}
2015-10-19 13:45:33 -04:00
/// A handle to a child process's stderr
#[stable(feature = "process", since = "1.0.0")]
pub struct ChildStderr {
inner: AnonPipe
}
#[stable(feature = "process", since = "1.0.0")]
impl Read for ChildStderr {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
}
impl AsInner<AnonPipe> for ChildStderr {
fn as_inner(&self) -> &AnonPipe { &self.inner }
}
impl IntoInner<AnonPipe> for ChildStderr {
fn into_inner(self) -> AnonPipe { self.inner }
}
/// The `Command` type acts as a process builder, providing fine-grained control
/// over how a new process should be spawned. A default configuration can be
/// generated using `Command::new(program)`, where `program` gives a path to the
/// program to be executed. Additional builder methods allow the configuration
/// to be changed (for example, by adding arguments) prior to spawning:
///
/// ```
/// use std::process::Command;
///
2015-04-29 17:00:10 -04:00
/// let output = Command::new("sh")
/// .arg("-c")
/// .arg("echo hello")
/// .output()
/// .unwrap_or_else(|e| { panic!("failed to execute process: {}", e) });
/// let hello = output.stdout;
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub struct Command {
inner: imp::Command,
// Details explained in the builder methods
stdin: Option<Stdio>,
stdout: Option<Stdio>,
stderr: Option<Stdio>,
}
impl Command {
/// Constructs a new `Command` for launching the program at
/// path `program`, with the following default configuration:
///
/// * No arguments to the program
/// * Inherit the current process's environment
/// * Inherit the current process's working directory
2015-04-29 17:00:10 -04:00
/// * Inherit stdin/stdout/stderr for `spawn` or `status`, but create pipes for `output`
///
/// Builder methods are provided to change these defaults and
/// otherwise configure the process.
#[stable(feature = "process", since = "1.0.0")]
pub fn new<S: AsRef<OsStr>>(program: S) -> Command {
Command {
inner: imp::Command::new(program.as_ref()),
stdin: None,
stdout: None,
stderr: None,
}
}
/// Add an argument to pass to the program.
#[stable(feature = "process", since = "1.0.0")]
pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command {
self.inner.arg(arg.as_ref());
self
}
/// Add multiple arguments to pass to the program.
#[stable(feature = "process", since = "1.0.0")]
pub fn args<S: AsRef<OsStr>>(&mut self, args: &[S]) -> &mut Command {
self.inner.args(args.iter().map(AsRef::as_ref));
self
}
/// Inserts or updates an environment variable mapping.
///
/// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
/// and case-sensitive on all other platforms.
#[stable(feature = "process", since = "1.0.0")]
pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command
where K: AsRef<OsStr>, V: AsRef<OsStr>
{
self.inner.env(key.as_ref(), val.as_ref());
self
}
/// Removes an environment variable mapping.
#[stable(feature = "process", since = "1.0.0")]
pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command {
self.inner.env_remove(key.as_ref());
self
}
/// Clears the entire environment map for the child process.
#[stable(feature = "process", since = "1.0.0")]
pub fn env_clear(&mut self) -> &mut Command {
self.inner.env_clear();
self
}
/// Sets the working directory for the child process.
#[stable(feature = "process", since = "1.0.0")]
pub fn current_dir<P: AsRef<path::Path>>(&mut self, dir: P) -> &mut Command {
self.inner.cwd(dir.as_ref().as_ref());
self
}
/// Configuration for the child process's stdin handle (file descriptor 0).
#[stable(feature = "process", since = "1.0.0")]
pub fn stdin(&mut self, cfg: Stdio) -> &mut Command {
self.stdin = Some(cfg);
self
}
/// Configuration for the child process's stdout handle (file descriptor 1).
#[stable(feature = "process", since = "1.0.0")]
pub fn stdout(&mut self, cfg: Stdio) -> &mut Command {
self.stdout = Some(cfg);
self
}
/// Configuration for the child process's stderr handle (file descriptor 2).
