rust/src/libcore/kinds.rs

299 lines
13 KiB
Rust
Raw Normal View History

2012-12-10 15:44:02 -08:00
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Primitive traits representing basic 'kinds' of types
//!
//! Rust types can be classified in various useful ways according to
//! intrinsic properties of the type. These classifications, often called
//! 'kinds', are represented as traits.
//!
//! They cannot be implemented by user code, but are instead implemented
//! by the compiler automatically for the types to which they apply.
2013-08-13 20:46:50 -04:00
/// Types able to be transferred across task boundaries.
#[lang="send"]
2014-12-22 00:49:42 +01:00
pub unsafe trait Send for Sized? : 'static {
// empty.
}
2013-08-13 20:46:50 -04:00
/// Types with a constant size known at compile-time.
#[lang="sized"]
pub trait Sized for Sized? {
// Empty.
}
/// Types that can be copied by simply copying bits (i.e. `memcpy`).
#[lang="copy"]
pub trait Copy for Sized? {
// Empty.
}
/// Types that can be safely shared between tasks when aliased.
///
/// The precise definition is: a type `T` is `Sync` if `&T` is
/// thread-safe. In other words, there is no possibility of data races
/// when passing `&T` references between tasks.
///
/// As one would expect, primitive types like `u8` and `f64` are all
/// `Sync`, and so are simple aggregate types containing them (like
/// tuples, structs and enums). More instances of basic `Sync` types
/// include "immutable" types like `&T` and those with simple
/// inherited mutability, such as `Box<T>`, `Vec<T>` and most other
/// collection types. (Generic parameters need to be `Sync` for their
/// container to be `Sync`.)
///
/// A somewhat surprising consequence of the definition is `&mut T` is
/// `Sync` (if `T` is `Sync`) even though it seems that it might
/// provide unsynchronised mutation. The trick is a mutable reference
/// stored in an aliasable reference (that is, `& &mut T`) becomes
/// read-only, as if it were a `& &T`, hence there is no risk of a data
/// race.
///
/// Types that are not `Sync` are those that have "interior
/// mutability" in a non-thread-safe way, such as `Cell` and `RefCell`
/// in `std::cell`. These types allow for mutation of their contents
/// even when in an immutable, aliasable slot, e.g. the contents of
/// `&Cell<T>` can be `.set`, and do not ensure data races are
/// impossible, hence they cannot be `Sync`. A higher level example
/// of a non-`Sync` type is the reference counted pointer
/// `std::rc::Rc`, because any reference `&Rc<T>` can clone a new
/// reference, which modifies the reference counts in a non-atomic
/// way.
///
/// For cases when one does need thread-safe interior mutability,
/// types like the atomics in `std::sync` and `Mutex` & `RWLock` in
/// the `sync` crate do ensure that any mutation cannot cause data
/// races. Hence these types are `Sync`.
///
/// Users writing their own types with interior mutability (or anything
/// else that is not thread-safe) should use the `NoSync` marker type
/// (from `std::kinds::marker`) to ensure that the compiler doesn't
/// consider the user-defined type to be `Sync`. Any types with
std: Stabilize unit, bool, ty, tuple, arc, any This commit applies stability attributes to the contents of these modules, summarized here: * The `unit` and `bool` modules have become #[unstable] as they are purely meant for documentation purposes and are candidates for removal. * The `ty` module has been deprecated, and the inner `Unsafe` type has been renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field has been removed as the compiler now always infers `UnsafeCell` to be invariant. The `new` method i stable, but the `value` field, `get` and `unwrap` methods are all unstable. * The `tuple` module has its name as stable, the naming of the `TupleN` traits as stable while the methods are all #[unstable]. The other impls in the module have appropriate stability for the corresponding trait. * The `arc` module has received the exact same treatment as the `rc` module previously did. * The `any` module has its name as stable. The `Any` trait is also stable, with a new private supertrait which now contains the `get_type_id` method. This is to make the method a private implementation detail rather than a public-facing detail. The two extension traits in the module are marked #[unstable] as they will not be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods have been renamed to downcast_{mut,ref} and are #[unstable]. The extension trait `BoxAny` has been clarified as to why it is unstable as it will not be necessary with DST. This is a breaking change because the `marker1` field was removed from the `UnsafeCell` type. To deal with this change, you can simply delete the field and only specify the value of the `data` field in static initializers. [breaking-change]
2014-07-23 19:10:12 -07:00
/// interior mutability must also use the `std::cell::UnsafeCell` wrapper
/// around the value(s) which can be mutated when behind a `&`
/// reference; not doing this is undefined behaviour (for example,
/// `transmute`-ing from `&T` to `&mut T` is illegal).
