rust/src/libstd/rt/kill.rs

823 lines
33 KiB
Rust
Raw Normal View History

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Task death: asynchronous killing, linked failure, exit code propagation.
use cast;
use cell::Cell;
use either::{Either, Left, Right};
use option::{Option, Some, None};
use prelude::*;
use rt::task::Task;
use to_bytes::IterBytes;
use unstable::atomics::{AtomicUint, Relaxed};
use unstable::sync::{UnsafeAtomicRcBox, LittleLock};
use util;
static KILLED_MSG: &'static str = "killed by linked failure";
// State values for the 'killed' and 'unkillable' atomic flags below.
static KILL_RUNNING: uint = 0;
static KILL_KILLED: uint = 1;
static KILL_UNKILLABLE: uint = 2;
struct KillFlag(AtomicUint);
type KillFlagHandle = UnsafeAtomicRcBox<KillFlag>;
/// A handle to a blocked task. Usually this means having the ~Task pointer by
/// ownership, but if the task is killable, a killer can steal it at any time.
pub enum BlockedTask {
Unkillable(~Task),
Killable(KillFlagHandle),
}
// FIXME(#7544)(bblum): think about the cache efficiency of this
struct KillHandleInner {
// Is the task running, blocked, or killed? Possible values:
// * KILL_RUNNING - Not unkillable, no kill pending.
// * KILL_KILLED - Kill pending.
// * <ptr> - A transmuted blocked ~Task pointer.
// This flag is refcounted because it may also be referenced by a blocking
// concurrency primitive, used to wake the task normally, whose reference
// may outlive the handle's if the task is killed.
killed: KillFlagHandle,
// Has the task deferred kill signals? This flag guards the above one.
// Possible values:
// * KILL_RUNNING - Not unkillable, no kill pending.
// * KILL_KILLED - Kill pending.
// * KILL_UNKILLABLE - Kill signals deferred.
unkillable: AtomicUint,
// Shared state between task and children for exit code propagation. These
// are here so we can re-use the kill handle to implement watched children
// tasks. Using a separate Arc-like would introduce extra atomic adds/subs
// into common spawn paths, so this is just for speed.
// Locklessly accessed; protected by the enclosing refcount's barriers.
any_child_failed: bool,
// A lazy list, consuming which may unwrap() many child tombstones.
child_tombstones: Option<~fn() -> bool>,
// Protects multiple children simultaneously creating tombstones.
graveyard_lock: LittleLock,
}
/// State shared between tasks used for task killing during linked failure.
#[deriving(Clone)]
pub struct KillHandle(UnsafeAtomicRcBox<KillHandleInner>);
/// Per-task state related to task death, killing, failure, etc.
pub struct Death {
// Shared among this task, its watched children, and any linked tasks who
// might kill it. This is optional so we can take it by-value at exit time.
kill_handle: Option<KillHandle>,
// Handle to a watching parent, if we have one, for exit code propagation.
watching_parent: Option<KillHandle>,
// Action to be done with the exit code. If set, also makes the task wait
// until all its watched children exit before collecting the status.
on_exit: Option<~fn(bool)>,
// nesting level counter for task::unkillable calls (0 == killable).
unkillable: int,
// nesting level counter for unstable::atomically calls (0 == can yield).
wont_sleep: int,
// A "spare" handle to the kill flag inside the kill handle. Used during
// blocking/waking as an optimization to avoid two xadds on the refcount.
spare_kill_flag: Option<KillFlagHandle>,
}
impl Drop for KillFlag {
// Letting a KillFlag with a task inside get dropped would leak the task.