#[stable(feature = "process", since = "1.0.0")]
pub fn stderr(&mut self, cfg: Stdio) -> &mut Command {
self.stderr = Some(cfg);
self
}
fn spawn_inner(&self, default_io: StdioImp) -> io::Result<Child> {
let default_io = Stdio(default_io);
// See comment on `setup_io` for what `_drop_later` is.
let (their_stdin, our_stdin, _drop_later) = try!(
setup_io(self.stdin.as_ref().unwrap_or(&default_io), true)
);
let (their_stdout, our_stdout, _drop_later) = try!(
setup_io(self.stdout.as_ref().unwrap_or(&default_io), false)
);
let (their_stderr, our_stderr, _drop_later) = try!(
setup_io(self.stderr.as_ref().unwrap_or(&default_io), false)
);
match imp::Process::spawn(&self.inner, their_stdin, their_stdout,
their_stderr) {
Err(e) => Err(e),
Ok(handle) => Ok(Child {
handle: handle,
status: None,
stdin: our_stdin.map(|fd| ChildStdin { inner: fd }),
stdout: our_stdout.map(|fd| ChildStdout { inner: fd }),
stderr: our_stderr.map(|fd| ChildStderr { inner: fd }),
})
}
}
/// Executes the command as a child process, returning a handle to it.
///
/// By default, stdin, stdout and stderr are inherited from the parent.
#[stable(feature = "process", since = "1.0.0")]
pub fn spawn(&mut self) -> io::Result<Child> {
self.spawn_inner(StdioImp::Inherit)
}
/// Executes the command as a child process, waiting for it to finish and
/// collecting all of its output.
///
/// By default, stdin, stdout and stderr are captured (and used to
/// provide the resulting output).
///
/// # Examples
///
/// ```
/// use std::process::Command;
/// let output = Command::new("cat").arg("foo.txt").output().unwrap_or_else(|e| {
/// panic!("failed to execute process: {}", e)
/// });
///
/// println!("status: {}", output.status);
/// println!("stdout: {}", String::from_utf8_lossy(&output.stdout));
/// println!("stderr: {}", String::from_utf8_lossy(&output.stderr));
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn output(&mut self) -> io::Result<Output> {
self.spawn_inner(StdioImp::MakePipe).and_then(|p| p.wait_with_output())
}
/// Executes a command as a child process, waiting for it to finish and
/// collecting its exit status.
///
/// By default, stdin, stdout and stderr are inherited from the parent.
///
/// # Examples
///
/// ```
/// use std::process::Command;
///
/// let status = Command::new("ls").status().unwrap_or_else(|e| {
/// panic!("failed to execute process: {}", e)
/// });
///
/// println!("process exited with: {}", status);
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn status(&mut self) -> io::Result<ExitStatus> {
self.spawn().and_then(|mut p| p.wait())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for Command {
/// Format the program and arguments of a Command for display. Any
/// non-utf8 data is lossily converted using the utf8 replacement
/// character.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "{:?}", self.inner.program));
for arg in &self.inner.args {
try!(write!(f, " {:?}", arg));
}
Ok(())
}
}
impl AsInner<imp::Command> for Command {
fn as_inner(&self) -> &imp::Command { &self.inner }
}
impl AsInnerMut<imp::Command> for Command {
fn as_inner_mut(&mut self) -> &mut imp::Command { &mut self.inner }
}
// Takes a `Stdio` configuration (this module) and whether the to-be-owned
// handle will be readable.
//
// Returns a triple of (stdio to spawn with, stdio to store, stdio to drop). The
// stdio to spawn with is passed down to the `sys` module and indicates how the
// stdio stream should be set up. The "stdio to store" is an object which
// should be returned in the `Child` that makes its way out. The "stdio to drop"
// represents the raw value of "stdio to spawn with", but is the owned variant
// for it. This needs to be dropped after the child spawns
fn setup_io(io: &Stdio, readable: bool)
-> io::Result<(imp::Stdio, Option<AnonPipe>, Option<AnonPipe>)>
{
Ok(match io.0 {
StdioImp::MakePipe => {
let (reader, writer) = try!(pipe::anon_pipe());
if readable {
(imp::Stdio::Raw(reader.raw()), Some(writer), Some(reader))
} else {
(imp::Stdio::Raw(writer.raw()), Some(reader), Some(writer))
}
}
StdioImp::Raw(ref owned) => (imp::Stdio::Raw(owned.raw()), None, None),
StdioImp::Inherit => (imp::Stdio::Inherit, None, None),
StdioImp::None => (imp::Stdio::None, None, None),
})
}
/// The output of a finished process.
