rust/src/libcore/fmt/mod.rs

747 lines
25 KiB
Rust
Raw Normal View History

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Utilities for formatting and printing strings
#![allow(unused_variable)]
use any;
2014-06-09 23:09:53 -07:00
use cell::{Cell, Ref, RefMut};
use char::Char;
use collections::Collection;
use iter::{Iterator, range};
use kinds::Copy;
use mem;
use num::Float;
use option::{Option, Some, None};
2014-06-09 23:09:53 -07:00
use ops::Deref;
use result::{Ok, Err};
use result;
use slice::{Slice, ImmutableSlice};
use slice;
use str::StrSlice;
use str;
pub use self::num::radix;
pub use self::num::Radix;
pub use self::num::RadixFmt;
mod num;
mod float;
pub mod rt;
pub type Result = result::Result<(), FormatError>;
/// The error type which is returned from formatting a message into a stream.
///
/// This type does not support transmission of an error other than that an error
/// occurred. Any extra information must be arranged to be transmitted through
/// some other means.
pub enum FormatError {
/// A generic write error occurred during formatting, no other information
/// is transmitted via this variant.
WriteError,
}
/// A collection of methods that are required to format a message into a stream.
///
/// This trait is the type which this modules requires when formatting
/// information. This is similar to the standard library's `io::Writer` trait,
/// but it is only intended for use in libcore.
///
/// This trait should generally not be implemented by consumers of the standard
/// library. The `write!` macro accepts an instance of `io::Writer`, and the
/// `io::Writer` trait is favored over implementing this trait.
pub trait FormatWriter {
/// Writes a slice of bytes into this writer, returning whether the write
/// succeeded.
///
/// This method can only succeed if the entire byte slice was successfully
/// written, and this method will not return until all data has been
/// written or an error occurs.
///
/// # Errors
///
/// This function will return an instance of `FormatError` on error.
fn write(&mut self, bytes: &[u8]) -> Result;
2014-05-22 22:50:31 +10:00
/// Glue for usage of the `write!` macro with implementers of this trait.
///
/// This method should generally not be invoked manually, but rather through
/// the `write!` macro itself.
fn write_fmt(&mut self, args: &Arguments) -> Result { write(self, args) }
}
/// A struct to represent both where to emit formatting strings to and how they
/// should be formatted. A mutable version of this is passed to all formatting
/// traits.
pub struct Formatter<'a> {
/// Flags for formatting (packed version of rt::Flag)
pub flags: uint,
/// Character used as 'fill' whenever there is alignment
pub fill: char,
/// Boolean indication of whether the output should be left-aligned
pub align: rt::Alignment,
/// Optionally specified integer width that the output should be
pub width: Option<uint>,
/// Optionally specified precision for numeric types
pub precision: Option<uint>,
buf: &'a mut FormatWriter,
curarg: slice::Items<'a, Argument<'a>>,
args: &'a [Argument<'a>],
}
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 19:10:12 -07:00
enum Void {}
/// This struct represents the generic "argument" which is taken by the Xprintf
/// family of functions. It contains a function to format the given value. At
/// compile time it is ensured that the function and the value have the correct
/// types, and then this struct is used to canonicalize arguments to one type.
pub struct Argument<'a> {
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 19:10:12 -07:00
formatter: extern "Rust" fn(&Void, &mut Formatter) -> Result,
value: &'a Void,
}
impl<'a> Arguments<'a> {
/// When using the format_args!() macro, this function is used to generate the
/// Arguments structure. The compiler inserts an `unsafe` block to call this,
/// which is valid because the compiler performs all necessary validation to
/// ensure that the resulting call to format/write would be safe.
#[doc(hidden)] #[inline]
pub unsafe fn new<'a>(fmt: &'static [rt::Piece<'static>],
args: &'a [Argument<'a>]) -> Arguments<'a> {
Arguments{ fmt: mem::transmute(fmt), args: args }
}
}
/// This structure represents a safely precompiled version of a format string
/// and its arguments. This cannot be generated at runtime because it cannot
/// safely be done so, so no constructors are given and the fields are private
/// to prevent modification.
