587 lines
22 KiB
Rust
Raw Normal View History

2015-04-24 15:36:43 +12:00
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://!rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://!www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://!opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Utility Functions.
2015-04-24 16:48:10 +12:00
use super::{FunctionDebugContext, CrateDebugContext};
2015-04-24 16:00:47 +12:00
use super::namespace::namespace_for_item;
2015-04-24 16:48:10 +12:00
use super::metadata::file_metadata;
2015-04-24 15:36:43 +12:00
use llvm;
use llvm::debuginfo::{DIScope, DISubprogram, DIBuilderRef};
use trans::machine;
use trans::common::{CrateContext, FunctionContext};
use trans::type_::Type;
use middle::pat_util;
use util::nodemap::NodeMap;
use libc::c_uint;
use syntax::codemap::{Span, Pos};
use syntax::{ast, codemap, ast_util};
pub fn contains_nodebug_attribute(attributes: &[ast::Attribute]) -> bool {
attributes.iter().any(|attr| {
let meta_item: &ast::MetaItem = &*attr.node.value;
match meta_item.node {
ast::MetaWord(ref value) => &value[..] == "no_debug",
_ => false
}
})
}
/// Return codemap::Loc corresponding to the beginning of the span
pub fn span_start(cx: &CrateContext, span: Span) -> codemap::Loc {
cx.sess().codemap().lookup_char_pos(span.lo)
}
pub fn size_and_align_of(cx: &CrateContext, llvm_type: Type) -> (u64, u64) {
(machine::llsize_of_alloc(cx, llvm_type), machine::llalign_of_min(cx, llvm_type) as u64)
}
pub fn bytes_to_bits(bytes: u64) -> u64 {
bytes * 8
}
#[inline]
pub fn debug_context<'a, 'tcx>(cx: &'a CrateContext<'a, 'tcx>)
-> &'a CrateDebugContext<'tcx> {
let debug_context: &'a CrateDebugContext<'tcx> = cx.dbg_cx().as_ref().unwrap();
debug_context
}
#[inline]
#[allow(non_snake_case)]
pub fn DIB(cx: &CrateContext) -> DIBuilderRef {
cx.dbg_cx().as_ref().unwrap().builder
}
pub fn fn_should_be_ignored(fcx: &FunctionContext) -> bool {
match fcx.debug_context {
FunctionDebugContext::RegularContext(_) => false,
_ => true
}
}
pub fn assert_type_for_node_id(cx: &CrateContext,
node_id: ast::NodeId,
error_reporting_span: Span) {
if !cx.tcx().node_types().contains_key(&node_id) {
cx.sess().span_bug(error_reporting_span,
"debuginfo: Could not find type for node id!");
}
}
pub fn get_namespace_and_span_for_item(cx: &CrateContext, def_id: ast::DefId)
-> (DIScope, Span) {
let containing_scope = namespace_for_item(cx, def_id).scope;
let definition_span = if def_id.krate == ast::LOCAL_CRATE {
cx.tcx().map.span(def_id.node)
} else {
// For external items there is no span information
codemap::DUMMY_SP
};
(containing_scope, definition_span)
}
// This procedure builds the *scope map* for a given function, which maps any
// given ast::NodeId in the function's AST to the correct DIScope metadata instance.
//
// This builder procedure walks the AST in execution order and keeps track of
// what belongs to which scope, creating DIScope DIEs along the way, and
// introducing *artificial* lexical scope descriptors where necessary. These
// artificial scopes allow GDB to correctly handle name shadowing.
pub fn create_scope_map(cx: &CrateContext,
args: &[ast::Arg],
fn_entry_block: &ast::Block,
fn_metadata: DISubprogram,
fn_ast_id: ast::NodeId)
-> NodeMap<DIScope> {
let mut scope_map = NodeMap();
let def_map = &cx.tcx().def_map;
struct ScopeStackEntry {
scope_metadata: DIScope,
name: Option<ast::Name>
}
let mut scope_stack = vec!(ScopeStackEntry { scope_metadata: fn_metadata, name: None });
scope_map.insert(fn_ast_id, fn_metadata);
// Push argument identifiers onto the stack so arguments integrate nicely
// with variable shadowing.
for arg in args {
pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, _, path1| {
scope_stack.push(ScopeStackEntry { scope_metadata: fn_metadata,
name: Some(path1.node.name) });
scope_map.insert(node_id, fn_metadata);
})
}
// Clang creates a separate scope for function bodies, so let's do this too.