#[lang="sync"]
2014-12-22 00:49:42 +01:00
pub unsafe trait Sync for Sized? {
2014-03-03 23:27:46 +01:00
// Empty
}
/// Marker types are special types that are used with unsafe code to
/// inform the compiler of special constraints. Marker types should
/// only be needed when you are creating an abstraction that is
/// implemented using unsafe code. In that case, you may want to embed
/// some of the marker types below into your type.
pub mod marker {
use super::{Copy,Sized};
use clone::Clone;
/// A marker type whose type parameter `T` is considered to be
/// covariant with respect to the type itself. This is (typically)
/// used to indicate that an instance of the type `T` is being stored
/// into memory and read from, even though that may not be apparent.
///
/// For more information about variance, refer to this Wikipedia
/// article <http://en.wikipedia.org/wiki/Variance_%28computer_science%29>.
///
/// *Note:* It is very unusual to have to add a covariant constraint.
/// If you are not sure, you probably want to use `InvariantType`.
///
/// # Example
///
/// Given a struct `S` that includes a type parameter `T`
/// but does not actually *reference* that type parameter:
///
2014-02-14 23:44:22 -08:00
/// ```ignore
core: Remove the cast module This commit revisits the `cast` module in libcore and libstd, and scrutinizes all functions inside of it. The result was to remove the `cast` module entirely, folding all functionality into the `mem` module. Specifically, this is the fate of each function in the `cast` module. * transmute - This function was moved to `mem`, but it is now marked as #[unstable]. This is due to planned changes to the `transmute` function and how it can be invoked (see the #[unstable] comment). For more information, see RFC 5 and #12898 * transmute_copy - This function was moved to `mem`, with clarification that is is not an error to invoke it with T/U that are different sizes, but rather that it is strongly discouraged. This function is now #[stable] * forget - This function was moved to `mem` and marked #[stable] * bump_box_refcount - This function was removed due to the deprecation of managed boxes as well as its questionable utility. * transmute_mut - This function was previously deprecated, and removed as part of this commit. * transmute_mut_unsafe - This function doesn't serve much of a purpose when it can be achieved with an `as` in safe code, so it was removed. * transmute_lifetime - This function was removed because it is likely a strong indication that code is incorrect in the first place. * transmute_mut_lifetime - This function was removed for the same reasons as `transmute_lifetime` * copy_lifetime - This function was moved to `mem`, but it is marked `#[unstable]` now due to the likelihood of being removed in the future if it is found to not be very useful. * copy_mut_lifetime - This function was also moved to `mem`, but had the same treatment as `copy_lifetime`. * copy_lifetime_vec - This function was removed because it is not used today, and its existence is not necessary with DST (copy_lifetime will suffice). In summary, the cast module was stripped down to these functions, and then the functions were moved to the `mem` module. transmute - #[unstable] transmute_copy - #[stable] forget - #[stable] copy_lifetime - #[unstable] copy_mut_lifetime - #[unstable] [breaking-change]
2014-05-09 10:34:51 -07:00
/// use std::mem;
2014-02-14 23:44:22 -08:00
///
/// struct S<T> { x: *() }
/// fn get<T>(s: &S<T>) -> T {
/// unsafe {