///
/// The `format_args!` macro will safely create an instance of this structure
2014-08-04 15:57:54 -04:00
/// and pass it to a function or closure, passed as the first argument. The
/// macro validates the format string at compile-time so usage of the `write`
/// and `format` functions can be safely performed.
pub struct Arguments<'a> {
fmt: &'a [rt::Piece<'a>],
args: &'a [Argument<'a>],
}
impl<'a> Show for Arguments<'a> {
fn fmt(&self, fmt: &mut Formatter) -> Result {
write(fmt.buf, self)
}
}
/// When a format is not otherwise specified, types are formatted by ascribing
/// to this trait. There is not an explicit way of selecting this trait to be
/// used for formatting, it is only if no other format is specified.
pub trait Show {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `b` character
pub trait Bool {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `c` character
pub trait Char {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `i` and `d` characters
pub trait Signed {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `u` character
pub trait Unsigned {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `o` character
pub trait Octal {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `t` character
pub trait Binary {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `x` character
pub trait LowerHex {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `X` character
pub trait UpperHex {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `s` character
pub trait String {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `p` character
pub trait Pointer {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `f` character
pub trait Float {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `e` character
pub trait LowerExp {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `E` character
pub trait UpperExp {
/// Formats the value using the given formatter.
fn fmt(&self, &mut Formatter) -> Result;
}
// FIXME #11938 - UFCS would make us able call the above methods
// directly Show::show(x, fmt).
macro_rules! uniform_fn_call_workaround {
($( $name: ident, $trait_: ident; )*) => {
$(
#[doc(hidden)]
pub fn $name<T: $trait_>(x: &T, fmt: &mut Formatter) -> Result {
x.fmt(fmt)
}
)*
}
}
uniform_fn_call_workaround! {
secret_show, Show;
secret_bool, Bool;
secret_char, Char;
secret_signed, Signed;
secret_unsigned, Unsigned;
secret_octal, Octal;
secret_binary, Binary;
secret_lower_hex, LowerHex;
secret_upper_hex, UpperHex;
secret_string, String;
secret_pointer, Pointer;
secret_float, Float;
secret_lower_exp, LowerExp;
secret_upper_exp, UpperExp;
}
/// The `write` function takes an output stream, a precompiled format string,
/// and a list of arguments. The arguments will be formatted according to the
/// specified format string into the output stream provided.
///
/// # Arguments
///
/// * output - the buffer to write output to
/// * args - the precompiled arguments generated by `format_args!`
pub fn write(output: &mut FormatWriter, args: &Arguments) -> Result {
let mut formatter = Formatter {
flags: 0,
width: None,
precision: None,
buf: output,
align: rt::AlignUnknown,
fill: ' ',
args: args.args,
curarg: args.args.iter(),
};
for piece in args.fmt.iter() {
try!(formatter.run(piece));
}
Ok(())
}
impl<'a> Formatter<'a> {
// First up is the collection of functions used to execute a format string
// at runtime. This consumes all of the compile-time statics generated by
// the format! syntax extension.
fn run(&mut self, piece: &rt::Piece) -> Result {
match *piece {
rt::String(s) => self.buf.write(s.as_bytes()),
rt::Argument(ref arg) => {
// Fill in the format parameters into the formatter
self.fill = arg.format.fill;
self.align = arg.format.align;
self.flags = arg.format.flags;
self.width = self.getcount(&arg.format.width);
self.precision = self.getcount(&arg.format.precision);
// Extract the correct argument
let value = match arg.position {
rt::ArgumentNext => { *self.curarg.next().unwrap() }
rt::ArgumentIs(i) => self.args[i],
};
// Then actually do some printing
(value.formatter)(value.value, self)
}
}
}
fn getcount(&mut self, cnt: &rt::Count) -> Option<uint> {
match *cnt {
rt::CountIs(n) => { Some(n) }
rt::CountImplied => { None }
rt::CountIsParam(i) => {
let v = self.args[i].value;
2014-06-25 12:47:34 -07:00
unsafe { Some(*(v as *const _ as *const uint)) }
}
rt::CountIsNextParam => {
let v = self.curarg.next().unwrap().value;
2014-06-25 12:47:34 -07:00
unsafe { Some(*(v as *const _ as *const uint)) }
}
}
}
// Helper methods used for padding and processing formatting arguments that
// all formatting traits can use.