with_new_scope(cx,
fn_entry_block.span,
&mut scope_stack,
&mut scope_map,
|cx, scope_stack, scope_map| {
walk_block(cx, fn_entry_block, scope_stack, scope_map);
});
return scope_map;
// local helper functions for walking the AST.
fn with_new_scope<F>(cx: &CrateContext,
scope_span: Span,
scope_stack: &mut Vec<ScopeStackEntry> ,
scope_map: &mut NodeMap<DIScope>,
inner_walk: F) where
F: FnOnce(&CrateContext, &mut Vec<ScopeStackEntry>, &mut NodeMap<DIScope>),
{
// Create a new lexical scope and push it onto the stack
let loc = cx.sess().codemap().lookup_char_pos(scope_span.lo);
let file_metadata = file_metadata(cx, &loc.file.name);
let parent_scope = scope_stack.last().unwrap().scope_metadata;
let scope_metadata = unsafe {
llvm::LLVMDIBuilderCreateLexicalBlock(
DIB(cx),
parent_scope,
file_metadata,
loc.line as c_uint,
loc.col.to_usize() as c_uint)
};
scope_stack.push(ScopeStackEntry { scope_metadata: scope_metadata, name: None });
inner_walk(cx, scope_stack, scope_map);
// pop artificial scopes
while scope_stack.last().unwrap().name.is_some() {
scope_stack.pop();
}
if scope_stack.last().unwrap().scope_metadata != scope_metadata {
cx.sess().span_bug(scope_span, "debuginfo: Inconsistency in scope management.");
}
scope_stack.pop();
}
fn walk_block(cx: &CrateContext,
block: &ast::Block,
scope_stack: &mut Vec<ScopeStackEntry> ,
scope_map: &mut NodeMap<DIScope>) {
scope_map.insert(block.id, scope_stack.last().unwrap().scope_metadata);
// The interesting things here are statements and the concluding expression.
for statement in &block.stmts {
scope_map.insert(ast_util::stmt_id(&**statement),
scope_stack.last().unwrap().scope_metadata);
match statement.node {
ast::StmtDecl(ref decl, _) =>
walk_decl(cx, &**decl, scope_stack, scope_map),
ast::StmtExpr(ref exp, _) |
ast::StmtSemi(ref exp, _) =>
walk_expr(cx, &**exp, scope_stack, scope_map),
ast::StmtMac(..) => () // Ignore macros (which should be expanded anyway).
}
}
if let Some(ref exp) = block.expr {
walk_expr(cx, &**exp, scope_stack, scope_map);
}
}
fn walk_decl(cx: &CrateContext,
decl: &ast::Decl,
scope_stack: &mut Vec<ScopeStackEntry> ,
scope_map: &mut NodeMap<DIScope>) {
match *decl {
codemap::Spanned { node: ast::DeclLocal(ref local), .. } => {
scope_map.insert(local.id, scope_stack.last().unwrap().scope_metadata);
walk_pattern(cx, &*local.pat, scope_stack, scope_map);
if let Some(ref exp) = local.init {
walk_expr(cx, &**exp, scope_stack, scope_map);
}
}
_ => ()
}
}
fn walk_pattern(cx: &CrateContext,
pat: &ast::Pat,
scope_stack: &mut Vec<ScopeStackEntry> ,
scope_map: &mut NodeMap<DIScope>) {
let def_map = &cx.tcx().def_map;
// Unfortunately, we cannot just use pat_util::pat_bindings() or
// ast_util::walk_pat() here because we have to visit *all* nodes in
// order to put them into the scope map. The above functions don't do that.
match pat.node {
ast::PatIdent(_, ref path1, ref sub_pat_opt) => {
// Check if this is a binding. If so we need to put it on the
// scope stack and maybe introduce an artificial scope
if pat_util::pat_is_binding(def_map, &*pat) {
let name = path1.node.name;
// LLVM does not properly generate 'DW_AT_start_scope' fields
// for variable DIEs. For this reason we have to introduce
// an artificial scope at bindings whenever a variable with
// the same name is declared in *any* parent scope.
//
// Otherwise the following error occurs:
//
// let x = 10;
//
// do_something(); // 'gdb print x' correctly prints 10
//
// {
// do_something(); // 'gdb print x' prints 0, because it
// // already reads the uninitialized 'x'
// // from the next line...
