rust/src/librustc_traits/dropck_outlives.rs

286 lines
10 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use rustc::infer::canonical::{Canonical, QueryResult};
use rustc::hir::def_id::DefId;
use rustc::traits::{FulfillmentContext, Normalized, ObligationCause};
use rustc::traits::query::{CanonicalTyGoal, NoSolution};
use rustc::traits::query::dropck_outlives::{DtorckConstraint, DropckOutlivesResult};
use rustc::ty::{self, ParamEnvAnd, Ty, TyCtxt};
use rustc::ty::subst::Subst;
use rustc::util::nodemap::FxHashSet;
use std::rc::Rc;
use syntax::codemap::{Span, DUMMY_SP};
use util;
crate fn dropck_outlives<'tcx>(
tcx: TyCtxt<'_, 'tcx, 'tcx>,
goal: CanonicalTyGoal<'tcx>,
) -> Result<Rc<Canonical<'tcx, QueryResult<'tcx, DropckOutlivesResult<'tcx>>>>, NoSolution> {
debug!("dropck_outlives(goal={:#?})", goal);
tcx.infer_ctxt().enter(|ref infcx| {
let tcx = infcx.tcx;
let (
ParamEnvAnd {
param_env,
value: for_ty,
},
canonical_inference_vars,
) = infcx.instantiate_canonical_with_fresh_inference_vars(DUMMY_SP, &goal);
let mut result = DropckOutlivesResult { kinds: vec![], overflows: vec![] };
// A stack of types left to process. Each round, we pop
// something from the stack and invoke
// `dtorck_constraint_for_ty`. This may produce new types that
// have to be pushed on the stack. This continues until we have explored
// all the reachable types from the type `for_ty`.
//
// Example: Imagine that we have the following code:
//
// ```rust
// struct A {
// value: B,
// children: Vec<A>,
// }
//
// struct B {
// value: u32
// }
//
// fn f() {
// let a: A = ...;
// ..
// } // here, `a` is dropped
// ```
//
// at the point where `a` is dropped, we need to figure out
// which types inside of `a` contain region data that may be
// accessed by any destructors in `a`. We begin by pushing `A`
// onto the stack, as that is the type of `a`. We will then
// invoke `dtorck_constraint_for_ty` which will expand `A`
// into the types of its fields `(B, Vec<A>)`. These will get
// pushed onto the stack. Eventually, expanding `Vec<A>` will
// lead to us trying to push `A` a second time -- to prevent
// infinite recusion, we notice that `A` was already pushed
// once and stop.
let mut ty_stack = vec![(for_ty, 0)];
// Set used to detect infinite recursion.
let mut ty_set = FxHashSet();
let fulfill_cx = &mut FulfillmentContext::new();
let cause = ObligationCause::dummy();
while let Some((ty, depth)) = ty_stack.pop() {
let DtorckConstraint {
dtorck_types,
outlives,
overflows,
} = dtorck_constraint_for_ty(tcx, DUMMY_SP, for_ty, depth, ty)?;
// "outlives" represent types/regions that may be touched
// by a destructor.
result.kinds.extend(outlives);
result.overflows.extend(overflows);
// dtorck types are "types that will get dropped but which
// do not themselves define a destructor", more or less. We have
// to push them onto the stack to be expanded.
for ty in dtorck_types {
match infcx.at(&cause, param_env).normalize(&ty) {
Ok(Normalized {
value: ty,
obligations,
}) => {
fulfill_cx.register_predicate_obligations(infcx, obligations);
debug!("dropck_outlives: ty from dtorck_types = {:?}", ty);
match ty.sty {
// All parameters live for the duration of the
// function.
ty::TyParam(..) => {}
// A projection that we couldn't resolve - it
// might have a destructor.
ty::TyProjection(..) | ty::TyAnon(..) => {
result.kinds.push(ty.into());
}
_ => {
if ty_set.insert(ty) {
ty_stack.push((ty, depth + 1));
}
}
}
}
// We don't actually expect to fail to normalize.
// That implies a WF error somewhere else.