/// Performs the correct padding for an integer which has already been
/// emitted into a byte-array. The byte-array should *not* contain the sign
/// for the integer, that will be added by this method.
///
/// # Arguments
///
/// * is_positive - whether the original integer was positive or not.
/// * prefix - if the '#' character (FlagAlternate) is provided, this
/// is the prefix to put in front of the number.
/// * buf - the byte array that the number has been formatted into
///
/// This function will correctly account for the flags provided as well as
/// the minimum width. It will not take precision into account.
pub fn pad_integral(&mut self, is_positive: bool, prefix: &str,
buf: &[u8]) -> Result {
use fmt::rt::{FlagAlternate, FlagSignPlus, FlagSignAwareZeroPad};
let mut width = buf.len();
let mut sign = None;
if !is_positive {
sign = Some('-'); width += 1;
} else if self.flags & (1 << (FlagSignPlus as uint)) != 0 {
sign = Some('+'); width += 1;
}
let mut prefixed = false;
if self.flags & (1 << (FlagAlternate as uint)) != 0 {
prefixed = true; width += prefix.len();
}
// Writes the sign if it exists, and then the prefix if it was requested
let write_prefix = |f: &mut Formatter| {
for c in sign.move_iter() {
let mut b = [0, ..4];
let n = c.encode_utf8(b);
try!(f.buf.write(b.slice_to(n)));
}
if prefixed { f.buf.write(prefix.as_bytes()) }
else { Ok(()) }
};
// The `width` field is more of a `min-width` parameter at this point.
match self.width {
// If there's no minimum length requirements then we can just
// write the bytes.
None => {
try!(write_prefix(self)); self.buf.write(buf)
}
// Check if we're over the minimum width, if so then we can also
// just write the bytes.
Some(min) if width >= min => {
try!(write_prefix(self)); self.buf.write(buf)
}
// The sign and prefix goes before the padding if the fill character
// is zero
Some(min) if self.flags & (1 << (FlagSignAwareZeroPad as uint)) != 0 => {
self.fill = '0';
try!(write_prefix(self));
self.with_padding(min - width, rt::AlignRight, |f| f.buf.write(buf))
}
// Otherwise, the sign and prefix goes after the padding
Some(min) => {
self.with_padding(min - width, rt::AlignRight, |f| {
try!(write_prefix(f)); f.buf.write(buf)
})
}
}
}
/// This function takes a string slice and emits it to the internal buffer
/// after applying the relevant formatting flags specified. The flags
/// recognized for generic strings are:
///
/// * width - the minimum width of what to emit
/// * fill/align - what to emit and where to emit it if the string
/// provided needs to be padded
/// * precision - the maximum length to emit, the string is truncated if it
/// is longer than this length
///
/// Notably this function ignored the `flag` parameters
pub fn pad(&mut self, s: &str) -> Result {
// Make sure there's a fast path up front
if self.width.is_none() && self.precision.is_none() {
return self.buf.write(s.as_bytes());
}
// The `precision` field can be interpreted as a `max-width` for the
// string being formatted
match self.precision {
Some(max) => {
// If there's a maximum width and our string is longer than
// that, then we must always have truncation. This is the only
// case where the maximum length will matter.
let char_len = s.char_len();
if char_len >= max {
let nchars = ::cmp::min(max, char_len);
return self.buf.write(s.slice_chars(0, nchars).as_bytes());
}
}
None => {}
}
// The `width` field is more of a `min-width` parameter at this point.
match self.width {
// If we're under the maximum length, and there's no minimum length
// requirements, then we can just emit the string
None => self.buf.write(s.as_bytes()),
// If we're under the maximum width, check if we're over the minimum
// width, if so it's as easy as just emitting the string.
Some(width) if s.char_len() >= width => {
self.buf.write(s.as_bytes())
}
// If we're under both the maximum and the minimum width, then fill
// up the minimum width with the specified string + some alignment.
