rust/src/memory.rs

368 lines
12 KiB
Rust
Raw Normal View History

2016-03-05 00:52:14 -06:00
use byteorder::{self, ByteOrder};
2016-03-13 15:36:25 -05:00
use std::collections::{BTreeMap, HashMap};
use std::collections::Bound::{Included, Excluded};
2016-03-15 00:03:31 -05:00
use std::mem;
2016-03-05 00:48:23 -06:00
use std::ptr;
2016-03-14 22:48:00 -05:00
use error::{EvalError, EvalResult};
use primval::PrimVal;
2016-03-05 00:48:23 -06:00
2016-03-13 15:36:25 -05:00
const POINTER_SIZE: usize = 8;
2016-03-05 00:48:23 -06:00
pub struct Memory {
next_id: u64,
alloc_map: HashMap<u64, Allocation>,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct AllocId(u64);
2016-03-05 00:50:53 -06:00
#[derive(Debug)]
2016-03-05 00:48:23 -06:00
pub struct Allocation {
pub bytes: Vec<u8>,
2016-03-13 15:36:25 -05:00
pub relocations: BTreeMap<usize, AllocId>,
2016-03-05 00:48:23 -06:00
// TODO(tsion): undef mask
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
2016-03-05 00:48:23 -06:00
pub struct Pointer {
pub alloc_id: AllocId,
pub offset: usize,
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct FieldRepr {
pub offset: usize,
pub repr: Repr,
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum Repr {
2016-03-07 04:44:03 -06:00
Bool,
2016-03-15 00:03:31 -05:00
I8, I16, I32, I64,
U8, U16, U32, U64,
/// The representation for product types including tuples, structs, and the contents of enum
/// variants.
Product {
/// Size in bytes.
2016-03-05 00:48:23 -06:00
size: usize,
fields: Vec<FieldRepr>,
},
/// The representation for a sum type, i.e. a Rust enum.
Sum {
/// The size of the largest variant in bytes.
max_variant_size: usize,
variants: Vec<Repr>,
discr: Box<Repr>,
},
2016-03-15 06:50:53 -05:00
Array {
elem: Box<Repr>,
/// Number of elements.
length: usize,
},
2016-03-13 15:36:25 -05:00
Pointer {
target: Box<Repr>,
}
2016-03-05 00:48:23 -06:00
}
impl Memory {
pub fn new() -> Self {
Memory { next_id: 0, alloc_map: HashMap::new() }
}
2016-03-07 07:19:43 -06:00
pub fn allocate(&mut self, size: usize) -> Pointer {
2016-03-05 00:48:23 -06:00
let id = AllocId(self.next_id);
2016-03-13 15:36:25 -05:00
let alloc = Allocation { bytes: vec![0; size], relocations: BTreeMap::new() };
2016-03-05 00:48:23 -06:00
self.alloc_map.insert(self.next_id, alloc);
self.next_id += 1;
Pointer {
2016-03-07 07:19:43 -06:00
alloc_id: id,
2016-03-05 00:48:23 -06:00
offset: 0,
}
}
pub fn get(&self, id: AllocId) -> EvalResult<&Allocation> {
self.alloc_map.get(&id.0).ok_or(EvalError::DanglingPointerDeref)
}
pub fn get_mut(&mut self, id: AllocId) -> EvalResult<&mut Allocation> {
self.alloc_map.get_mut(&id.0).ok_or(EvalError::DanglingPointerDeref)
}
fn get_bytes(&self, ptr: Pointer, size: usize) -> EvalResult<&[u8]> {
2016-03-05 00:48:23 -06:00
let alloc = try!(self.get(ptr.alloc_id));
2016-03-13 15:36:25 -05:00
try!(alloc.check_no_relocations(ptr.offset, ptr.offset + size));
2016-03-05 00:48:23 -06:00