#[derive(PartialEq, Eq, Clone)]
#[stable(feature = "process", since = "1.0.0")]
pub struct Output {
/// The status (exit code) of the process.
#[stable(feature = "process", since = "1.0.0")]
pub status: ExitStatus,
/// The data that the process wrote to stdout.
#[stable(feature = "process", since = "1.0.0")]
pub stdout: Vec<u8>,
/// The data that the process wrote to stderr.
#[stable(feature = "process", since = "1.0.0")]
pub stderr: Vec<u8>,
}
// If either stderr or stdout are valid utf8 strings it prints the valid
// strings, otherwise it prints the byte sequence instead
#[stable(feature = "process_output_debug", since = "1.7.0")]
impl fmt::Debug for Output {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let stdout_utf8 = str::from_utf8(&self.stdout);
let stdout_debug: &fmt::Debug = match stdout_utf8 {
Ok(ref str) => str,
Err(_) => &self.stdout
};
let stderr_utf8 = str::from_utf8(&self.stderr);
let stderr_debug: &fmt::Debug = match stderr_utf8 {
Ok(ref str) => str,
Err(_) => &self.stderr
};
fmt.debug_struct("Output")
.field("status", &self.status)
.field("stdout", stdout_debug)
.field("stderr", stderr_debug)
.finish()
}
}
2015-04-29 17:00:10 -04:00
/// Describes what to do with a standard I/O stream for a child process.
#[stable(feature = "process", since = "1.0.0")]
pub struct Stdio(StdioImp);
// The internal enum for stdio setup; see below for descriptions.
enum StdioImp {
MakePipe,
Raw(imp::RawStdio),
Inherit,
None,
}
impl Stdio {
/// A new pipe should be arranged to connect the parent and child processes.
#[stable(feature = "process", since = "1.0.0")]
pub fn piped() -> Stdio { Stdio(StdioImp::MakePipe) }
/// The child inherits from the corresponding parent descriptor.
#[stable(feature = "process", since = "1.0.0")]
pub fn inherit() -> Stdio { Stdio(StdioImp::Inherit) }
/// This stream will be ignored. This is the equivalent of attaching the
/// stream to `/dev/null`
#[stable(feature = "process", since = "1.0.0")]
pub fn null() -> Stdio { Stdio(StdioImp::None) }
}
impl FromInner<imp::RawStdio> for Stdio {
fn from_inner(inner: imp::RawStdio) -> Stdio {
Stdio(StdioImp::Raw(inner))
}
}
/// Describes the result of a process after it has terminated.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "process", since = "1.0.0")]
pub struct ExitStatus(imp::ExitStatus);
impl ExitStatus {
/// Was termination successful? Signal termination not considered a success,
/// and success is defined as a zero exit status.
#[stable(feature = "process", since = "1.0.0")]
pub fn success(&self) -> bool {
self.0.success()
}
/// Returns the exit code of the process, if any.
///
/// On Unix, this will return `None` if the process was terminated
/// by a signal; `std::os::unix` provides an extension trait for
/// extracting the signal and other details from the `ExitStatus`.
#[stable(feature = "process", since = "1.0.0")]
pub fn code(&self) -> Option<i32> {
self.0.code()
}
}
impl AsInner<imp::ExitStatus> for ExitStatus {
fn as_inner(&self) -> &imp::ExitStatus { &self.0 }
}
#[stable(feature = "process", since = "1.0.0")]
impl fmt::Display for ExitStatus {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl Child {
/// Forces the child to exit. This is equivalent to sending a
/// SIGKILL on unix platforms.