Err(NoSolution) => {
return Err(NoSolution);
}
}
}
}
debug!("dropck_outlives: result = {:#?}", result);
util::make_query_response(infcx, canonical_inference_vars, result, fulfill_cx)
})
}
/// Return a set of constraints that needs to be satisfied in
/// order for `ty` to be valid for destruction.
fn dtorck_constraint_for_ty<'a, 'gcx, 'tcx>(
tcx: TyCtxt<'a, 'gcx, 'tcx>,
span: Span,
for_ty: Ty<'tcx>,
depth: usize,
ty: Ty<'tcx>,
) -> Result<DtorckConstraint<'tcx>, NoSolution> {
debug!(
"dtorck_constraint_for_ty({:?}, {:?}, {:?}, {:?})",
span, for_ty, depth, ty
);
if depth >= tcx.sess.recursion_limit.get() {
return Ok(DtorckConstraint {
outlives: vec![],
dtorck_types: vec![],
overflows: vec![ty],
});
}
let result = match ty.sty {
ty::TyBool
| ty::TyChar
| ty::TyInt(_)
| ty::TyUint(_)
| ty::TyFloat(_)
| ty::TyStr
| ty::TyNever
| ty::TyForeign(..)
| ty::TyRawPtr(..)
| ty::TyRef(..)
| ty::TyFnDef(..)
| ty::TyFnPtr(_)
| ty::TyGeneratorWitness(..) => {
// these types never have a destructor
Ok(DtorckConstraint::empty())
}
ty::TyArray(ety, _) | ty::TySlice(ety) => {
// single-element containers, behave like their element
dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ety)
}
ty::TyTuple(tys, _) => tys.iter()
.map(|ty| dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty))
.collect(),
ty::TyClosure(def_id, substs) => substs
.upvar_tys(def_id, tcx)
.map(|ty| dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty))
.collect(),
ty::TyGenerator(def_id, substs, _) => {
// Note that the interior types are ignored here.
// Any type reachable inside the interior must also be reachable
// through the upvars.
substs
.upvar_tys(def_id, tcx)
.map(|ty| dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty))
.collect()
}
ty::TyAdt(def, substs) => {
let DtorckConstraint {
dtorck_types,
outlives,
overflows,
} = tcx.at(span).adt_dtorck_constraint(def.did)?;
Ok(DtorckConstraint {
// FIXME: we can try to recursively `dtorck_constraint_on_ty`
// there, but that needs some way to handle cycles.
dtorck_types: dtorck_types.subst(tcx, substs),
outlives: outlives.subst(tcx, substs),
overflows: overflows.subst(tcx, substs),
})
}
// Objects must be alive in order for their destructor
// to be called.
ty::TyDynamic(..) => Ok(DtorckConstraint {
outlives: vec![ty.into()],
dtorck_types: vec![],
overflows: vec![],
}),
// Types that can't be resolved. Pass them forward.
ty::TyProjection(..) | ty::TyAnon(..) | ty::TyParam(..) => Ok(DtorckConstraint {
outlives: vec![],
dtorck_types: vec![ty],
overflows: vec![],
}),
ty::TyInfer(..) | ty::TyError => {
// By the time this code runs, all type variables ought to
// be fully resolved.
Err(NoSolution)
}
};
debug!("dtorck_constraint_for_ty({:?}) = {:?}", ty, result);
result
}
/// Calculates the dtorck constraint for a type.
crate fn adt_dtorck_constraint<'a, 'tcx>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
def_id: DefId,
) -> Result<DtorckConstraint<'tcx>, NoSolution> {
let def = tcx.adt_def(def_id);
let span = tcx.def_span(def_id);
debug!("dtorck_constraint: {:?}", def);
if def.is_phantom_data() {
let result = DtorckConstraint {
outlives: vec![],
dtorck_types: vec![tcx.mk_param_from_def(&tcx.generics_of(def_id).types[0])],
overflows: vec![],
};
debug!("dtorck_constraint: {:?} => {:?}", def, result);
return Ok(result);
}
let mut result = def.all_fields()
.map(|field| tcx.type_of(field.did))
.map(|fty| dtorck_constraint_for_ty(tcx, span, fty, 0, fty))
.collect::<Result<DtorckConstraint, NoSolution>>()?;
result.outlives.extend(tcx.destructor_constraints(def));
dedup_dtorck_constraint(&mut result);
debug!("dtorck_constraint: {:?} => {:?}", def, result);
Ok(result)
}
fn dedup_dtorck_constraint<'tcx>(c: &mut DtorckConstraint<'tcx>) {
let mut outlives = FxHashSet();
let mut dtorck_types = FxHashSet();
c.outlives.retain(|&val| outlives.replace(val).is_none());
c.dtorck_types
.retain(|&val| dtorck_types.replace(val).is_none());
}