// We could free it here, but the task should get awoken by hand somehow.
fn drop(&self) {
match self.load(Relaxed) {
KILL_RUNNING | KILL_KILLED => { },
_ => rtabort!("can't drop kill flag with a blocked task inside!"),
}
}
}
// Whenever a task blocks, it swaps out its spare kill flag to use as the
// blocked task handle. So unblocking a task must restore that spare.
unsafe fn revive_task_ptr(task_ptr: uint, spare_flag: Option<KillFlagHandle>) -> ~Task {
let mut task: ~Task = cast::transmute(task_ptr);
if task.death.spare_kill_flag.is_none() {
task.death.spare_kill_flag = spare_flag;
} else {
// A task's spare kill flag is not used for blocking in one case:
// when an unkillable task blocks on select. In this case, a separate
// one was created, which we now discard.
rtassert!(task.death.unkillable > 0);
}
task
}
impl BlockedTask {
/// Returns Some if the task was successfully woken; None if already killed.
pub fn wake(self) -> Option<~Task> {
match self {
Unkillable(task) => Some(task),
Killable(flag_arc) => {
let flag = unsafe { &mut **flag_arc.get() };
match flag.swap(KILL_RUNNING, Relaxed) {
KILL_RUNNING => None, // woken from select(), perhaps
KILL_KILLED => None, // a killer stole it already
task_ptr =>
Some(unsafe { revive_task_ptr(task_ptr, Some(flag_arc)) })
}
}
}
}
/// Create a blocked task, unless the task was already killed.
pub fn try_block(mut task: ~Task) -> Either<~Task, BlockedTask> {
if task.death.unkillable > 0 {
Right(Unkillable(task))
} else {
rtassert!(task.death.kill_handle.is_some());
unsafe {
// The inverse of 'revive', above, occurs here.
// The spare kill flag will usually be Some, unless the task was
// already killed, in which case the killer will have deferred
// creating a new one until whenever it blocks during unwinding.
let flag_arc = match task.death.spare_kill_flag.take() {
Some(spare_flag) => spare_flag,
None => {
// FIXME(#7544): Uncomment this when terminate_current_task
// stops being *terrible*. That's the only place that violates
// the assumption of "becoming unkillable will fail if the
// task was killed".
// rtassert!(task.unwinder.unwinding);
(*task.death.kill_handle.get_ref().get()).killed.clone()
}
};
let flag = &mut **flag_arc.get();
let task_ptr = cast::transmute(task);
// Expect flag to contain RUNNING. If KILLED, it should stay KILLED.
match flag.compare_and_swap(KILL_RUNNING, task_ptr, Relaxed) {
KILL_RUNNING => Right(Killable(flag_arc)),
KILL_KILLED => Left(revive_task_ptr(task_ptr, Some(flag_arc))),
x => rtabort!("can't block task! kill flag = %?", x),
}
}
}
}
/// Converts one blocked task handle to a list of many handles to the same.
pub fn make_selectable(self, num_handles: uint) -> ~[BlockedTask] {
let handles = match self {
Unkillable(task) => {
let flag = unsafe { KillFlag(AtomicUint::new(cast::transmute(task))) };
UnsafeAtomicRcBox::newN(flag, num_handles)
}
Killable(flag_arc) => flag_arc.cloneN(num_handles),
};
// Even if the task was unkillable before, we use 'Killable' because
// multiple pipes will have handles. It does not really mean killable.
handles.consume_iter().transform(|x| Killable(x)).collect()
}
// This assertion has two flavours because the wake involves an atomic op.
// In the faster version, destructors will fail dramatically instead.
#[inline] #[cfg(not(test))]
pub fn assert_already_awake(self) { }
#[inline] #[cfg(test)]
pub fn assert_already_awake(self) { assert!(self.wake().is_none()); }
/// Convert to an unsafe uint value. Useful for storing in a pipe's state flag.
#[inline]
pub unsafe fn cast_to_uint(self) -> uint {
// Use the low bit to distinguish the enum variants, to save a second
// allocation in the indestructible case.
match self {
Unkillable(task) => {
let blocked_task_ptr: uint = cast::transmute(task);
rtassert!(blocked_task_ptr & 0x1 == 0);
blocked_task_ptr
},
Killable(flag_arc) => {
let blocked_task_ptr: uint = cast::transmute(~flag_arc);
rtassert!(blocked_task_ptr & 0x1 == 0);
blocked_task_ptr | 0x1
}
}
}
/// Convert from an unsafe uint value. Useful for retrieving a pipe's state flag.