core: Remove the cast module This commit revisits the `cast` module in libcore and libstd, and scrutinizes all functions inside of it. The result was to remove the `cast` module entirely, folding all functionality into the `mem` module. Specifically, this is the fate of each function in the `cast` module. * transmute - This function was moved to `mem`, but it is now marked as #[unstable]. This is due to planned changes to the `transmute` function and how it can be invoked (see the #[unstable] comment). For more information, see RFC 5 and #12898 * transmute_copy - This function was moved to `mem`, with clarification that is is not an error to invoke it with T/U that are different sizes, but rather that it is strongly discouraged. This function is now #[stable] * forget - This function was moved to `mem` and marked #[stable] * bump_box_refcount - This function was removed due to the deprecation of managed boxes as well as its questionable utility. * transmute_mut - This function was previously deprecated, and removed as part of this commit. * transmute_mut_unsafe - This function doesn't serve much of a purpose when it can be achieved with an `as` in safe code, so it was removed. * transmute_lifetime - This function was removed because it is likely a strong indication that code is incorrect in the first place. * transmute_mut_lifetime - This function was removed for the same reasons as `transmute_lifetime` * copy_lifetime - This function was moved to `mem`, but it is marked `#[unstable]` now due to the likelihood of being removed in the future if it is found to not be very useful. * copy_mut_lifetime - This function was also moved to `mem`, but had the same treatment as `copy_lifetime`. * copy_lifetime_vec - This function was removed because it is not used today, and its existence is not necessary with DST (copy_lifetime will suffice). In summary, the cast module was stripped down to these functions, and then the functions were moved to the `mem` module. transmute - #[unstable] transmute_copy - #[stable] forget - #[stable] copy_lifetime - #[unstable] copy_mut_lifetime - #[unstable] [breaking-change]
2014-05-09 10:34:51 -07:00
/// let x: *T = mem::transmute(s.x);
/// *x
/// }
/// }
/// ```
///
/// The type system would currently infer that the value of
/// the type parameter `T` is irrelevant, and hence a `S<int>` is
/// a subtype of `S<Box<int>>` (or, for that matter, `S<U>` for
/// any `U`). But this is incorrect because `get()` converts the
/// `*()` into a `*T` and reads from it. Therefore, we should include the
/// a marker field `CovariantType<T>` to inform the type checker that
/// `S<T>` is a subtype of `S<U>` if `T` is a subtype of `U`
/// (for example, `S<&'static int>` is a subtype of `S<&'a int>`
/// for some lifetime `'a`, but not the other way around).
#[lang="covariant_type"]
#[derive(PartialEq, Eq, PartialOrd, Ord)]
pub struct CovariantType<Sized? T>;
impl<Sized? T> Copy for CovariantType<T> {}
impl<Sized? T> Clone for CovariantType<T> {
fn clone(&self) -> CovariantType<T> { *self }
}
/// A marker type whose type parameter `T` is considered to be
/// contravariant with respect to the type itself. This is (typically)
/// used to indicate that an instance of the type `T` will be consumed
/// (but not read from), even though that may not be apparent.
///
/// For more information about variance, refer to this Wikipedia
/// article <http://en.wikipedia.org/wiki/Variance_%28computer_science%29>.
///
/// *Note:* It is very unusual to have to add a contravariant constraint.
/// If you are not sure, you probably want to use `InvariantType`.