Ok(&alloc.bytes[ptr.offset..ptr.offset + size])
}
fn get_bytes_mut(&mut self, ptr: Pointer, size: usize) -> EvalResult<&mut [u8]> {
2016-03-05 00:48:23 -06:00
let alloc = try!(self.get_mut(ptr.alloc_id));
2016-03-13 15:36:25 -05:00
try!(alloc.check_no_relocations(ptr.offset, ptr.offset + size));
2016-03-05 00:48:23 -06:00
Ok(&mut alloc.bytes[ptr.offset..ptr.offset + size])
}
pub fn copy(&mut self, src: Pointer, dest: Pointer, size: usize) -> EvalResult<()> {
2016-03-13 15:36:25 -05:00
let (src_bytes, relocations) = {
let alloc = try!(self.get_mut(src.alloc_id));
try!(alloc.check_relocation_edges(src.offset, src.offset + size));
let bytes = alloc.bytes[src.offset..src.offset + size].as_mut_ptr();
let mut relocations: Vec<(usize, AllocId)> = alloc.relocations
.range(Included(&src.offset), Excluded(&(src.offset + size)))
.map(|(&k, &v)| (k, v))
.collect();
for &mut (ref mut offset, _) in &mut relocations {
alloc.relocations.remove(offset);
*offset += dest.offset - src.offset;
}
(bytes, relocations)
};
2016-03-05 00:48:23 -06:00
let dest_bytes = try!(self.get_bytes_mut(dest, size)).as_mut_ptr();
2016-03-13 15:36:25 -05:00
// TODO(tsion): Clear the destination range's existing relocations.
try!(self.get_mut(dest.alloc_id)).relocations.extend(relocations);
2016-03-05 00:48:23 -06:00
// SAFE: The above indexing would have panicked if there weren't at least `size` bytes
// behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and
// `dest` could possibly overlap.
unsafe {
if src.alloc_id == dest.alloc_id {
ptr::copy(src_bytes, dest_bytes, size);
} else {
ptr::copy_nonoverlapping(src_bytes, dest_bytes, size);
}
}
Ok(())
}
2016-03-13 15:36:25 -05:00
pub fn read_ptr(&self, ptr: Pointer) -> EvalResult<Pointer> {
let alloc = try!(self.get(ptr.alloc_id));
try!(alloc.check_relocation_edges(ptr.offset, ptr.offset + POINTER_SIZE));
let bytes = &alloc.bytes[ptr.offset..ptr.offset + POINTER_SIZE];
let offset = byteorder::NativeEndian::read_u64(bytes) as usize;
// TODO(tsion): Return an EvalError here instead of panicking.
let alloc_id = *alloc.relocations.get(&ptr.offset).unwrap();
Ok(Pointer { alloc_id: alloc_id, offset: offset })
}
// TODO(tsion): Detect invalid writes here and elsewhere.
pub fn write_ptr(&mut self, dest: Pointer, ptr_val: Pointer) -> EvalResult<()> {
{
let bytes = try!(self.get_bytes_mut(dest, POINTER_SIZE));
byteorder::NativeEndian::write_u64(bytes, ptr_val.offset as u64);
}
let alloc = try!(self.get_mut(dest.alloc_id));
alloc.relocations.insert(dest.offset, ptr_val.alloc_id);
Ok(())
}
2016-03-13 01:14:20 -06:00
pub fn read_primval(&self, ptr: Pointer, repr: &Repr) -> EvalResult<PrimVal> {
match *repr {
Repr::Bool => self.read_bool(ptr).map(PrimVal::Bool),
2016-03-15 00:03:31 -05:00
Repr::I8 => self.read_i8(ptr).map(PrimVal::I8),
Repr::I16 => self.read_i16(ptr).map(PrimVal::I16),
Repr::I32 => self.read_i32(ptr).map(PrimVal::I32),
