rust/src/librustc/middle/check_static_recursion.rs

291 lines
12 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2015-07-02 16:07:42 -05:00
// This compiler pass detects constants that refer to themselves
// recursively.
2015-07-31 02:04:06 -05:00
use front::map as ast_map;
use session::Session;
2015-07-02 16:07:42 -05:00
use middle::def::{DefStatic, DefConst, DefAssociatedConst, DefVariant, DefMap};
use util::nodemap::NodeMap;
2015-08-16 05:32:28 -05:00
use syntax::{ast};
use syntax::codemap::Span;
use syntax::feature_gate::{GateIssue, emit_feature_err};
2015-07-31 02:04:06 -05:00
use rustc_front::visit::Visitor;
use rustc_front::visit;
use rustc_front::hir;
use std::cell::RefCell;
struct CheckCrateVisitor<'a, 'ast: 'a> {
sess: &'a Session,
2015-11-04 00:02:22 -06:00
def_map: &'a RefCell<DefMap>,
ast_map: &'a ast_map::Map<'ast>,
// `discriminant_map` is a cache that associates the `NodeId`s of local
// variant definitions with the discriminant expression that applies to
// each one. If the variant uses the default values (starting from `0`),
// then `None` is stored.
2015-07-31 02:04:06 -05:00
discriminant_map: RefCell<NodeMap<Option<&'ast hir::Expr>>>,
}
impl<'a, 'ast: 'a> Visitor<'ast> for CheckCrateVisitor<'a, 'ast> {
2015-07-31 02:04:06 -05:00
fn visit_item(&mut self, it: &'ast hir::Item) {
match it.node {
2015-07-31 02:04:06 -05:00
hir::ItemStatic(..) |
hir::ItemConst(..) => {
let mut recursion_visitor =
CheckItemRecursionVisitor::new(self, &it.span);
recursion_visitor.visit_item(it);
},
2015-07-31 02:04:06 -05:00
hir::ItemEnum(ref enum_def, ref generics) => {
// We could process the whole enum, but handling the variants
// with discriminant expressions one by one gives more specific,
// less redundant output.
for variant in &enum_def.variants {
if let Some(_) = variant.node.disr_expr {
let mut recursion_visitor =
CheckItemRecursionVisitor::new(self, &variant.span);
recursion_visitor.populate_enum_discriminants(enum_def);
recursion_visitor.visit_variant(variant, generics, it.id);
}
}
}
_ => {}
}
visit::walk_item(self, it)
}
2015-07-31 02:04:06 -05:00
fn visit_trait_item(&mut self, ti: &'ast hir::TraitItem) {
match ti.node {
2015-07-31 02:04:06 -05:00
hir::ConstTraitItem(_, ref default) => {
if let Some(_) = *default {
let mut recursion_visitor =
CheckItemRecursionVisitor::new(self, &ti.span);
recursion_visitor.visit_trait_item(ti);
}
}
_ => {}
}
visit::walk_trait_item(self, ti)
}
2015-07-31 02:04:06 -05:00
fn visit_impl_item(&mut self, ii: &'ast hir::ImplItem) {
match ii.node {
2015-07-31 02:04:06 -05:00
hir::ConstImplItem(..) => {
let mut recursion_visitor =
CheckItemRecursionVisitor::new(self, &ii.span);
recursion_visitor.visit_impl_item(ii);
}
_ => {}
}
visit::walk_impl_item(self, ii)
}
}
pub fn check_crate<'ast>(sess: &Session,
2015-07-31 02:04:06 -05:00
krate: &'ast hir::Crate,
2015-11-04 00:02:22 -06:00
def_map: &RefCell<DefMap>,
ast_map: &ast_map::Map<'ast>) {
let mut visitor = CheckCrateVisitor {
sess: sess,
def_map: def_map,
ast_map: ast_map,
discriminant_map: RefCell::new(NodeMap()),
};
visit::walk_crate(&mut visitor, krate);
sess.abort_if_errors();
}
struct CheckItemRecursionVisitor<'a, 'ast: 'a> {
root_span: &'a Span,
sess: &'a Session,
ast_map: &'a ast_map::Map<'ast>,
2015-11-04 00:02:22 -06:00
def_map: &'a RefCell<DefMap>,
2015-07-31 02:04:06 -05:00
discriminant_map: &'a RefCell<NodeMap<Option<&'ast hir::Expr>>>,
idstack: Vec<ast::NodeId>,
}
impl<'a, 'ast: 'a> CheckItemRecursionVisitor<'a, 'ast> {
fn new(v: &'a CheckCrateVisitor<'a, 'ast>, span: &'a Span)
-> CheckItemRecursionVisitor<'a, 'ast> {
CheckItemRecursionVisitor {
root_span: span,
sess: v.sess,
ast_map: v.ast_map,
def_map: v.def_map,
discriminant_map: &v.discriminant_map,
idstack: Vec::new(),
}
}
fn with_item_id_pushed<F>(&mut self, id: ast::NodeId, f: F)
where F: Fn(&mut Self) {
2015-07-02 16:07:42 -05:00
if self.idstack.iter().any(|&x| x == id) {
let any_static = self.idstack.iter().any(|&x| {
if let ast_map::NodeItem(item) = self.ast_map.get(x) {
2015-07-31 02:04:06 -05:00
if let hir::ItemStatic(..) = item.node {
2015-07-02 16:07:42 -05:00
true
} else {
false
}
} else {
false
}
});
if any_static {
if !self.sess.features.borrow().static_recursion {
emit_feature_err(&self.sess.parse_sess.span_diagnostic,
"static_recursion",
*self.root_span, GateIssue::Language, "recursive static");
2015-07-02 16:07:42 -05:00
}
} else {
span_err!(self.sess, *self.root_span, E0265, "recursive constant");
}
return;
}
self.idstack.push(id);
f(self);
self.idstack.pop();
}
// If a variant has an expression specifying its discriminant, then it needs
// to be checked just like a static or constant. However, if there are more
// variants with no explicitly specified discriminant, those variants will
// increment the same expression to get their values.