///
/// # Example
///
/// Given a struct `S` that includes a type parameter `T`
/// but does not actually *reference* that type parameter:
///
/// ```
core: Remove the cast module This commit revisits the `cast` module in libcore and libstd, and scrutinizes all functions inside of it. The result was to remove the `cast` module entirely, folding all functionality into the `mem` module. Specifically, this is the fate of each function in the `cast` module. * transmute - This function was moved to `mem`, but it is now marked as #[unstable]. This is due to planned changes to the `transmute` function and how it can be invoked (see the #[unstable] comment). For more information, see RFC 5 and #12898 * transmute_copy - This function was moved to `mem`, with clarification that is is not an error to invoke it with T/U that are different sizes, but rather that it is strongly discouraged. This function is now #[stable] * forget - This function was moved to `mem` and marked #[stable] * bump_box_refcount - This function was removed due to the deprecation of managed boxes as well as its questionable utility. * transmute_mut - This function was previously deprecated, and removed as part of this commit. * transmute_mut_unsafe - This function doesn't serve much of a purpose when it can be achieved with an `as` in safe code, so it was removed. * transmute_lifetime - This function was removed because it is likely a strong indication that code is incorrect in the first place. * transmute_mut_lifetime - This function was removed for the same reasons as `transmute_lifetime` * copy_lifetime - This function was moved to `mem`, but it is marked `#[unstable]` now due to the likelihood of being removed in the future if it is found to not be very useful. * copy_mut_lifetime - This function was also moved to `mem`, but had the same treatment as `copy_lifetime`. * copy_lifetime_vec - This function was removed because it is not used today, and its existence is not necessary with DST (copy_lifetime will suffice). In summary, the cast module was stripped down to these functions, and then the functions were moved to the `mem` module. transmute - #[unstable] transmute_copy - #[stable] forget - #[stable] copy_lifetime - #[unstable] copy_mut_lifetime - #[unstable] [breaking-change]
2014-05-09 10:34:51 -07:00
/// use std::mem;
2014-02-14 23:44:22 -08:00
///
2014-06-25 12:47:34 -07:00
/// struct S<T> { x: *const () }
/// fn get<T>(s: &S<T>, v: T) {
/// unsafe {
core: Remove the cast module This commit revisits the `cast` module in libcore and libstd, and scrutinizes all functions inside of it. The result was to remove the `cast` module entirely, folding all functionality into the `mem` module. Specifically, this is the fate of each function in the `cast` module. * transmute - This function was moved to `mem`, but it is now marked as #[unstable]. This is due to planned changes to the `transmute` function and how it can be invoked (see the #[unstable] comment). For more information, see RFC 5 and #12898 * transmute_copy - This function was moved to `mem`, with clarification that is is not an error to invoke it with T/U that are different sizes, but rather that it is strongly discouraged. This function is now #[stable] * forget - This function was moved to `mem` and marked #[stable] * bump_box_refcount - This function was removed due to the deprecation of managed boxes as well as its questionable utility. * transmute_mut - This function was previously deprecated, and removed as part of this commit. * transmute_mut_unsafe - This function doesn't serve much of a purpose when it can be achieved with an `as` in safe code, so it was removed. * transmute_lifetime - This function was removed because it is likely a strong indication that code is incorrect in the first place. * transmute_mut_lifetime - This function was removed for the same reasons as `transmute_lifetime` * copy_lifetime - This function was moved to `mem`, but it is marked `#[unstable]` now due to the likelihood of being removed in the future if it is found to not be very useful. * copy_mut_lifetime - This function was also moved to `mem`, but had the same treatment as `copy_lifetime`. * copy_lifetime_vec - This function was removed because it is not used today, and its existence is not necessary with DST (copy_lifetime will suffice). In summary, the cast module was stripped down to these functions, and then the functions were moved to the `mem` module. transmute - #[unstable] transmute_copy - #[stable] forget - #[stable] copy_lifetime - #[unstable] copy_mut_lifetime - #[unstable] [breaking-change]
2014-05-09 10:34:51 -07:00
/// let x: fn(T) = mem::transmute(s.x);
/// x(v)
/// }
/// }
/// ```
///
/// The type system would currently infer that the value of
/// the type parameter `T` is irrelevant, and hence a `S<int>` is
/// a subtype of `S<Box<int>>` (or, for that matter, `S<U>` for
/// any `U`). But this is incorrect because `get()` converts the
/// `*()` into a `fn(T)` and then passes a value of type `T` to it.
///
/// Supplying a `ContravariantType` marker would correct the
/// problem, because it would mark `S` so that `S<T>` is only a
/// subtype of `S<U>` if `U` is a subtype of `T`; given that the
/// function requires arguments of type `T`, it must also accept
/// arguments of type `U`, hence such a conversion is safe.
#[lang="contravariant_type"]
#[derive(PartialEq, Eq, PartialOrd, Ord)]
pub struct ContravariantType<Sized? T>;
impl<Sized? T> Copy for ContravariantType<T> {}
impl<Sized? T> Clone for ContravariantType<T> {
fn clone(&self) -> ContravariantType<T> { *self }
}
/// A marker type whose type parameter `T` is considered to be
/// invariant with respect to the type itself. This is (typically)
/// used to indicate that instances of the type `T` may be read or
/// written, even though that may not be apparent.