#[stable(feature = "process", since = "1.0.0")]
pub fn kill(&mut self) -> io::Result<()> {
#[cfg(unix)] fn collect_status(p: &mut Child) {
// On Linux (and possibly other unices), a process that has exited will
// continue to accept signals because it is "defunct". The delivery of
// signals will only fail once the child has been reaped. For this
// reason, if the process hasn't exited yet, then we attempt to collect
// their status with WNOHANG.
if p.status.is_none() {
match p.handle.try_wait() {
Some(status) => { p.status = Some(status); }
None => {}
}
}
}
#[cfg(windows)] fn collect_status(_p: &mut Child) {}
collect_status(self);
// if the process has finished, and therefore had waitpid called,
// and we kill it, then on unix we might ending up killing a
// newer process that happens to have the same (re-used) id
if self.status.is_some() {
return Err(Error::new(
ErrorKind::InvalidInput,
"invalid argument: can't kill an exited process",
))
}
unsafe { self.handle.kill() }
}
/// Returns the OS-assigned process identifier associated with this child.
#[stable(feature = "process_id", since = "1.3.0")]
pub fn id(&self) -> u32 {
self.handle.id()
}
/// Waits for the child to exit completely, returning the status that it
/// exited with. This function will continue to have the same return value
/// after it has been called at least once.
///
/// The stdin handle to the child process, if any, will be closed
/// before waiting. This helps avoid deadlock: it ensures that the
/// child does not block waiting for input from the parent, while
/// the parent waits for the child to exit.
#[stable(feature = "process", since = "1.0.0")]
pub fn wait(&mut self) -> io::Result<ExitStatus> {
drop(self.stdin.take());
match self.status {
Some(code) => Ok(ExitStatus(code)),
None => {
let status = try!(self.handle.wait());
self.status = Some(status);
Ok(ExitStatus(status))
}
}
}
/// Simultaneously waits for the child to exit and collect all remaining
2015-12-01 23:12:01 -05:00
/// output on the stdout/stderr handles, returning an `Output`
/// instance.
///
/// The stdin handle to the child process, if any, will be closed
/// before waiting. This helps avoid deadlock: it ensures that the
/// child does not block waiting for input from the parent, while
/// the parent waits for the child to exit.
#[stable(feature = "process", since = "1.0.0")]
pub fn wait_with_output(mut self) -> io::Result<Output> {
drop(self.stdin.take());
fn read<R>(mut input: R) -> JoinHandle<io::Result<Vec<u8>>>
where R: Read + Send + 'static
{
thread::spawn(move || {
let mut ret = Vec::new();
input.read_to_end(&mut ret).map(|_| ret)
})
}
let stdout = self.stdout.take().map(read);
let stderr = self.stderr.take().map(read);
let status = try!(self.wait());
let stdout = stdout.and_then(|t| t.join().unwrap().ok());
let stderr = stderr.and_then(|t| t.join().unwrap().ok());
Ok(Output {
status: status,
stdout: stdout.unwrap_or(Vec::new()),
stderr: stderr.unwrap_or(Vec::new()),
})
}
}
/// Terminates the current process with the specified exit code.
///
/// This function will never return and will immediately terminate the current
/// process. The exit code is passed through to the underlying OS and will be
/// available for consumption by another process.
///
/// Note that because this function never returns, and that it terminates the
/// process, no destructors on the current stack or any other thread's stack
/// will be run. If a clean shutdown is needed it is recommended to only call
/// this function at a known point where there are no more destructors left
/// to run.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn exit(code: i32) -> ! {
::sys_common::cleanup();
::sys::os::exit(code)
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
use io::prelude::*;
use io::ErrorKind;
use str;
2015-02-19 12:57:25 -05:00
use super::{Command, Output, Stdio};
// FIXME(#10380) these tests should not all be ignored on android.