//
// So for every variant, we need to track whether there is an expression
// somewhere in the enum definition that controls its discriminant. We do
// this by starting from the end and searching backward.
2015-07-31 02:04:06 -05:00
fn populate_enum_discriminants(&self, enum_definition: &'ast hir::EnumDef) {
// Get the map, and return if we already processed this enum or if it
// has no variants.
let mut discriminant_map = self.discriminant_map.borrow_mut();
match enum_definition.variants.first() {
None => { return; }
2015-10-09 19:28:40 -05:00
Some(variant) if discriminant_map.contains_key(&variant.node.data.id()) => {
return;
}
_ => {}
}
// Go through all the variants.
let mut variant_stack: Vec<ast::NodeId> = Vec::new();
for variant in enum_definition.variants.iter().rev() {
2015-10-09 19:28:40 -05:00
variant_stack.push(variant.node.data.id());
// When we find an expression, every variant currently on the stack
// is affected by that expression.
if let Some(ref expr) = variant.node.disr_expr {
for id in &variant_stack {
discriminant_map.insert(*id, Some(expr));
}
variant_stack.clear()
}
}
// If we are at the top, that always starts at 0, so any variant on the
// stack has a default value and does not need to be checked.
for id in &variant_stack {
discriminant_map.insert(*id, None);
}
}
}
impl<'a, 'ast: 'a> Visitor<'ast> for CheckItemRecursionVisitor<'a, 'ast> {
2015-07-31 02:04:06 -05:00
fn visit_item(&mut self, it: &'ast hir::Item) {
self.with_item_id_pushed(it.id, |v| visit::walk_item(v, it));
}
2015-07-31 02:04:06 -05:00
fn visit_enum_def(&mut self, enum_definition: &'ast hir::EnumDef,
2015-10-16 09:17:14 -05:00
generics: &'ast hir::Generics, item_id: ast::NodeId, _: Span) {
self.populate_enum_discriminants(enum_definition);
visit::walk_enum_def(self, enum_definition, generics, item_id);
}
2015-07-31 02:04:06 -05:00
fn visit_variant(&mut self, variant: &'ast hir::Variant,
_: &'ast hir::Generics, _: ast::NodeId) {
2015-10-09 19:28:40 -05:00
let variant_id = variant.node.data.id();
let maybe_expr;
if let Some(get_expr) = self.discriminant_map.borrow().get(&variant_id) {
// This is necessary because we need to let the `discriminant_map`
// borrow fall out of scope, so that we can reborrow farther down.
maybe_expr = (*get_expr).clone();
} else {
self.sess.span_bug(variant.span,
"`check_static_recursion` attempted to visit \
variant with unknown discriminant")
}
// If `maybe_expr` is `None`, that's because no discriminant is
// specified that affects this variant. Thus, no risk of recursion.
if let Some(expr) = maybe_expr {
self.with_item_id_pushed(expr.id, |v| visit::walk_expr(v, expr));
}
}
2015-07-31 02:04:06 -05:00
fn visit_trait_item(&mut self, ti: &'ast hir::TraitItem) {
self.with_item_id_pushed(ti.id, |v| visit::walk_trait_item(v, ti));
}
2015-07-31 02:04:06 -05:00
fn visit_impl_item(&mut self, ii: &'ast hir::ImplItem) {
self.with_item_id_pushed(ii.id, |v| visit::walk_impl_item(v, ii));
}
2015-07-31 02:04:06 -05:00
fn visit_expr(&mut self, e: &'ast hir::Expr) {
match e.node {
2015-07-31 02:04:06 -05:00
hir::ExprPath(..) => {
match self.def_map.borrow().get(&e.id).map(|d| d.base_def) {
2015-07-02 16:07:42 -05:00
Some(DefStatic(def_id, _)) |
Some(DefAssociatedConst(def_id)) |
Some(DefConst(def_id)) => {
if let Some(node_id) = self.ast_map.as_local_node_id(def_id) {
match self.ast_map.get(node_id) {
ast_map::NodeItem(item) =>
self.visit_item(item),
ast_map::NodeTraitItem(item) =>
self.visit_trait_item(item),
ast_map::NodeImplItem(item) =>
self.visit_impl_item(item),
ast_map::NodeForeignItem(_) => {},
_ => {
self.sess.span_bug(
e.span,
&format!("expected item, found {}",
self.ast_map.node_to_string(node_id)));
}
}
}
}
// For variants, we only want to check expressions that
// affect the specific variant used, but we need to check
// the whole enum definition to see what expression that
// might be (if any).
Some(DefVariant(enum_id, variant_id, false)) => {
if let Some(enum_node_id) = self.ast_map.as_local_node_id(enum_id) {
if let hir::ItemEnum(ref enum_def, ref generics) =
self.ast_map.expect_item(enum_node_id).node
{
self.populate_enum_discriminants(enum_def);
let enum_id = self.ast_map.as_local_node_id(enum_id).unwrap();
let variant_id = self.ast_map.as_local_node_id(variant_id).unwrap();
let variant = self.ast_map.expect_variant(variant_id);
self.visit_variant(variant, generics, enum_id);
} else {
self.sess.span_bug(e.span,
"`check_static_recursion` found \
non-enum in DefVariant");
}
}
}
_ => ()
}
},
_ => ()
}
visit::walk_expr(self, e);
}
}