Repr::I64 => self.read_i64(ptr).map(PrimVal::I64),
Repr::U8 => self.read_u8(ptr).map(PrimVal::U8),
Repr::U16 => self.read_u16(ptr).map(PrimVal::U16),
Repr::U32 => self.read_u32(ptr).map(PrimVal::U32),
Repr::U64 => self.read_u64(ptr).map(PrimVal::U64),
2016-03-13 01:14:20 -06:00
_ => panic!("primitive read of non-primitive: {:?}", repr),
}
2016-03-05 00:48:23 -06:00
}
2016-03-13 01:14:20 -06:00
pub fn write_primval(&mut self, ptr: Pointer, val: PrimVal) -> EvalResult<()> {
match val {
PrimVal::Bool(b) => self.write_bool(ptr, b),
2016-03-15 00:03:31 -05:00
PrimVal::I8(n) => self.write_i8(ptr, n),
PrimVal::I16(n) => self.write_i16(ptr, n),
PrimVal::I32(n) => self.write_i32(ptr, n),
PrimVal::I64(n) => self.write_i64(ptr, n),
PrimVal::U8(n) => self.write_u8(ptr, n),
PrimVal::U16(n) => self.write_u16(ptr, n),
PrimVal::U32(n) => self.write_u32(ptr, n),
PrimVal::U64(n) => self.write_u64(ptr, n),
2016-03-13 01:14:20 -06:00
}
2016-03-07 04:44:03 -06:00
}
pub fn read_bool(&self, ptr: Pointer) -> EvalResult<bool> {
2016-03-07 04:44:03 -06:00
let bytes = try!(self.get_bytes(ptr, 1));
match bytes[0] {
0 => Ok(false),
1 => Ok(true),
_ => Err(EvalError::InvalidBool),
}
}
pub fn write_bool(&mut self, ptr: Pointer, b: bool) -> EvalResult<()> {
2016-03-07 04:44:03 -06:00
let bytes = try!(self.get_bytes_mut(ptr, 1));
bytes[0] = b as u8;
Ok(())
2016-03-05 00:48:23 -06:00
}
2016-03-13 01:14:20 -06:00
pub fn read_i8(&self, ptr: Pointer) -> EvalResult<i8> {
self.get_bytes(ptr, 1).map(|b| b[0] as i8)
}
pub fn write_i8(&mut self, ptr: Pointer, n: i8) -> EvalResult<()> {
self.get_bytes_mut(ptr, 1).map(|b| b[0] = n as u8)
}
pub fn read_i16(&self, ptr: Pointer) -> EvalResult<i16> {
self.get_bytes(ptr, 2).map(byteorder::NativeEndian::read_i16)
}
pub fn write_i16(&mut self, ptr: Pointer, n: i16) -> EvalResult<()> {
let bytes = try!(self.get_bytes_mut(ptr, 2));
byteorder::NativeEndian::write_i16(bytes, n);
Ok(())
}
pub fn read_i32(&self, ptr: Pointer) -> EvalResult<i32> {
self.get_bytes(ptr, 4).map(byteorder::NativeEndian::read_i32)
}
pub fn write_i32(&mut self, ptr: Pointer, n: i32) -> EvalResult<()> {
let bytes = try!(self.get_bytes_mut(ptr, 4));
byteorder::NativeEndian::write_i32(bytes, n);
Ok(())
}
pub fn read_i64(&self, ptr: Pointer) -> EvalResult<i64> {
self.get_bytes(ptr, 8).map(byteorder::NativeEndian::read_i64)
}
pub fn write_i64(&mut self, ptr: Pointer, n: i64) -> EvalResult<()> {
let bytes = try!(self.get_bytes_mut(ptr, 8));
byteorder::NativeEndian::write_i64(bytes, n);
Ok(())
}
2016-03-15 00:03:31 -05:00
pub fn read_u8(&self, ptr: Pointer) -> EvalResult<u8> {
self.get_bytes(ptr, 1).map(|b| b[0] as u8)
}
pub fn write_u8(&mut self, ptr: Pointer, n: u8) -> EvalResult<()> {
self.get_bytes_mut(ptr, 1).map(|b| b[0] = n as u8)
}
pub fn read_u16(&self, ptr: Pointer) -> EvalResult<u16> {
self.get_bytes(ptr, 2).map(byteorder::NativeEndian::read_u16)
}
pub fn write_u16(&mut self, ptr: Pointer, n: u16) -> EvalResult<()> {
