rust/src/libstd/num/uint.rs

196 lines
5.5 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Operations and constants for `uint`
use iter;
use sys;
pub use self::generated::*;
uint_module!(uint, int, ::int::bits)
///
/// Divide two numbers, return the result, rounded up.
///
/// # Arguments
///
/// * x - an integer
/// * y - an integer distinct from 0u
///
/// # Return value
///
/// The smallest integer `q` such that `x/y <= q`.
///
pub fn div_ceil(x: uint, y: uint) -> uint {
let div = x / y;
if x % y == 0u { div }
else { div + 1u }
}
///
/// Divide two numbers, return the result, rounded to the closest integer.
///
/// # Arguments
///
/// * x - an integer
/// * y - an integer distinct from 0u
///
/// # Return value
///
/// The integer `q` closest to `x/y`.
///
pub fn div_round(x: uint, y: uint) -> uint {
let div = x / y;
if x % y * 2u < y { div }
else { div + 1u }
}
///
/// Divide two numbers, return the result, rounded down.
///
/// Note: This is the same function as `div`.
///
/// # Arguments
///
/// * x - an integer
/// * y - an integer distinct from 0u
///
/// # Return value
///
/// The smallest integer `q` such that `x/y <= q`. This
/// is either `x/y` or `x/y + 1`.
///
pub fn div_floor(x: uint, y: uint) -> uint { return x / y; }
///
/// Iterate over the range [`lo`..`hi`), or stop when requested
///
/// # Arguments
///
/// * lo - The integer at which to start the loop (included)
/// * hi - The integer at which to stop the loop (excluded)
/// * it - A block to execute with each consecutive integer of the range.
/// Return `true` to continue, `false` to stop.
///
/// # Return value
///
/// `true` If execution proceeded correctly, `false` if it was interrupted,
/// that is if `it` returned `false` at any point.
///
pub fn iterate(lo: uint, hi: uint, it: &fn(uint) -> bool) -> bool {
let mut i = lo;
while i < hi {
if (!it(i)) { return false; }
i += 1u;
}
return true;
}
impl iter::Times for uint {
#[inline]
///
/// A convenience form for basic iteration. Given a uint `x`,
/// `for x.times { ... }` executes the given block x times.
///
/// Equivalent to `for uint::range(0, x) |_| { ... }`.
///
/// Not defined on all integer types to permit unambiguous
/// use with integer literals of inferred integer-type as
/// the self-value (eg. `for 100.times { ... }`).
///
fn times(&self, it: &fn() -> bool) -> bool {
let mut i = *self;
while i > 0 {
if !it() { return false; }
i -= 1;
}
return true;
}
}
/// Returns the smallest power of 2 greater than or equal to `n`
#[inline]
pub fn next_power_of_two(n: uint) -> uint {
let halfbits: uint = sys::size_of::<uint>() * 4u;
let mut tmp: uint = n - 1u;
let mut shift: uint = 1u;
while shift <= halfbits { tmp |= tmp >> shift; shift <<= 1u; }
return tmp + 1u;
}
#[test]
fn test_next_power_of_two() {
assert!((next_power_of_two(0u) == 0u));
assert!((next_power_of_two(1u) == 1u));
assert!((next_power_of_two(2u) == 2u));
assert!((next_power_of_two(3u) == 4u));
assert!((next_power_of_two(4u) == 4u));
assert!((next_power_of_two(5u) == 8u));
assert!((next_power_of_two(6u) == 8u));
assert!((next_power_of_two(7u) == 8u));
assert!((next_power_of_two(8u) == 8u));
assert!((next_power_of_two(9u) == 16u));
assert!((next_power_of_two(10u) == 16u));
assert!((next_power_of_two(11u) == 16u));
assert!((next_power_of_two(12u) == 16u));
assert!((next_power_of_two(13u) == 16u));
assert!((next_power_of_two(14u) == 16u));
assert!((next_power_of_two(15u) == 16u));
assert!((next_power_of_two(16u) == 16u));
assert!((next_power_of_two(17u) == 32u));
assert!((next_power_of_two(18u) == 32u));
assert!((next_power_of_two(19u) == 32u));
assert!((next_power_of_two(20u) == 32u));
assert!((next_power_of_two(21u) == 32u));
assert!((next_power_of_two(22u) == 32u));
assert!((next_power_of_two(23u) == 32u));
assert!((next_power_of_two(24u) == 32u));
assert!((next_power_of_two(25u) == 32u));
assert!((next_power_of_two(26u) == 32u));
assert!((next_power_of_two(27u) == 32u));
assert!((next_power_of_two(28u) == 32u));
assert!((next_power_of_two(29u) == 32u));
assert!((next_power_of_two(30u) == 32u));
assert!((next_power_of_two(31u) == 32u));
assert!((next_power_of_two(32u) == 32u));
assert!((next_power_of_two(33u) == 64u));
assert!((next_power_of_two(34u) == 64u));
assert!((next_power_of_two(35u) == 64u));
assert!((next_power_of_two(36u) == 64u));
assert!((next_power_of_two(37u) == 64u));
assert!((next_power_of_two(38u) == 64u));
assert!((next_power_of_two(39u) == 64u));
}
#[test]
fn test_overflows() {
use uint;
assert!((uint::max_value > 0u));
assert!((uint::min_value <= 0u));
assert!((uint::min_value + uint::max_value + 1u == 0u));
}
#[test]
fn test_div() {
assert!((div_floor(3u, 4u) == 0u));
assert!((div_ceil(3u, 4u) == 1u));
assert!((div_round(3u, 4u) == 1u));
}
#[test]
pub fn test_times() {
use iter::Times;
let ten = 10 as uint;
let mut accum = 0;
for ten.times { accum += 1; }
assert!((accum == 10));
}