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn smoke() {
let p = Command::new("true").spawn();
assert!(p.is_ok());
let mut p = p.unwrap();
assert!(p.wait().unwrap().success());
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn smoke_failure() {
match Command::new("if-this-is-a-binary-then-the-world-has-ended").spawn() {
Ok(..) => panic!(),
Err(..) => {}
}
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn exit_reported_right() {
let p = Command::new("false").spawn();
assert!(p.is_ok());
let mut p = p.unwrap();
assert!(p.wait().unwrap().code() == Some(1));
drop(p.wait());
}
2015-10-19 00:36:28 -04:00
#[test]
#[cfg(unix)]
#[cfg_attr(target_os = "android", ignore)]
fn signal_reported_right() {
std: Stabilize portions of `std::os::$platform` This commit starts to organize the `std::os::$platform` modules and in the process stabilizes some of the functionality contained within. The organization of these modules will reflect the organization of the standard library itself with extension traits for primitives in the same corresponding module. The OS-specific modules will grow more functionality over time including concrete types that are not extending functionality of other structures, and these will either go into the closest module in `std::os::$platform` or they will grow a new module in the hierarchy. The following items are now stable: * `os::{unix, windows}` * `unix::ffi` * `unix::ffi::OsStrExt` * `unix::ffi::OsStrExt::{from_bytes, as_bytes, to_cstring}` * `unix::ffi::OsString` * `unix::ffi::OsStringExt::{from_vec, into_vec}` * `unix::process` * `unix::process::CommandExt` * `unix::process::CommandExt::{uid, gid}` * `unix::process::ExitStatusExt` * `unix::process::ExitStatusExt::signal` * `unix::prelude` * `windows::ffi` * `windows::ffi::OsStringExt` * `windows::ffi::OsStringExt::from_wide` * `windows::ffi::OsStrExt` * `windows::ffi::OsStrExt::encode_wide` * `windows::prelude` The following items remain unstable: * `unix::io` * `unix::io::{Fd, AsRawFd}` * `unix::fs::{PermissionsExt, OpenOptionsExt}` * `windows::io` * `windows::io::{Handle, AsRawHandle}` * `windows::io::{Socket, AsRawSocket}` * `windows::fs` * `windows::fs::OpenOptionsExt` Due to the reorgnization of the platform extension modules, this commit is a breaking change. Most imports can be fixed by adding the relevant libstd module in the `use` path (such as `ffi` or `fs`). [breaking-change]
2015-03-13 17:12:38 -07:00
use os::unix::process::ExitStatusExt;
let mut p = Command::new("/bin/sh")
.arg("-c").arg("read a")
.stdin(Stdio::piped())
.spawn().unwrap();
p.kill().unwrap();
match p.wait().unwrap().signal() {
Some(9) => {},
result => panic!("not terminated by signal 9 (instead, {:?})",
result),
}
}
pub fn run_output(mut cmd: Command) -> String {
let p = cmd.spawn();
assert!(p.is_ok());
let mut p = p.unwrap();
assert!(p.stdout.is_some());
let mut ret = String::new();
p.stdout.as_mut().unwrap().read_to_string(&mut ret).unwrap();
assert!(p.wait().unwrap().success());
return ret;
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn stdout_works() {
let mut cmd = Command::new("echo");
cmd.arg("foobar").stdout(Stdio::piped());
assert_eq!(run_output(cmd), "foobar\n");
}
#[test]
#[cfg_attr(any(windows, target_os = "android"), ignore)]
fn set_current_dir_works() {
let mut cmd = Command::new("/bin/sh");
cmd.arg("-c").arg("pwd")
.current_dir("/")
.stdout(Stdio::piped());
assert_eq!(run_output(cmd), "/\n");
}
#[test]
#[cfg_attr(any(windows, target_os = "android"), ignore)]
fn stdin_works() {
let mut p = Command::new("/bin/sh")
.arg("-c").arg("read line; echo $line")
.stdin(Stdio::piped())
.stdout(Stdio::piped())
.spawn().unwrap();
p.stdin.as_mut().unwrap().write("foobar".as_bytes()).unwrap();
drop(p.stdin.take());
let mut out = String::new();
p.stdout.as_mut().unwrap().read_to_string(&mut out).unwrap();
assert!(p.wait().unwrap().success());
assert_eq!(out, "foobar\n");
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