///
/// For more information about variance, refer to this Wikipedia
/// article <http://en.wikipedia.org/wiki/Variance_%28computer_science%29>.
///
/// # Example
///
/// The Cell type is an example which uses unsafe code to achieve
/// "interior" mutability:
///
/// ```
2014-03-27 15:09:47 -07:00
/// pub struct Cell<T> { value: T }
2014-02-14 23:44:22 -08:00
/// # fn main() {}
/// ```
///
/// The type system would infer that `value` is only read here and
/// never written, but in fact `Cell` uses unsafe code to achieve
/// interior mutability.
#[lang="invariant_type"]
#[derive(PartialEq, Eq, PartialOrd, Ord)]
pub struct InvariantType<Sized? T>;
impl<Sized? T> Copy for InvariantType<T> {}
impl<Sized? T> Clone for InvariantType<T> {
fn clone(&self) -> InvariantType<T> { *self }
}
/// As `CovariantType`, but for lifetime parameters. Using
/// `CovariantLifetime<'a>` indicates that it is ok to substitute
/// a *longer* lifetime for `'a` than the one you originally
/// started with (e.g., you could convert any lifetime `'foo` to
/// `'static`). You almost certainly want `ContravariantLifetime`
/// instead, or possibly `InvariantLifetime`. The only case where
/// it would be appropriate is that you have a (type-casted, and
/// hence hidden from the type system) function pointer with a
/// signature like `fn(&'a T)` (and no other uses of `'a`). In
/// this case, it is ok to substitute a larger lifetime for `'a`
/// (e.g., `fn(&'static T)`), because the function is only
/// becoming more selective in terms of what it accepts as
/// argument.
///
/// For more information about variance, refer to this Wikipedia
/// article <http://en.wikipedia.org/wiki/Variance_%28computer_science%29>.
#[lang="covariant_lifetime"]
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct CovariantLifetime<'a>;
/// As `ContravariantType`, but for lifetime parameters. Using
/// `ContravariantLifetime<'a>` indicates that it is ok to
/// substitute a *shorter* lifetime for `'a` than the one you
/// originally started with (e.g., you could convert `'static` to
/// any lifetime `'foo`). This is appropriate for cases where you
/// have an unsafe pointer that is actually a pointer into some
/// memory with lifetime `'a`, and thus you want to limit the
/// lifetime of your data structure to `'a`. An example of where
/// this is used is the iterator for vectors.
///
/// For more information about variance, refer to this Wikipedia
/// article <http://en.wikipedia.org/wiki/Variance_%28computer_science%29>.
#[lang="contravariant_lifetime"]
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct ContravariantLifetime<'a>;
/// As `InvariantType`, but for lifetime parameters. Using
/// `InvariantLifetime<'a>` indicates that it is not ok to
/// substitute any other lifetime for `'a` besides its original
/// value. This is appropriate for cases where you have an unsafe
/// pointer that is actually a pointer into memory with lifetime `'a`,
/// and this pointer is itself stored in an inherently mutable
/// location (such as a `Cell`).
#[lang="invariant_lifetime"]
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct InvariantLifetime<'a>;
/// A type which is considered "not sendable", meaning that it cannot
/// be safely sent between tasks, even if it is owned. This is
/// typically embedded in other types, such as `Gc`, to ensure that
/// their instances remain thread-local.
#[lang="no_send_bound"]
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct NoSend;
/// A type which is considered "not POD", meaning that it is not
/// implicitly copyable. This is typically embedded in other types to
/// ensure that they are never copied, even if they lack a destructor.
#[lang="no_copy_bound"]
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord)]
#[allow(missing_copy_implementations)]
pub struct NoCopy;
/// A type which is considered "not sync", meaning that
2014-03-03 23:27:46 +01:00
/// its contents are not threadsafe, hence they cannot be
/// shared between tasks.
#[lang="no_sync_bound"]
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct NoSync;
2014-03-03 23:27:46 +01:00
/// A type which is considered managed by the GC. This is typically
/// embedded in other types.
#[lang="managed_bound"]
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord)]
#[allow(missing_copy_implementations)]
pub struct Managed;
}