Some(width) => {
self.with_padding(width - s.len(), rt::AlignLeft, |me| {
me.buf.write(s.as_bytes())
})
}
}
}
/// Runs a callback, emitting the correct padding either before or
/// afterwards depending on whether right or left alignment is requested.
fn with_padding(&mut self,
padding: uint,
default: rt::Alignment,
f: |&mut Formatter| -> Result) -> Result {
let align = match self.align {
rt::AlignUnknown => default,
rt::AlignLeft | rt::AlignRight => self.align
};
if align == rt::AlignLeft {
try!(f(self));
}
let mut fill = [0u8, ..4];
let len = self.fill.encode_utf8(fill);
for _ in range(0, padding) {
try!(self.buf.write(fill.slice_to(len)));
}
if align == rt::AlignRight {
try!(f(self));
}
Ok(())
}
/// Writes some data to the underlying buffer contained within this
/// formatter.
pub fn write(&mut self, data: &[u8]) -> Result {
self.buf.write(data)
}
/// Writes some formatted information into this instance
pub fn write_fmt(&mut self, fmt: &Arguments) -> Result {
write(self.buf, fmt)
}
}
/// This is a function which calls are emitted to by the compiler itself to
/// create the Argument structures that are passed into the `format` function.
#[doc(hidden)] #[inline]
pub fn argument<'a, T>(f: extern "Rust" fn(&T, &mut Formatter) -> Result,
t: &'a T) -> Argument<'a> {
unsafe {
Argument {
formatter: mem::transmute(f),
value: mem::transmute(t)
}
}
}
/// When the compiler determines that the type of an argument *must* be a string
/// (such as for select), then it invokes this method.
#[doc(hidden)] #[inline]
pub fn argumentstr<'a>(s: &'a &str) -> Argument<'a> {
argument(secret_string, s)
}
/// When the compiler determines that the type of an argument *must* be a uint
/// (such as for plural), then it invokes this method.
#[doc(hidden)] #[inline]
pub fn argumentuint<'a>(s: &'a uint) -> Argument<'a> {
argument(secret_unsigned, s)
}
// Implementations of the core formatting traits
impl<'a, T: Show> Show for &'a T {
fn fmt(&self, f: &mut Formatter) -> Result { secret_show(*self, f) }
}
impl<'a, T: Show> Show for &'a mut T {
fn fmt(&self, f: &mut Formatter) -> Result { secret_show(&**self, f) }
}
impl<'a> Show for &'a Show {
fn fmt(&self, f: &mut Formatter) -> Result { (*self).fmt(f) }
}
impl Bool for bool {
fn fmt(&self, f: &mut Formatter) -> Result {
secret_string(&(if *self {"true"} else {"false"}), f)
}
}
impl<'a, T: str::Str> String for T {
fn fmt(&self, f: &mut Formatter) -> Result {
f.pad(self.as_slice())
}
}
impl Char for char {
fn fmt(&self, f: &mut Formatter) -> Result {
let mut utf8 = [0u8, ..4];
let amt = self.encode_utf8(utf8);
let s: &str = unsafe { mem::transmute(utf8.slice_to(amt)) };
secret_string(&s, f)
}
}
2014-06-25 12:47:34 -07:00
impl<T> Pointer for *const T {
fn fmt(&self, f: &mut Formatter) -> Result {
f.flags |= 1 << (rt::FlagAlternate as uint);
secret_lower_hex::<uint>(&(*self as uint), f)
}
}
impl<T> Pointer for *mut T {
fn fmt(&self, f: &mut Formatter) -> Result {
2014-06-25 12:47:34 -07:00
secret_pointer::<*const T>(&(*self as *const T), f)
}
}
impl<'a, T> Pointer for &'a T {
fn fmt(&self, f: &mut Formatter) -> Result {
2014-06-25 12:47:34 -07:00
secret_pointer::<*const T>(&(&**self as *const T), f)
}
}
impl<'a, T> Pointer for &'a mut T {
fn fmt(&self, f: &mut Formatter) -> Result {
2014-06-25 12:47:34 -07:00
secret_pointer::<*const T>(&(&**self as *const T), f)
}
}
macro_rules! floating(($ty:ident) => {
impl Float for $ty {
fn fmt(&self, fmt: &mut Formatter) -> Result {