#[inline]
pub unsafe fn cast_from_uint(blocked_task_ptr: uint) -> BlockedTask {
if blocked_task_ptr & 0x1 == 0 {
Unkillable(cast::transmute(blocked_task_ptr))
} else {
let ptr: ~KillFlagHandle = cast::transmute(blocked_task_ptr & !0x1);
match ptr {
~flag_arc => Killable(flag_arc)
}
}
}
}
// So that KillHandle can be hashed in the taskgroup bookkeeping code.
impl IterBytes for KillHandle {
fn iter_bytes(&self, lsb0: bool, f: &fn(buf: &[u8]) -> bool) -> bool {
self.data.iter_bytes(lsb0, f)
}
}
impl Eq for KillHandle {
#[inline] fn eq(&self, other: &KillHandle) -> bool { self.data.eq(&other.data) }
#[inline] fn ne(&self, other: &KillHandle) -> bool { self.data.ne(&other.data) }
}
impl KillHandle {
pub fn new() -> (KillHandle, KillFlagHandle) {
let (flag, flag_clone) =
UnsafeAtomicRcBox::new2(KillFlag(AtomicUint::new(KILL_RUNNING)));
let handle = KillHandle(UnsafeAtomicRcBox::new(KillHandleInner {
// Linked failure fields
killed: flag,
unkillable: AtomicUint::new(KILL_RUNNING),
// Exit code propagation fields
any_child_failed: false,
child_tombstones: None,
graveyard_lock: LittleLock::new(),
}));
(handle, flag_clone)
}
// Will begin unwinding if a kill signal was received, unless already_failing.
// This can't be used recursively, because a task which sees a KILLED
// signal must fail immediately, which an already-unkillable task can't do.
#[inline]
pub fn inhibit_kill(&mut self, already_failing: bool) {
let inner = unsafe { &mut *self.get() };
// Expect flag to contain RUNNING. If KILLED, it should stay KILLED.
// FIXME(#7544)(bblum): is it really necessary to prohibit double kill?
match inner.unkillable.compare_and_swap(KILL_RUNNING, KILL_UNKILLABLE, Relaxed) {
KILL_RUNNING => { }, // normal case
KILL_KILLED => if !already_failing { fail!(KILLED_MSG) },
_ => rtabort!("inhibit_kill: task already unkillable"),
}
}
// Will begin unwinding if a kill signal was received, unless already_failing.
#[inline]
pub fn allow_kill(&mut self, already_failing: bool) {
let inner = unsafe { &mut *self.get() };
// Expect flag to contain UNKILLABLE. If KILLED, it should stay KILLED.
// FIXME(#7544)(bblum): is it really necessary to prohibit double kill?
match inner.unkillable.compare_and_swap(KILL_UNKILLABLE, KILL_RUNNING, Relaxed) {
KILL_UNKILLABLE => { }, // normal case
KILL_KILLED => if !already_failing { fail!(KILLED_MSG) },
_ => rtabort!("allow_kill: task already killable"),
}
}
// Send a kill signal to the handle's owning task. Returns the task itself
// if it was blocked and needs punted awake. To be called by other tasks.
pub fn kill(&mut self) -> Option<~Task> {
let inner = unsafe { &mut *self.get() };
if inner.unkillable.swap(KILL_KILLED, Relaxed) == KILL_RUNNING {
// Got in. Allowed to try to punt the task awake.
let flag = unsafe { &mut *inner.killed.get() };
match flag.swap(KILL_KILLED, Relaxed) {
// Task either not blocked or already taken care of.
KILL_RUNNING | KILL_KILLED => None,
// Got ownership of the blocked task.
// While the usual 'wake' path can just pass back the flag
// handle, we (the slower kill path) haven't an extra one lying
// around. The task will wake up without a spare.
task_ptr => Some(unsafe { revive_task_ptr(task_ptr, None) }),
}
} else {
// Otherwise it was either unkillable or already killed. Somebody
// else was here first who will deal with the kill signal.
