rust/src/libcore/iterator.rs

500 lines
13 KiB
Rust
Raw Normal View History

2013-04-09 10:54:32 -04:00
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2013-04-19 12:17:24 -04:00
/*! Composable external iterators
The `Iterator` trait defines an interface for objects which implement iteration as a state machine.
Algorithms like `zip` are provided as `Iterator` implementations which wrap other objects
implementing the `Iterator` trait.
*/
2013-04-09 10:54:32 -04:00
use prelude::*;
2013-04-15 10:30:16 -04:00
pub trait Iterator<A> {
2013-04-09 10:54:32 -04:00
/// Advance the iterator and return the next value. Return `None` when the end is reached.
2013-04-15 10:30:16 -04:00
fn next(&mut self) -> Option<A>;
2013-04-09 10:54:32 -04:00
}
2013-04-19 12:17:24 -04:00
/// Iterator adaptors provided for every `Iterator` implementation. The adaptor objects are also
/// implementations of the `Iterator` trait.
///
/// In the future these will be default methods instead of a utility trait.
2013-04-15 10:30:16 -04:00
pub trait IteratorUtil<A> {
2013-04-19 11:29:38 -04:00
fn chain(self, other: Self) -> ChainIterator<Self>;
2013-04-15 10:30:16 -04:00
fn zip<B, U: Iterator<B>>(self, other: U) -> ZipIterator<Self, U>;
// FIXME: #5898: should be called map
fn transform<'r, B>(self, f: &'r fn(A) -> B) -> MapIterator<'r, A, B, Self>;
fn filter<'r>(self, predicate: &'r fn(&A) -> bool) -> FilterIterator<'r, A, Self>;
2013-04-19 09:18:22 -04:00
fn enumerate(self) -> EnumerateIterator<Self>;
fn skip_while<'r>(self, predicate: &'r fn(&A) -> bool) -> SkipWhileIterator<'r, A, Self>;
fn take_while<'r>(self, predicate: &'r fn(&A) -> bool) -> TakeWhileIterator<'r, A, Self>;
2013-04-19 06:06:33 -04:00
fn skip(self, n: uint) -> SkipIterator<Self>;
fn take(self, n: uint) -> TakeIterator<Self>;
fn scan<'r, St, B>(self, initial_state: St, f: &'r fn(&mut St, A) -> Option<B>)
-> ScanIterator<'r, A, B, Self, St>;
2013-04-15 10:30:16 -04:00
fn advance(&mut self, f: &fn(A) -> bool);
}
2013-04-19 12:17:24 -04:00
/// Iterator adaptors provided for every `Iterator` implementation. The adaptor objects are also
/// implementations of the `Iterator` trait.
///
/// In the future these will be default methods instead of a utility trait.
2013-04-15 10:30:16 -04:00
impl<A, T: Iterator<A>> IteratorUtil<A> for T {
2013-04-19 11:29:38 -04:00
#[inline(always)]
fn chain(self, other: T) -> ChainIterator<T> {
ChainIterator{a: self, b: other, flag: false}
}
2013-04-15 10:30:16 -04:00
#[inline(always)]
fn zip<B, U: Iterator<B>>(self, other: U) -> ZipIterator<T, U> {
ZipIterator{a: self, b: other}
}
// FIXME: #5898: should be called map
#[inline(always)]
fn transform<'r, B>(self, f: &'r fn(A) -> B) -> MapIterator<'r, A, B, T> {
MapIterator{iter: self, f: f}
}
#[inline(always)]
fn filter<'r>(self, predicate: &'r fn(&A) -> bool) -> FilterIterator<'r, A, T> {
FilterIterator{iter: self, predicate: predicate}
}
#[inline(always)]
fn enumerate(self) -> EnumerateIterator<T> {
EnumerateIterator{iter: self, count: 0}
}
2013-04-18 08:15:40 -04:00
#[inline(always)]
fn skip_while<'r>(self, predicate: &'r fn(&A) -> bool) -> SkipWhileIterator<'r, A, T> {
SkipWhileIterator{iter: self, flag: false, predicate: predicate}
2013-04-18 08:15:40 -04:00
}
#[inline(always)]
fn take_while<'r>(self, predicate: &'r fn(&A) -> bool) -> TakeWhileIterator<'r, A, T> {
2013-04-18 08:15:40 -04:00
TakeWhileIterator{iter: self, flag: false, predicate: predicate}
}
2013-04-19 06:06:33 -04:00
#[inline(always)]
fn skip(self, n: uint) -> SkipIterator<T> {
SkipIterator{iter: self, n: n}
}
#[inline(always)]
fn take(self, n: uint) -> TakeIterator<T> {
TakeIterator{iter: self, n: n}
}
#[inline(always)]