use num::Signed;
let digits = match fmt.precision {
Some(i) => float::DigExact(i),
None => float::DigMax(6),
};
float::float_to_str_bytes_common(self.abs(),
10,
true,
float::SignNeg,
digits,
float::ExpNone,
false,
|bytes| {
fmt.pad_integral(self.is_nan() || *self >= 0.0, "", bytes)
})
}
}
impl LowerExp for $ty {
fn fmt(&self, fmt: &mut Formatter) -> Result {
use num::Signed;
let digits = match fmt.precision {
Some(i) => float::DigExact(i),
None => float::DigMax(6),
};
float::float_to_str_bytes_common(self.abs(),
10,
true,
float::SignNeg,
digits,
float::ExpDec,
false,
|bytes| {
fmt.pad_integral(self.is_nan() || *self >= 0.0, "", bytes)
})
}
}
impl UpperExp for $ty {
fn fmt(&self, fmt: &mut Formatter) -> Result {
use num::Signed;
let digits = match fmt.precision {
Some(i) => float::DigExact(i),
None => float::DigMax(6),
};
float::float_to_str_bytes_common(self.abs(),
10,
true,
float::SignNeg,
digits,
float::ExpDec,
true,
|bytes| {
fmt.pad_integral(self.is_nan() || *self >= 0.0, "", bytes)
})
}
}
})
floating!(f32)
floating!(f64)
// Implementation of Show for various core types
macro_rules! delegate(($ty:ty to $other:ident) => {
impl<'a> Show for $ty {
fn fmt(&self, f: &mut Formatter) -> Result {
(concat_idents!(secret_, $other)(self, f))
}
}
})
delegate!(&'a str to string)
delegate!(bool to bool)
delegate!(char to char)
delegate!(f32 to float)
delegate!(f64 to float)
2014-06-25 12:47:34 -07:00
impl<T> Show for *const T {
fn fmt(&self, f: &mut Formatter) -> Result { secret_pointer(self, f) }
}
impl<T> Show for *mut T {
fn fmt(&self, f: &mut Formatter) -> Result { secret_pointer(self, f) }
}
macro_rules! peel(($name:ident, $($other:ident,)*) => (tuple!($($other,)*)))
macro_rules! tuple (
() => ();
( $($name:ident,)+ ) => (
impl<$($name:Show),*> Show for ($($name,)*) {
#[allow(uppercase_variables, dead_assignment)]
fn fmt(&self, f: &mut Formatter) -> Result {
try!(write!(f, "("));
let ($(ref $name,)*) = *self;
let mut n = 0i;
$(
if n > 0 {
try!(write!(f, ", "));
}
try!(write!(f, "{}", *$name));
n += 1;
)*
if n == 1 {
try!(write!(f, ","));
}
write!(f, ")")
}
}
peel!($($name,)*)
)
)
tuple! { T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, }
impl<'a> Show for &'a any::Any {
fn fmt(&self, f: &mut Formatter) -> Result { f.pad("&Any") }
}
impl<'a, T: Show> Show for &'a [T] {
fn fmt(&self, f: &mut Formatter) -> Result {
if f.flags & (1 << (rt::FlagAlternate as uint)) == 0 {
try!(write!(f, "["));
}
let mut is_first = true;
for x in self.iter() {
if is_first {
is_first = false;
} else {
try!(write!(f, ", "));
}
try!(write!(f, "{}", *x))
}
if f.flags & (1 << (rt::FlagAlternate as uint)) == 0 {
try!(write!(f, "]"));
}
Ok(())
}
}
impl<'a, T: Show> Show for &'a mut [T] {
fn fmt(&self, f: &mut Formatter) -> Result {
secret_show(&self.as_slice(), f)
}
}
impl Show for () {
fn fmt(&self, f: &mut Formatter) -> Result {
f.pad("()")
}
}
impl<T: Copy + Show> Show for Cell<T> {
fn fmt(&self, f: &mut Formatter) -> Result {
write!(f, "Cell {{ value: {} }}", self.get())
}
}
2014-06-09 23:09:53 -07:00
impl<'b, T: Show> Show for Ref<'b, T> {
fn fmt(&self, f: &mut Formatter) -> Result {
(**self).fmt(f)
}
}
impl<'b, T: Show> Show for RefMut<'b, T> {
fn fmt(&self, f: &mut Formatter) -> Result {
(*(self.deref())).fmt(f)
}
}
// If you expected tests to be here, look instead at the run-pass/ifmt.rs test,
// it's a lot easier than creating all of the rt::Piece structures here.