let bytes = try!(self.get_bytes_mut(ptr, 2));
byteorder::NativeEndian::write_u16(bytes, n);
Ok(())
}
pub fn read_u32(&self, ptr: Pointer) -> EvalResult<u32> {
self.get_bytes(ptr, 4).map(byteorder::NativeEndian::read_u32)
}
pub fn write_u32(&mut self, ptr: Pointer, n: u32) -> EvalResult<()> {
let bytes = try!(self.get_bytes_mut(ptr, 4));
byteorder::NativeEndian::write_u32(bytes, n);
Ok(())
}
pub fn read_u64(&self, ptr: Pointer) -> EvalResult<u64> {
self.get_bytes(ptr, 8).map(byteorder::NativeEndian::read_u64)
}
pub fn write_u64(&mut self, ptr: Pointer, n: u64) -> EvalResult<()> {
let bytes = try!(self.get_bytes_mut(ptr, 8));
byteorder::NativeEndian::write_u64(bytes, n);
Ok(())
}
2016-03-05 00:48:23 -06:00
}
impl Allocation {
2016-03-13 15:36:25 -05:00
fn check_bounds(&self, start: usize, end: usize) -> EvalResult<()> {
if start <= self.bytes.len() && end <= self.bytes.len() {
2016-03-07 04:44:03 -06:00
Ok(())
} else {
Err(EvalError::PointerOutOfBounds)
2016-03-05 00:48:23 -06:00
}
}
2016-03-13 15:36:25 -05:00
fn count_overlapping_relocations(&self, start: usize, end: usize) -> usize {
self.relocations.range(
Included(&start.saturating_sub(POINTER_SIZE - 1)),
Excluded(&end)
).count()
}
fn check_relocation_edges(&self, start: usize, end: usize) -> EvalResult<()> {
try!(self.check_bounds(start, end));
let n =
self.count_overlapping_relocations(start, start) +
self.count_overlapping_relocations(end, end);
if n == 0 {
Ok(())
} else {
Err(EvalError::InvalidPointerAccess)
}
}
fn check_no_relocations(&self, start: usize, end: usize) -> EvalResult<()> {
try!(self.check_bounds(start, end));
if self.count_overlapping_relocations(start, end) == 0 {
Ok(())
} else {
Err(EvalError::InvalidPointerAccess)
}
}
2016-03-05 00:48:23 -06:00
}
impl Pointer {
pub fn offset(self, i: usize) -> Self {
Pointer { offset: self.offset + i, ..self }
2016-03-05 00:48:23 -06:00
}
}
impl Repr {
2016-03-15 00:03:31 -05:00
// TODO(tsion): Choice is based on host machine's type size. Should this be how miri works?
pub fn isize() -> Self {
match mem::size_of::<isize>() {
4 => Repr::I32,
8 => Repr::I64,
_ => unimplemented!(),
}
}
// TODO(tsion): Choice is based on host machine's type size. Should this be how miri works?
pub fn usize() -> Self {
match mem::size_of::<isize>() {
4 => Repr::U32,
8 => Repr::U64,
_ => unimplemented!(),
}
}
2016-03-05 00:48:23 -06:00
pub fn size(&self) -> usize {
match *self {
2016-03-07 04:44:03 -06:00
Repr::Bool => 1,
2016-03-15 00:03:31 -05:00
Repr::I8 | Repr::U8 => 1,
Repr::I16 | Repr::U16 => 2,
Repr::I32 | Repr::U32 => 4,
Repr::I64 | Repr::U64 => 8,
Repr::Product { size, .. } => size,
Repr::Sum { ref discr, max_variant_size, .. } => discr.size() + max_variant_size,
2016-03-15 06:50:53 -05:00
Repr::Array { ref elem, length } => elem.size() * length,
2016-03-13 15:36:25 -05:00
Repr::Pointer { .. } => POINTER_SIZE,
2016-03-05 00:48:23 -06:00
}
}
}