#[cfg(unix)]
fn uid_works() {
std: Stabilize portions of `std::os::$platform` This commit starts to organize the `std::os::$platform` modules and in the process stabilizes some of the functionality contained within. The organization of these modules will reflect the organization of the standard library itself with extension traits for primitives in the same corresponding module. The OS-specific modules will grow more functionality over time including concrete types that are not extending functionality of other structures, and these will either go into the closest module in `std::os::$platform` or they will grow a new module in the hierarchy. The following items are now stable: * `os::{unix, windows}` * `unix::ffi` * `unix::ffi::OsStrExt` * `unix::ffi::OsStrExt::{from_bytes, as_bytes, to_cstring}` * `unix::ffi::OsString` * `unix::ffi::OsStringExt::{from_vec, into_vec}` * `unix::process` * `unix::process::CommandExt` * `unix::process::CommandExt::{uid, gid}` * `unix::process::ExitStatusExt` * `unix::process::ExitStatusExt::signal` * `unix::prelude` * `windows::ffi` * `windows::ffi::OsStringExt` * `windows::ffi::OsStringExt::from_wide` * `windows::ffi::OsStrExt` * `windows::ffi::OsStrExt::encode_wide` * `windows::prelude` The following items remain unstable: * `unix::io` * `unix::io::{Fd, AsRawFd}` * `unix::fs::{PermissionsExt, OpenOptionsExt}` * `windows::io` * `windows::io::{Handle, AsRawHandle}` * `windows::io::{Socket, AsRawSocket}` * `windows::fs` * `windows::fs::OpenOptionsExt` Due to the reorgnization of the platform extension modules, this commit is a breaking change. Most imports can be fixed by adding the relevant libstd module in the `use` path (such as `ffi` or `fs`). [breaking-change]
2015-03-13 17:12:38 -07:00
use os::unix::prelude::*;
use libc;
let mut p = Command::new("/bin/sh")
.arg("-c").arg("true")
.uid(unsafe { libc::getuid() })
.gid(unsafe { libc::getgid() })
.spawn().unwrap();
assert!(p.wait().unwrap().success());
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
#[cfg(unix)]
fn uid_to_root_fails() {
std: Stabilize portions of `std::os::$platform` This commit starts to organize the `std::os::$platform` modules and in the process stabilizes some of the functionality contained within. The organization of these modules will reflect the organization of the standard library itself with extension traits for primitives in the same corresponding module. The OS-specific modules will grow more functionality over time including concrete types that are not extending functionality of other structures, and these will either go into the closest module in `std::os::$platform` or they will grow a new module in the hierarchy. The following items are now stable: * `os::{unix, windows}` * `unix::ffi` * `unix::ffi::OsStrExt` * `unix::ffi::OsStrExt::{from_bytes, as_bytes, to_cstring}` * `unix::ffi::OsString` * `unix::ffi::OsStringExt::{from_vec, into_vec}` * `unix::process` * `unix::process::CommandExt` * `unix::process::CommandExt::{uid, gid}` * `unix::process::ExitStatusExt` * `unix::process::ExitStatusExt::signal` * `unix::prelude` * `windows::ffi` * `windows::ffi::OsStringExt` * `windows::ffi::OsStringExt::from_wide` * `windows::ffi::OsStrExt` * `windows::ffi::OsStrExt::encode_wide` * `windows::prelude` The following items remain unstable: * `unix::io` * `unix::io::{Fd, AsRawFd}` * `unix::fs::{PermissionsExt, OpenOptionsExt}` * `windows::io` * `windows::io::{Handle, AsRawHandle}` * `windows::io::{Socket, AsRawSocket}` * `windows::fs` * `windows::fs::OpenOptionsExt` Due to the reorgnization of the platform extension modules, this commit is a breaking change. Most imports can be fixed by adding the relevant libstd module in the `use` path (such as `ffi` or `fs`). [breaking-change]
2015-03-13 17:12:38 -07:00
use os::unix::prelude::*;
use libc;
// if we're already root, this isn't a valid test. Most of the bots run
// as non-root though (android is an exception).