// let x = 100;
// do_something(); // 'gdb print x' correctly prints 100
// }
// Is there already a binding with that name?
// N.B.: this comparison must be UNhygienic... because
// gdb knows nothing about the context, so any two
// variables with the same name will cause the problem.
let need_new_scope = scope_stack
.iter()
.any(|entry| entry.name == Some(name));
if need_new_scope {
// Create a new lexical scope and push it onto the stack
let loc = cx.sess().codemap().lookup_char_pos(pat.span.lo);
let file_metadata = file_metadata(cx, &loc.file.name);
let parent_scope = scope_stack.last().unwrap().scope_metadata;
let scope_metadata = unsafe {
llvm::LLVMDIBuilderCreateLexicalBlock(
DIB(cx),
parent_scope,
file_metadata,
loc.line as c_uint,
loc.col.to_usize() as c_uint)
};
scope_stack.push(ScopeStackEntry {
scope_metadata: scope_metadata,
name: Some(name)
});
} else {
// Push a new entry anyway so the name can be found
let prev_metadata = scope_stack.last().unwrap().scope_metadata;
scope_stack.push(ScopeStackEntry {
scope_metadata: prev_metadata,
name: Some(name)
});
}
}
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
if let Some(ref sub_pat) = *sub_pat_opt {
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
}
ast::PatWild(_) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
}
ast::PatEnum(_, ref sub_pats_opt) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
if let Some(ref sub_pats) = *sub_pats_opt {
for p in sub_pats {
walk_pattern(cx, &**p, scope_stack, scope_map);
}
}
}
ast::PatQPath(..) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
}
ast::PatStruct(_, ref field_pats, _) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
for &codemap::Spanned {
node: ast::FieldPat { pat: ref sub_pat, .. },
..
} in field_pats.iter() {
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
}
ast::PatTup(ref sub_pats) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
for sub_pat in sub_pats {
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
}
ast::PatBox(ref sub_pat) | ast::PatRegion(ref sub_pat, _) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
ast::PatLit(ref exp) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
walk_expr(cx, &**exp, scope_stack, scope_map);
}
ast::PatRange(ref exp1, ref exp2) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
walk_expr(cx, &**exp1, scope_stack, scope_map);
walk_expr(cx, &**exp2, scope_stack, scope_map);
}
ast::PatVec(ref front_sub_pats, ref middle_sub_pats, ref back_sub_pats) => {
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
for sub_pat in front_sub_pats {
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
if let Some(ref sub_pat) = *middle_sub_pats {
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
for sub_pat in back_sub_pats {
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
}
}
ast::PatMac(_) => {
cx.sess().span_bug(pat.span, "debuginfo::create_scope_map() - \
Found unexpanded macro.");
}
}
}
fn walk_expr(cx: &CrateContext,
exp: &ast::Expr,
scope_stack: &mut Vec<ScopeStackEntry> ,
scope_map: &mut NodeMap<DIScope>) {
scope_map.insert(exp.id, scope_stack.last().unwrap().scope_metadata);
match exp.node {
ast::ExprLit(_) |
ast::ExprBreak(_) |
ast::ExprAgain(_) |
ast::ExprPath(..) => {}
ast::ExprCast(ref sub_exp, _) |
ast::ExprAddrOf(_, ref sub_exp) |
ast::ExprField(ref sub_exp, _) |
ast::ExprTupField(ref sub_exp, _) |
ast::ExprParen(ref sub_exp) =>
walk_expr(cx, &**sub_exp, scope_stack, scope_map),
ast::ExprBox(ref place, ref sub_expr) => {
place.as_ref().map(
|e| walk_expr(cx, &**e, scope_stack, scope_map));
walk_expr(cx, &**sub_expr, scope_stack, scope_map);
}
ast::ExprRet(ref exp_opt) => match *exp_opt {
Some(ref sub_exp) => walk_expr(cx, &**sub_exp, scope_stack, scope_map),
None => ()
},
ast::ExprUnary(_, ref sub_exp) => {
walk_expr(cx, &**sub_exp, scope_stack, scope_map);
}
