rust/crates/hir_ty/src/autoderef.rs

141 lines
5.0 KiB
Rust
Raw Normal View History

//! In certain situations, rust automatically inserts derefs as necessary: for
2019-01-06 12:51:42 -06:00
//! example, field accesses `foo.bar` still work when `foo` is actually a
//! reference to a type with the field `bar`. This is an approximation of the
//! logic in rustc (which lives in librustc_typeck/check/autoderef.rs).
use std::iter::successors;
2019-01-06 12:51:42 -06:00
2020-08-13 09:25:38 -05:00
use base_db::CrateId;
use hir_def::lang_item::LangItemTarget;
2019-12-13 15:01:06 -06:00
use hir_expand::name::name;
use log::{info, warn};
2019-01-06 12:51:42 -06:00
use crate::{
db::HirDatabase,
2021-03-18 15:53:19 -05:00
to_assoc_type_id, to_chalk_trait_id,
2019-11-25 03:45:45 -06:00
traits::{InEnvironment, Solution},
utils::generics,
2021-03-15 15:02:34 -05:00
BoundVar, Canonical, DebruijnIndex, Interner, Obligation, Substitution, TraitRef, Ty, TyKind,
2019-11-25 03:45:45 -06:00
};
2019-06-16 05:04:08 -05:00
const AUTODEREF_RECURSION_LIMIT: usize = 10;
2019-11-27 08:46:02 -06:00
pub fn autoderef<'a>(
db: &'a dyn HirDatabase,
krate: Option<CrateId>,
ty: InEnvironment<Canonical<Ty>>,
) -> impl Iterator<Item = Canonical<Ty>> + 'a {
let InEnvironment { value: ty, environment } = ty;
successors(Some(ty), move |ty| {
deref(db, krate?, InEnvironment { value: ty, environment: environment.clone() })
})
.take(AUTODEREF_RECURSION_LIMIT)
}
pub(crate) fn deref(
db: &dyn HirDatabase,
krate: CrateId,
ty: InEnvironment<&Canonical<Ty>>,
) -> Option<Canonical<Ty>> {
if let Some(derefed) = ty.value.value.builtin_deref() {
Some(Canonical { value: derefed, kinds: ty.value.kinds.clone() })
} else {
deref_by_trait(db, krate, ty)
2019-01-06 12:51:42 -06:00
}
}
fn deref_by_trait(
db: &dyn HirDatabase,
2019-11-25 03:45:45 -06:00
krate: CrateId,
ty: InEnvironment<&Canonical<Ty>>,
) -> Option<Canonical<Ty>> {
2019-12-20 14:14:30 -06:00
let deref_trait = match db.lang_item(krate, "deref".into())? {
2019-11-26 08:21:29 -06:00
LangItemTarget::TraitId(it) => it,
_ => return None,
};
2019-12-13 15:01:06 -06:00
let target = db.trait_data(deref_trait).associated_type_by_name(&name![Target])?;
let generic_params = generics(db.upcast(), target.into());
2019-12-07 06:05:05 -06:00
if generic_params.len() != 1 {
// the Target type + Deref trait should only have one generic parameter,
// namely Deref's Self type
return None;
}
// FIXME make the Canonical / bound var handling nicer
let parameters =
2021-03-15 15:02:34 -05:00
Substitution::build_for_generics(&generic_params).push(ty.value.value.clone()).build();
// Check that the type implements Deref at all
2021-03-18 15:53:19 -05:00
let trait_ref =
TraitRef { trait_id: to_chalk_trait_id(deref_trait), substitution: parameters.clone() };
let implements_goal = Canonical {
kinds: ty.value.kinds.clone(),
value: InEnvironment {
value: Obligation::Trait(trait_ref),
environment: ty.environment.clone(),
},
};
if db.trait_solve(krate, implements_goal).is_none() {
return None;
}
// Now do the assoc type projection
let projection = super::traits::ProjectionPredicate {
ty: TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, ty.value.kinds.len()))
.intern(&Interner),
2021-03-14 10:30:02 -05:00
projection_ty: super::ProjectionTy {
associated_ty_id: to_assoc_type_id(target),
substitution: parameters,
},
};
let obligation = super::Obligation::Projection(projection);
2019-11-25 03:45:45 -06:00
let in_env = InEnvironment { value: obligation, environment: ty.environment };
let canonical = Canonical::new(
in_env,
ty.value.kinds.iter().copied().chain(Some(chalk_ir::TyVariableKind::General)),
);
2019-12-20 14:14:30 -06:00
let solution = db.trait_solve(krate, canonical)?;
2019-01-06 12:51:42 -06:00
match &solution {
Solution::Unique(vars) => {
// FIXME: vars may contain solutions for any inference variables
// that happened to be inside ty. To correctly handle these, we
// would have to pass the solution up to the inference context, but
// that requires a larger refactoring (especially if the deref
// happens during method resolution). So for the moment, we just
// check that we're not in the situation we're we would actually
// need to handle the values of the additional variables, i.e.
// they're just being 'passed through'. In the 'standard' case where
// we have `impl<T> Deref for Foo<T> { Target = T }`, that should be
// the case.
// FIXME: if the trait solver decides to truncate the type, these
// assumptions will be broken. We would need to properly introduce
// new variables in that case
for i in 1..vars.0.kinds.len() {
if vars.0.value[i - 1].interned(&Interner)
!= &TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, i - 1))
{
2019-11-25 03:45:45 -06:00
warn!("complex solution for derefing {:?}: {:?}, ignoring", ty.value, solution);
return None;
}
}
Some(Canonical {
value: vars.0.value[vars.0.value.len() - 1].clone(),
kinds: vars.0.kinds.clone(),
})
}
Solution::Ambig(_) => {
2019-11-25 03:45:45 -06:00
info!("Ambiguous solution for derefing {:?}: {:?}", ty.value, solution);
None
}
2019-01-06 12:51:42 -06:00
}
}