if unsafe { libc::getuid() == 0 } { return }
assert!(Command::new("/bin/ls").uid(0).gid(0).spawn().is_err());
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn test_process_status() {
let mut status = Command::new("false").status().unwrap();
assert!(status.code() == Some(1));
status = Command::new("true").status().unwrap();
assert!(status.success());
}
#[test]
fn test_process_output_fail_to_start() {
match Command::new("/no-binary-by-this-name-should-exist").output() {
Err(e) => assert_eq!(e.kind(), ErrorKind::NotFound),
Ok(..) => panic!()
}
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn test_process_output_output() {
let Output {status, stdout, stderr}
= Command::new("echo").arg("hello").output().unwrap();
let output_str = str::from_utf8(&stdout).unwrap();
assert!(status.success());
assert_eq!(output_str.trim().to_string(), "hello");
assert_eq!(stderr, Vec::new());
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn test_process_output_error() {
let Output {status, stdout, stderr}
= Command::new("mkdir").arg(".").output().unwrap();
assert!(status.code() == Some(1));
assert_eq!(stdout, Vec::new());
assert!(!stderr.is_empty());
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn test_finish_once() {
let mut prog = Command::new("false").spawn().unwrap();
assert!(prog.wait().unwrap().code() == Some(1));
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn test_finish_twice() {
let mut prog = Command::new("false").spawn().unwrap();
assert!(prog.wait().unwrap().code() == Some(1));
assert!(prog.wait().unwrap().code() == Some(1));
}
#[test]
#[cfg_attr(target_os = "android", ignore)]
fn test_wait_with_output_once() {
let prog = Command::new("echo").arg("hello").stdout(Stdio::piped())
.spawn().unwrap();
let Output {status, stdout, stderr} = prog.wait_with_output().unwrap();
let output_str = str::from_utf8(&stdout).unwrap();
assert!(status.success());
assert_eq!(output_str.trim().to_string(), "hello");
assert_eq!(stderr, Vec::new());
}
#[cfg(all(unix, not(target_os="android")))]
pub fn env_cmd() -> Command {
Command::new("env")
}
#[cfg(target_os="android")]
pub fn env_cmd() -> Command {
let mut cmd = Command::new("/system/bin/sh");
cmd.arg("-c").arg("set");
cmd
}
#[cfg(windows)]
pub fn env_cmd() -> Command {
let mut cmd = Command::new("cmd");
cmd.arg("/c").arg("set");
cmd
}
#[test]
fn test_inherit_env() {
use env;
let result = env_cmd().output().unwrap();
let output = String::from_utf8(result.stdout).unwrap();
2015-02-28 20:07:05 +02:00
for (ref k, ref v) in env::vars() {
// don't check android RANDOM variables
if cfg!(target_os = "android") && *k == "RANDOM" {
continue
}
// Windows has hidden environment variables whose names start with
// equals signs (`=`). Those do not show up in the output of the
// `set` command.
assert!((cfg!(windows) && k.starts_with("=")) ||
k.starts_with("DYLD") ||
output.contains(&format!("{}={}", *k, *v)) ||
output.contains(&format!("{}='{}'", *k, *v)),
"output doesn't contain `{}={}`\n{}",
k, v, output);
}
}
#[test]
fn test_override_env() {
use env;
// In some build environments (such as chrooted Nix builds), `env` can
// only be found in the explicitly-provided PATH env variable, not in
// default places such as /bin or /usr/bin. So we need to pass through
// PATH to our sub-process.
let mut cmd = env_cmd();
cmd.env_clear().env("RUN_TEST_NEW_ENV", "123");
if let Some(p) = env::var_os("PATH") {
cmd.env("PATH", &p);
}
let result = cmd.output().unwrap();
let output = String::from_utf8_lossy(&result.stdout).to_string();
assert!(output.contains("RUN_TEST_NEW_ENV=123"),
"didn't find RUN_TEST_NEW_ENV inside of:\n\n{}", output);
}
#[test]
fn test_add_to_env() {
let result = env_cmd().env("RUN_TEST_NEW_ENV", "123").output().unwrap();
let output = String::from_utf8_lossy(&result.stdout).to_string();
assert!(output.contains("RUN_TEST_NEW_ENV=123"),
"didn't find RUN_TEST_NEW_ENV inside of:\n\n{}", output);
}
}