fn scan<'r, St, B>(self, initial_state: St, f: &'r fn(&mut St, A) -> Option<B>)
-> ScanIterator<'r, A, B, T, St> {
ScanIterator{iter: self, f: f, state: initial_state}
}
2013-04-15 10:30:16 -04:00
/// A shim implementing the `for` loop iteration protocol for iterator objects
#[inline]
fn advance(&mut self, f: &fn(A) -> bool) {
loop {
match self.next() {
Some(x) => {
if !f(x) { return }
}
None => return
2013-04-09 10:54:32 -04:00
}
}
}
}
2013-04-19 11:29:38 -04:00
pub struct ChainIterator<T> {
priv a: T,
priv b: T,
priv flag: bool
}
impl<A, T: Iterator<A>> Iterator<A> for ChainIterator<T> {
#[inline]
fn next(&mut self) -> Option<A> {
if self.flag {
self.b.next()
} else {
match self.a.next() {
Some(x) => return Some(x),
_ => ()
}
self.flag = true;
self.b.next()
}
}
}
2013-04-09 10:54:32 -04:00
pub struct ZipIterator<T, U> {
priv a: T,
priv b: U
}
impl<A, B, T: Iterator<A>, U: Iterator<B>> Iterator<(A, B)> for ZipIterator<T, U> {
#[inline]
fn next(&mut self) -> Option<(A, B)> {
match (self.a.next(), self.b.next()) {
(Some(x), Some(y)) => Some((x, y)),
_ => None
}
}
}
2013-04-19 09:18:22 -04:00
pub struct MapIterator<'self, A, B, T> {
priv iter: T,
priv f: &'self fn(A) -> B
}
impl<'self, A, B, T: Iterator<A>> Iterator<B> for MapIterator<'self, A, B, T> {
#[inline]
fn next(&mut self) -> Option<B> {
match self.iter.next() {
Some(a) => Some((self.f)(a)),
_ => None
}
}
}
2013-04-09 10:54:32 -04:00
pub struct FilterIterator<'self, A, T> {
priv iter: T,
priv predicate: &'self fn(&A) -> bool
}
impl<'self, A, T: Iterator<A>> Iterator<A> for FilterIterator<'self, A, T> {
#[inline]
fn next(&mut self) -> Option<A> {
2013-04-15 10:30:16 -04:00
for self.iter.advance |x| {
2013-04-09 10:54:32 -04:00
if (self.predicate)(&x) {
return Some(x);
} else {
loop
}
}
None
}
}
pub struct EnumerateIterator<T> {
priv iter: T,
priv count: uint
}
impl<A, T: Iterator<A>> Iterator<(uint, A)> for EnumerateIterator<T> {
#[inline]
fn next(&mut self) -> Option<(uint, A)> {
match self.iter.next() {
Some(a) => {
let ret = Some((self.count, a));
self.count += 1;
ret
}
_ => None
}
}
}
2013-04-18 08:15:40 -04:00
pub struct SkipWhileIterator<'self, A, T> {
2013-04-18 08:15:40 -04:00
priv iter: T,
priv flag: bool,
priv predicate: &'self fn(&A) -> bool
}
impl<'self, A, T: Iterator<A>> Iterator<A> for SkipWhileIterator<'self, A, T> {
2013-04-18 08:15:40 -04:00
#[inline]
fn next(&mut self) -> Option<A> {
let mut next = self.iter.next();
if self.flag {
next
} else {
loop {
match next {
Some(x) => {
if (self.predicate)(&x) {
next = self.iter.next();
loop
} else {
self.flag = true;
return Some(x)
}
}
None => return None
}
}
}
}
}
pub struct TakeWhileIterator<'self, A, T> {
priv iter: T,
priv flag: bool,
priv predicate: &'self fn(&A) -> bool
}
impl<'self, A, T: Iterator<A>> Iterator<A> for TakeWhileIterator<'self, A, T> {
#[inline]
fn next(&mut self) -> Option<A> {
if self.flag {
None
} else {
match self.iter.next() {
Some(x) => {
if (self.predicate)(&x) {
Some(x)
} else {
self.flag = true;
None
}
}
None => None
}
}
}
}
2013-04-19 06:06:33 -04:00
pub struct SkipIterator<T> {
priv iter: T,
priv n: uint
}
impl<A, T: Iterator<A>> Iterator<A> for SkipIterator<T> {
#[inline]
fn next(&mut self) -> Option<A> {
let mut next = self.iter.next();
if self.n == 0 {
next
} else {
let n = self.n;
for n.times {
match next {
Some(_) => {
next = self.iter.next();
loop
}
None => {
self.n = 0;
return None
}
}
}
self.n = 0;
next
}
}
}
pub struct TakeIterator<T> {
priv iter: T,
priv n: uint
}
impl<A, T: Iterator<A>> Iterator<A> for TakeIterator<T> {
#[inline]
fn next(&mut self) -> Option<A> {
let next = self.iter.next();
if self.n != 0 {
self.n -= 1;
next
} else {
None
}
}
}
2013-04-24 19:54:13 -04:00