None
}
}
#[inline]
pub fn killed(&self) -> bool {
// Called every context switch, so shouldn't report true if the task
// is unkillable with a kill signal pending.
let inner = unsafe { &*self.get() };
let flag = unsafe { &*inner.killed.get() };
// A barrier-related concern here is that a task that gets killed
// awake needs to see the killer's write of KILLED to this flag. This
// is analogous to receiving a pipe payload; the appropriate barrier
// should happen when enqueueing the task.
flag.load(Relaxed) == KILL_KILLED
}
pub fn notify_immediate_failure(&mut self) {
// A benign data race may happen here if there are failing sibling
// tasks that were also spawned-watched. The refcount's write barriers
// in UnsafeAtomicRcBox ensure that this write will be seen by the
// unwrapper/destructor, whichever task may unwrap it.
unsafe { (*self.get()).any_child_failed = true; }
}
// For use when a task does not need to collect its children's exit
// statuses, but the task has a parent which might want them.
pub fn reparent_children_to(self, parent: &mut KillHandle) {
// Optimistic path: If another child of the parent's already failed,
// we don't need to worry about any of this.
if unsafe { (*parent.get()).any_child_failed } {
return;
}
// Try to see if all our children are gone already.
match self.try_unwrap() {
// Couldn't unwrap; children still alive. Reparent entire handle as
// our own tombstone, to be unwrapped later.
Left(this) => {
let this = Cell::new(this); // :(
do add_lazy_tombstone(parent) |other_tombstones| {
let this = Cell::new(this.take()); // :(
let others = Cell::new(other_tombstones); // :(
|| {
// Prefer to check tombstones that were there first,
// being "more fair" at the expense of tail-recursion.
others.take().map_consume_default(true, |f| f()) && {
let mut inner = this.take().unwrap();
(!inner.any_child_failed) &&
inner.child_tombstones.take_map_default(true, |f| f())
}
}
}
}
// Whether or not all children exited, one or more already failed.
Right(KillHandleInner { any_child_failed: true, _ }) => {
parent.notify_immediate_failure();
}
// All children exited, but some left behind tombstones that we
// don't want to wait on now. Give them to our parent.
Right(KillHandleInner { any_child_failed: false,
child_tombstones: Some(f), _ }) => {
let f = Cell::new(f); // :(
do add_lazy_tombstone(parent) |other_tombstones| {
let f = Cell::new(f.take()); // :(
let others = Cell::new(other_tombstones); // :(
|| {
// Prefer fairness to tail-recursion, as in above case.
others.take().map_consume_default(true, |f| f()) &&
f.take()()
}
}
}
// All children exited, none failed. Nothing to do!
Right(KillHandleInner { any_child_failed: false,
child_tombstones: None, _ }) => { }
}
// NB: Takes a pthread mutex -- 'blk' not allowed to reschedule.
#[inline]
fn add_lazy_tombstone(parent: &mut KillHandle,
blk: &fn(Option<~fn() -> bool>) -> ~fn() -> bool) {
let inner: &mut KillHandleInner = unsafe { &mut *parent.get() };
unsafe {
do inner.graveyard_lock.lock {
// Update the current "head node" of the lazy list.
inner.child_tombstones =
Some(blk(util::replace(&mut inner.child_tombstones, None)));
}
}
}
}
}
impl Death {
pub fn new() -> Death {
let (handle, spare) = KillHandle::new();
Death {
kill_handle: Some(handle),
watching_parent: None,
on_exit: None,
unkillable: 0,
wont_sleep: 0,
spare_kill_flag: Some(spare),
}
}
pub fn new_child(&self) -> Death {
// FIXME(#7327)
let (handle, spare) = KillHandle::new();
Death {
kill_handle: Some(handle),
watching_parent: self.kill_handle.clone(),
on_exit: None,
unkillable: 0,
wont_sleep: 0,
spare_kill_flag: Some(spare),
}
}
/// Collect failure exit codes from children and propagate them to a parent.
pub fn collect_failure(&mut self, mut success: bool) {
// This may run after the task has already failed, so even though the
// task appears to need to be killed, the scheduler should not fail us
// when we block to unwrap.
// (XXX: Another less-elegant reason for doing this is so that the use
// of the LittleLock in reparent_children_to doesn't need to access the
// unkillable flag in the kill_handle, since we'll have removed it.)
rtassert!(self.unkillable == 0);
self.unkillable = 1;
// Step 1. Decide if we need to collect child failures synchronously.
do self.on_exit.take_map |on_exit| {
if success {
// We succeeded, but our children might not. Need to wait for them.
let mut inner = self.kill_handle.take_unwrap().unwrap();
if inner.any_child_failed {
success = false;
} else {
// Lockless access to tombstones protected by unwrap barrier.
success = inner.child_tombstones.take_map_default(true, |f| f());
}
}
on_exit(success);
};
// Step 2. Possibly alert possibly-watching parent to failure status.