ast::ExprAssignOp(_, ref lhs, ref rhs) |
ast::ExprIndex(ref lhs, ref rhs) |
ast::ExprBinary(_, ref lhs, ref rhs) => {
walk_expr(cx, &**lhs, scope_stack, scope_map);
walk_expr(cx, &**rhs, scope_stack, scope_map);
}
ast::ExprRange(ref start, ref end) => {
start.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map));
end.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map));
}
ast::ExprVec(ref init_expressions) |
ast::ExprTup(ref init_expressions) => {
for ie in init_expressions {
walk_expr(cx, &**ie, scope_stack, scope_map);
}
}
ast::ExprAssign(ref sub_exp1, ref sub_exp2) |
ast::ExprRepeat(ref sub_exp1, ref sub_exp2) => {
walk_expr(cx, &**sub_exp1, scope_stack, scope_map);
walk_expr(cx, &**sub_exp2, scope_stack, scope_map);
}
ast::ExprIf(ref cond_exp, ref then_block, ref opt_else_exp) => {
walk_expr(cx, &**cond_exp, scope_stack, scope_map);
with_new_scope(cx,
then_block.span,
scope_stack,
scope_map,
|cx, scope_stack, scope_map| {
walk_block(cx, &**then_block, scope_stack, scope_map);
});
match *opt_else_exp {
Some(ref else_exp) =>
walk_expr(cx, &**else_exp, scope_stack, scope_map),
_ => ()
}
}
ast::ExprIfLet(..) => {
cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \
Found unexpanded if-let.");
}
ast::ExprWhile(ref cond_exp, ref loop_body, _) => {
walk_expr(cx, &**cond_exp, scope_stack, scope_map);
with_new_scope(cx,
loop_body.span,
scope_stack,
scope_map,
|cx, scope_stack, scope_map| {
walk_block(cx, &**loop_body, scope_stack, scope_map);
})
}
ast::ExprWhileLet(..) => {
cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \
Found unexpanded while-let.");
}
ast::ExprForLoop(..) => {
cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \
Found unexpanded for loop.");
}
ast::ExprMac(_) => {
cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \
Found unexpanded macro.");
}
ast::ExprLoop(ref block, _) |
ast::ExprBlock(ref block) => {
with_new_scope(cx,
block.span,
scope_stack,
scope_map,
|cx, scope_stack, scope_map| {
walk_block(cx, &**block, scope_stack, scope_map);
})
}
ast::ExprClosure(_, ref decl, ref block) => {
with_new_scope(cx,
block.span,
scope_stack,
scope_map,
|cx, scope_stack, scope_map| {
for &ast::Arg { pat: ref pattern, .. } in &decl.inputs {
walk_pattern(cx, &**pattern, scope_stack, scope_map);
}
walk_block(cx, &**block, scope_stack, scope_map);
})
}
ast::ExprCall(ref fn_exp, ref args) => {
walk_expr(cx, &**fn_exp, scope_stack, scope_map);
for arg_exp in args {
walk_expr(cx, &**arg_exp, scope_stack, scope_map);
}
}
ast::ExprMethodCall(_, _, ref args) => {
for arg_exp in args {
walk_expr(cx, &**arg_exp, scope_stack, scope_map);
}
}
ast::ExprMatch(ref discriminant_exp, ref arms, _) => {
walk_expr(cx, &**discriminant_exp, scope_stack, scope_map);
// For each arm we have to first walk the pattern as these might
// introduce new artificial scopes. It should be sufficient to
// walk only one pattern per arm, as they all must contain the
// same binding names.
for arm_ref in arms {
let arm_span = arm_ref.pats[0].span;
with_new_scope(cx,
arm_span,
scope_stack,
scope_map,
|cx, scope_stack, scope_map| {
for pat in &arm_ref.pats {
walk_pattern(cx, &**pat, scope_stack, scope_map);
}
if let Some(ref guard_exp) = arm_ref.guard {
walk_expr(cx, &**guard_exp, scope_stack, scope_map)
}
walk_expr(cx, &*arm_ref.body, scope_stack, scope_map);
})
}
}
ast::ExprStruct(_, ref fields, ref base_exp) => {
for &ast::Field { expr: ref exp, .. } in fields {
walk_expr(cx, &**exp, scope_stack, scope_map);
}
match *base_exp {
Some(ref exp) => walk_expr(cx, &**exp, scope_stack, scope_map),
None => ()
}
}
ast::ExprInlineAsm(ast::InlineAsm { ref inputs,
ref outputs,
.. }) => {
// inputs, outputs: Vec<(String, P<Expr>)>
for &(_, ref exp) in inputs {
walk_expr(cx, &**exp, scope_stack, scope_map);
}
for &(_, ref exp, _) in outputs {
walk_expr(cx, &**exp, scope_stack, scope_map);
}
}
}
}
}