pub struct ScanIterator<'self, A, B, T, St> {
priv iter: T,
priv f: &'self fn(&mut St, A) -> Option<B>,
state: St
}
impl<'self, A, B, T: Iterator<A>, St> Iterator<B> for ScanIterator<'self, A, B, T, St> {
#[inline]
fn next(&mut self) -> Option<B> {
self.iter.next().chain(|a| (self.f)(&mut self.state, a))
}
}
pub struct UnfoldrIterator<'self, A, St> {
priv f: &'self fn(&mut St) -> Option<A>,
state: St
}
pub impl<'self, A, St> UnfoldrIterator<'self, A, St> {
#[inline]
fn new(f: &'self fn(&mut St) -> Option<A>, initial_state: St)
-> UnfoldrIterator<'self, A, St> {
UnfoldrIterator {
f: f,
state: initial_state
}
}
}
impl<'self, A, St> Iterator<A> for UnfoldrIterator<'self, A, St> {
#[inline]
fn next(&mut self) -> Option<A> {
(self.f)(&mut self.state)
}
}
2013-04-24 19:54:13 -04:00
/// An infinite iterator starting at `start` and advancing by `step` with each iteration
pub struct Counter<A> {
state: A,
step: A
}
2013-04-24 19:54:13 -04:00
pub impl<A> Counter<A> {
#[inline(always)]
fn new(start: A, step: A) -> Counter<A> {
Counter{state: start, step: step}
}
}
impl<A: Add<A, A> + Clone> Iterator<A> for Counter<A> {
#[inline(always)]
fn next(&mut self) -> Option<A> {
let result = self.state.clone();
self.state = self.state.add(&self.step); // FIXME: #6050
Some(result)
}
}
#[cfg(test)]
mod tests {
use super::*;
use prelude::*;
2013-04-24 19:54:13 -04:00
#[test]
fn test_counter_to_vec() {
let mut it = Counter::new(0, 5).take(10);
let xs = iter::iter_to_vec(|f| it.advance(f));
assert_eq!(xs, ~[0, 5, 10, 15, 20, 25, 30, 35, 40, 45]);
}
2013-04-19 11:29:38 -04:00
#[test]
fn test_iterator_chain() {
let xs = [0u, 1, 2, 3, 4, 5];
let ys = [30, 40, 50, 60];
let expected = [0, 1, 2, 3, 4, 5, 30, 40, 50, 60];
let mut it = xs.iter().chain(ys.iter());
let mut i = 0;
for it.advance |&x: &uint| {
assert_eq!(x, expected[i]);
i += 1;
}
assert_eq!(i, expected.len());
}
#[test]
fn test_iterator_enumerate() {
let xs = [0u, 1, 2, 3, 4, 5];
let mut it = xs.iter().enumerate();
for it.advance |(i, &x): (uint, &uint)| {
assert_eq!(i, x);
}
}
#[test]
fn test_iterator_take_while() {
let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19];
let ys = [0u, 1, 2, 3, 5, 13];
let mut it = xs.iter().take_while(|&x| *x < 15u);
let mut i = 0;
for it.advance |&x: &uint| {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_iterator_skip_while() {
let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19];
let ys = [15, 16, 17, 19];
let mut it = xs.iter().skip_while(|&x| *x < 15u);
let mut i = 0;
for it.advance |&x: &uint| {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_iterator_skip() {
let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19, 20, 30];
let ys = [13, 15, 16, 17, 19, 20, 30];
let mut it = xs.iter().skip(5);
let mut i = 0;
for it.advance |&x: &uint| {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_iterator_take() {
let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19];
let ys = [0u, 1, 2, 3, 5];
let mut it = xs.iter().take(5);
let mut i = 0;
for it.advance |&x: &uint| {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_iterator_scan() {
// test the type inference
fn add(old: &mut int, new: &uint) -> Option<float> {
*old += *new as int;
Some(*old as float)
}
let xs = [0u, 1, 2, 3, 4];
let ys = [0f, 1f, 3f, 6f, 10f];
let mut it = xs.iter().scan(0, add);
let mut i = 0;
for it.advance |x| {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, ys.len());
}
#[test]
fn test_unfoldr() {
fn count(st: &mut uint) -> Option<uint> {
if *st < 10 {
let ret = Some(*st);
*st += 1;
ret
} else {
None
}
}
let mut it = UnfoldrIterator::new(count, 0);
let mut i = 0;
for it.advance |counted| {
assert_eq!(counted, i);
i += 1;
}
assert_eq!(i, 10);
}
}