// Note that as soon as parent_handle goes out of scope, the parent
// can successfully unwrap its handle and collect our reported status.
do self.watching_parent.take_map |mut parent_handle| {
if success {
// Our handle might be None if we had an exit callback, and
// already unwrapped it. But 'success' being true means no
// child failed, so there's nothing to do (see below case).
do self.kill_handle.take_map |own_handle| {
own_handle.reparent_children_to(&mut parent_handle);
};
} else {
// Can inform watching parent immediately that we failed.
// (Note the importance of non-failing tasks NOT writing
// 'false', which could obscure another task's failure.)
parent_handle.notify_immediate_failure();
}
};
// Can't use allow_kill directly; that would require the kill handle.
rtassert!(self.unkillable == 1);
self.unkillable = 0;
}
/// Fails if a kill signal was received.
#[inline]
pub fn check_killed(&self) {
match self.kill_handle {
Some(ref kill_handle) =>
// The task may be both unkillable and killed if it does some
// synchronization during unwinding or cleanup (for example,
// sending on a notify port). In that case failing won't help.
if self.unkillable == 0 && kill_handle.killed() {
fail!(KILLED_MSG);
},
// This may happen during task death (see comments in collect_failure).
None => rtassert!(self.unkillable > 0),
}
}
/// Enter a possibly-nested unkillable section of code.
/// All calls must be paired with a subsequent call to allow_kill.
#[inline]
pub fn inhibit_kill(&mut self, already_failing: bool) {
if self.unkillable == 0 {
rtassert!(self.kill_handle.is_some());
self.kill_handle.get_mut_ref().inhibit_kill(already_failing);
}
self.unkillable += 1;
}
/// Exit a possibly-nested unkillable section of code.
/// All calls must be paired with a preceding call to inhibit_kill.
#[inline]
pub fn allow_kill(&mut self, already_failing: bool) {
rtassert!(self.unkillable != 0);
self.unkillable -= 1;
if self.unkillable == 0 {
rtassert!(self.kill_handle.is_some());
self.kill_handle.get_mut_ref().allow_kill(already_failing);
}
}
/// Enter a possibly-nested "atomic" section of code. Just for assertions.
/// All calls must be paired with a subsequent call to allow_yield.
#[inline]
pub fn inhibit_yield(&mut self) {
self.wont_sleep += 1;
}
/// Exit a possibly-nested "atomic" section of code. Just for assertions.
/// All calls must be paired with a preceding call to inhibit_yield.
#[inline]
pub fn allow_yield(&mut self) {
rtassert!(self.wont_sleep != 0);
self.wont_sleep -= 1;
}
/// Ensure that the task is allowed to become descheduled.
#[inline]
pub fn assert_may_sleep(&self) {
if self.wont_sleep != 0 {
rtabort!("illegal atomic-sleep: can't deschedule inside atomically()");
}
}
}
impl Drop for Death {
fn drop(&self) {
// Mustn't be in an atomic or unkillable section at task death.
rtassert!(self.unkillable == 0);
rtassert!(self.wont_sleep == 0);
}
}
2013-07-03 13:30:56 -05:00
#[cfg(test)]
mod test {
#[allow(unused_mut)];
use cell::Cell;
2013-07-03 13:30:56 -05:00
use rt::test::*;
use super::*;
use util;
// Test cases don't care about the spare killed flag.
fn make_kill_handle() -> KillHandle { let (h,_) = KillHandle::new(); h }
2013-07-03 13:30:56 -05:00
#[test]
fn no_tombstone_success() {
do run_in_newsched_task {
// Tests case 4 of the 4-way match in reparent_children.
let mut parent = make_kill_handle();
let mut child = make_kill_handle();
2013-07-03 13:30:56 -05:00
// Without another handle to child, the try unwrap should succeed.
