rust/src/librustrt/exclusive.rs

116 lines
3.3 KiB
Rust
Raw Normal View History

std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 19:11:49 -07:00
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::*;
use core::ty::Unsafe;
use mutex;
/// An OS mutex over some data.
///
/// This is not a safe primitive to use, it is unaware of the libgreen
/// scheduler, as well as being easily susceptible to misuse due to the usage of
/// the inner NativeMutex.
///
/// > **Note**: This type is not recommended for general use. The mutex provided
/// > as part of `libsync` should almost always be favored.
pub struct Exclusive<T> {
lock: mutex::NativeMutex,
data: Unsafe<T>,
}
/// An RAII guard returned via `lock`
pub struct ExclusiveGuard<'a, T> {
// FIXME #12808: strange name to try to avoid interfering with
// field accesses of the contained type via Deref
_data: &'a mut T,
_guard: mutex::LockGuard<'a>,
}
impl<T: Send> Exclusive<T> {
/// Creates a new `Exclusive` which will protect the data provided.
pub fn new(user_data: T) -> Exclusive<T> {
Exclusive {
lock: unsafe { mutex::NativeMutex::new() },
data: Unsafe::new(user_data),
}
}
/// Acquires this lock, returning a guard which the data is accessed through
/// and from which that lock will be unlocked.
///
/// This method is unsafe due to many of the same reasons that the
/// NativeMutex itself is unsafe.
pub unsafe fn lock<'a>(&'a self) -> ExclusiveGuard<'a, T> {
let guard = self.lock.lock();
let data = &mut *self.data.get();
ExclusiveGuard {
_data: data,
_guard: guard,
}
}
}
impl<'a, T: Send> ExclusiveGuard<'a, T> {
// The unsafety here should be ok because our loan guarantees that the lock
// itself is not moving
pub fn signal(&self) {
unsafe { self._guard.signal() }
}
pub fn wait(&self) {
unsafe { self._guard.wait() }
}
}
impl<'a, T: Send> Deref<T> for ExclusiveGuard<'a, T> {
fn deref<'a>(&'a self) -> &'a T { &*self._data }
}
impl<'a, T: Send> DerefMut<T> for ExclusiveGuard<'a, T> {
fn deref_mut<'a>(&'a mut self) -> &'a mut T { &mut *self._data }
}
#[cfg(test)]
mod tests {
use std::prelude::*;
use alloc::arc::Arc;
use super::Exclusive;
use std::task;
#[test]
fn exclusive_new_arc() {
unsafe {
let mut futures = Vec::new();
let num_tasks = 10;
let count = 10;
let total = Arc::new(Exclusive::new(box 0));
for _ in range(0u, num_tasks) {
let total = total.clone();
let (tx, rx) = channel();
futures.push(rx);
task::spawn(proc() {
for _ in range(0u, count) {
**total.lock() += 1;
}
tx.send(());
});
};
for f in futures.mut_iter() { f.recv() }
assert_eq!(**total.lock(), num_tasks * count);
}
}
}