child.reparent_children_to(&mut parent);
let mut parent_inner = parent.unwrap();
2013-07-03 13:30:56 -05:00
assert!(parent_inner.child_tombstones.is_none());
assert!(parent_inner.any_child_failed == false);
}
}
#[test]
fn no_tombstone_failure() {
do run_in_newsched_task {
// Tests case 2 of the 4-way match in reparent_children.
let mut parent = make_kill_handle();
let mut child = make_kill_handle();
2013-07-03 13:30:56 -05:00
child.notify_immediate_failure();
// Without another handle to child, the try unwrap should succeed.
child.reparent_children_to(&mut parent);
let mut parent_inner = parent.unwrap();
2013-07-03 13:30:56 -05:00
assert!(parent_inner.child_tombstones.is_none());
// Immediate failure should have been propagated.
assert!(parent_inner.any_child_failed);
}
}
#[test]
fn no_tombstone_because_sibling_already_failed() {
do run_in_newsched_task {
// Tests "case 0, the optimistic path in reparent_children.
let mut parent = make_kill_handle();
let mut child1 = make_kill_handle();
let mut child2 = make_kill_handle();
2013-07-03 13:30:56 -05:00
let mut link = child2.clone();
// Should set parent's child_failed flag
child1.notify_immediate_failure();
child1.reparent_children_to(&mut parent);
// Should bypass trying to unwrap child2 entirely.
// Otherwise, due to 'link', it would try to tombstone.
child2.reparent_children_to(&mut parent);
// Should successfully unwrap even though 'link' is still alive.
let mut parent_inner = parent.unwrap();
2013-07-03 13:30:56 -05:00
assert!(parent_inner.child_tombstones.is_none());
// Immediate failure should have been propagated by first child.
assert!(parent_inner.any_child_failed);
util::ignore(link);
}
}
#[test]
fn one_tombstone_success() {
do run_in_newsched_task {
let mut parent = make_kill_handle();
let mut child = make_kill_handle();
2013-07-03 13:30:56 -05:00
let mut link = child.clone();
// Creates 1 tombstone. Existence of 'link' makes try-unwrap fail.
child.reparent_children_to(&mut parent);
// Let parent collect tombstones.
util::ignore(link);
// Must have created a tombstone
let mut parent_inner = parent.unwrap();
2013-07-03 13:30:56 -05:00
assert!(parent_inner.child_tombstones.take_unwrap()());
assert!(parent_inner.any_child_failed == false);
}
}
#[test]
fn one_tombstone_failure() {
do run_in_newsched_task {
let mut parent = make_kill_handle();
let mut child = make_kill_handle();
2013-07-03 13:30:56 -05:00
let mut link = child.clone();
// Creates 1 tombstone. Existence of 'link' makes try-unwrap fail.
child.reparent_children_to(&mut parent);
// Must happen after tombstone to not be immediately propagated.
link.notify_immediate_failure();
// Let parent collect tombstones.
util::ignore(link);
// Must have created a tombstone
let mut parent_inner = parent.unwrap();
2013-07-03 13:30:56 -05:00
// Failure must be seen in the tombstone.
assert!(parent_inner.child_tombstones.take_unwrap()() == false);
assert!(parent_inner.any_child_failed == false);
}
}
#[test]
fn two_tombstones_success() {
do run_in_newsched_task {
let mut parent = make_kill_handle();
let mut middle = make_kill_handle();
let mut child = make_kill_handle();
2013-07-03 13:30:56 -05:00
let mut link = child.clone();
child.reparent_children_to(&mut middle); // case 1 tombstone
// 'middle' should try-unwrap okay, but still have to reparent.
middle.reparent_children_to(&mut parent); // case 3 tombston
// Let parent collect tombstones.
util::ignore(link);
// Must have created a tombstone
let mut parent_inner = parent.unwrap();
2013-07-03 13:30:56 -05:00
assert!(parent_inner.child_tombstones.take_unwrap()());
assert!(parent_inner.any_child_failed == false);
}
}
#[test]
fn two_tombstones_failure() {
do run_in_newsched_task {
let mut parent = make_kill_handle();
let mut middle = make_kill_handle();
let mut child = make_kill_handle();
2013-07-03 13:30:56 -05:00
let mut link = child.clone();
child.reparent_children_to(&mut middle); // case 1 tombstone
// Must happen after tombstone to not be immediately propagated.
link.notify_immediate_failure();
// 'middle' should try-unwrap okay, but still have to reparent.
middle.reparent_children_to(&mut parent); // case 3 tombstone
// Let parent collect tombstones.
util::ignore(link);
// Must have created a tombstone
let mut parent_inner = parent.unwrap();
2013-07-03 13:30:56 -05:00
// Failure must be seen in the tombstone.
assert!(parent_inner.child_tombstones.take_unwrap()() == false);
assert!(parent_inner.any_child_failed == false);
}
}
// Task killing tests
#[test]
fn kill_basic() {
do run_in_newsched_task {
let mut handle = make_kill_handle();
assert!(!handle.killed());
assert!(handle.kill().is_none());
assert!(handle.killed());
}
}
#[test]
fn double_kill() {
do run_in_newsched_task {
let mut handle = make_kill_handle();
assert!(!handle.killed());
assert!(handle.kill().is_none());
assert!(handle.killed());
assert!(handle.kill().is_none());
assert!(handle.killed());
}
}
#[test]
fn unkillable_after_kill() {
do run_in_newsched_task {
let mut handle = make_kill_handle();
assert!(handle.kill().is_none());
assert!(handle.killed());
let handle_cell = Cell::new(handle);
let result = do spawntask_try {
handle_cell.take().inhibit_kill(false);
};
assert!(result.is_err());
}
}
#[test]
fn unkillable_during_kill() {
do run_in_newsched_task {
let mut handle = make_kill_handle();
handle.inhibit_kill(false);
assert!(handle.kill().is_none());
assert!(!handle.killed());
let handle_cell = Cell::new(handle);
let result = do spawntask_try {
handle_cell.take().allow_kill(false);
};
assert!(result.is_err());
}
}
#[test]
fn unkillable_before_kill() {
do run_in_newsched_task {
let mut handle = make_kill_handle();
handle.inhibit_kill(false);
handle.allow_kill(false);
assert!(handle.kill().is_none());
assert!(handle.killed());
}
}
// Task blocking tests
#[test]
fn block_and_wake() {
do with_test_task |mut task| {
BlockedTask::try_block(task).unwrap_right().wake().unwrap()
}
}
#[test]
fn block_and_get_killed() {
do with_test_task |mut task| {
let mut handle = task.death.kill_handle.get_ref().clone();
let result = BlockedTask::try_block(task).unwrap_right();
let task = handle.kill().unwrap();
assert!(result.wake().is_none());
task
}
}
#[test]
fn block_already_killed() {
do with_test_task |mut task| {
let mut handle = task.death.kill_handle.get_ref().clone();
assert!(handle.kill().is_none());
BlockedTask::try_block(task).unwrap_left()
}
}
#[test]
fn block_unkillably_and_get_killed() {
do with_test_task |mut task| {
let mut handle = task.death.kill_handle.get_ref().clone();
task.death.inhibit_kill(false);
let result = BlockedTask::try_block(task).unwrap_right();
assert!(handle.kill().is_none());
let mut task = result.wake().unwrap();
// This call wants to fail, but we can't have that happen since
// we're not running in a newsched task, so we can't even use
// spawntask_try. But the failing behaviour is already tested
// above, in unkillable_during_kill(), so we punt on it here.
task.death.allow_kill(true);
task
}
}
#[test]
fn block_on_pipe() {
// Tests the "killable" path of casting to/from uint.
do run_in_newsched_task {
do with_test_task |mut task| {
let result = BlockedTask::try_block(task).unwrap_right();
let result = unsafe { result.cast_to_uint() };
let result = unsafe { BlockedTask::cast_from_uint(result) };
result.wake().unwrap()
}
}
}
#[test]
fn block_unkillably_on_pipe() {
// Tests the "indestructible" path of casting to/from uint.
do run_in_newsched_task {
do with_test_task |mut task| {
task.death.inhibit_kill(false);
let result = BlockedTask::try_block(task).unwrap_right();
let result = unsafe { result.cast_to_uint() };
let result = unsafe { BlockedTask::cast_from_uint(result) };
let mut task = result.wake().unwrap();
task.death.allow_kill(false);
task
}
}
}
2013-07-03 13:30:56 -05:00
}