rust/src/libstd/num/f64.rs

1716 lines
51 KiB
Rust
Raw Normal View History

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2015-07-20 17:12:59 -07:00
//! The 64-bit floating point type.
//!
//! *[See also the `f64` primitive type](../primitive.f64.html).*
2015-01-23 21:48:20 -08:00
#![stable(feature = "rust1", since = "1.0.0")]
2014-10-27 15:37:07 -07:00
#![allow(missing_docs)]
#[cfg(not(test))]
use core::num;
#[cfg(not(test))]
use intrinsics;
#[cfg(not(test))]
use libc::c_int;
#[cfg(not(test))]
use num::FpCategory;
2015-11-16 19:54:28 +03:00
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::f64::{RADIX, MANTISSA_DIGITS, DIGITS, EPSILON};
2015-11-16 19:54:28 +03:00
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::f64::{MIN_EXP, MAX_EXP, MIN_10_EXP};
2015-11-16 19:54:28 +03:00
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::f64::{MAX_10_EXP, NAN, INFINITY, NEG_INFINITY};
2015-11-16 19:54:28 +03:00
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::f64::{MIN, MIN_POSITIVE, MAX};
2015-11-16 19:54:28 +03:00
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::f64::consts;
#[allow(dead_code)]
mod cmath {
use libc::{c_double, c_int};
#[link_name = "m"]
extern {
pub fn acos(n: c_double) -> c_double;
pub fn asin(n: c_double) -> c_double;
pub fn atan(n: c_double) -> c_double;
pub fn atan2(a: c_double, b: c_double) -> c_double;
pub fn cbrt(n: c_double) -> c_double;
pub fn cosh(n: c_double) -> c_double;
pub fn erf(n: c_double) -> c_double;
pub fn erfc(n: c_double) -> c_double;
pub fn expm1(n: c_double) -> c_double;
pub fn fdim(a: c_double, b: c_double) -> c_double;
pub fn fmax(a: c_double, b: c_double) -> c_double;
pub fn fmin(a: c_double, b: c_double) -> c_double;
pub fn fmod(a: c_double, b: c_double) -> c_double;
pub fn frexp(n: c_double, value: &mut c_int) -> c_double;
pub fn ilogb(n: c_double) -> c_int;
pub fn ldexp(x: c_double, n: c_int) -> c_double;
pub fn logb(n: c_double) -> c_double;
pub fn log1p(n: c_double) -> c_double;
pub fn nextafter(x: c_double, y: c_double) -> c_double;
pub fn modf(n: c_double, iptr: &mut c_double) -> c_double;
pub fn sinh(n: c_double) -> c_double;
pub fn tan(n: c_double) -> c_double;
pub fn tanh(n: c_double) -> c_double;
pub fn tgamma(n: c_double) -> c_double;
// These are commonly only available for doubles
pub fn j0(n: c_double) -> c_double;
pub fn j1(n: c_double) -> c_double;
pub fn jn(i: c_int, n: c_double) -> c_double;
pub fn y0(n: c_double) -> c_double;
pub fn y1(n: c_double) -> c_double;
pub fn yn(i: c_int, n: c_double) -> c_double;
2015-05-08 14:44:17 -07:00
#[cfg_attr(all(windows, target_env = "msvc"), link_name = "__lgamma_r")]
pub fn lgamma_r(n: c_double, sign: &mut c_int) -> c_double;
2015-05-08 14:44:17 -07:00
#[cfg_attr(all(windows, target_env = "msvc"), link_name = "_hypot")]
pub fn hypot(x: c_double, y: c_double) -> c_double;
}
}
2015-03-13 19:13:35 -05:00
#[cfg(not(test))]
#[lang = "f64"]
impl f64 {
/// Returns `true` if this value is `NaN` and false otherwise.
///
/// ```
/// use std::f64;
///
/// let nan = f64::NAN;
/// let f = 7.0_f64;
2015-03-13 19:13:35 -05:00
///
/// assert!(nan.is_nan());
/// assert!(!f.is_nan());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn is_nan(self) -> bool { num::Float::is_nan(self) }
/// Returns `true` if this value is positive infinity or negative infinity and
/// false otherwise.
///
/// ```
/// use std::f64;
2015-03-13 19:13:35 -05:00
///
/// let f = 7.0f64;
/// let inf = f64::INFINITY;
/// let neg_inf = f64::NEG_INFINITY;
/// let nan = f64::NAN;
2015-03-13 19:13:35 -05:00
///
/// assert!(!f.is_infinite());
/// assert!(!nan.is_infinite());
///
/// assert!(inf.is_infinite());
/// assert!(neg_inf.is_infinite());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn is_infinite(self) -> bool { num::Float::is_infinite(self) }
/// Returns `true` if this number is neither infinite nor `NaN`.
///
/// ```
/// use std::f64;
2015-03-13 19:13:35 -05:00
///
/// let f = 7.0f64;
/// let inf: f64 = f64::INFINITY;
/// let neg_inf: f64 = f64::NEG_INFINITY;
/// let nan: f64 = f64::NAN;
2015-03-13 19:13:35 -05:00
///
/// assert!(f.is_finite());
///
/// assert!(!nan.is_finite());
/// assert!(!inf.is_finite());
/// assert!(!neg_inf.is_finite());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn is_finite(self) -> bool { num::Float::is_finite(self) }
/// Returns `true` if the number is neither zero, infinite,
/// [subnormal][subnormal], or `NaN`.
///
/// ```
/// use std::f32;
///
/// let min = f32::MIN_POSITIVE; // 1.17549435e-38f64
2015-03-13 19:13:35 -05:00
/// let max = f32::MAX;
/// let lower_than_min = 1.0e-40_f32;
/// let zero = 0.0f32;
///
/// assert!(min.is_normal());
/// assert!(max.is_normal());
///
/// assert!(!zero.is_normal());
/// assert!(!f32::NAN.is_normal());
/// assert!(!f32::INFINITY.is_normal());
/// // Values between `0` and `min` are Subnormal.
/// assert!(!lower_than_min.is_normal());
/// ```
/// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number
#[stable(feature = "rust1", since = "1.0.0")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn is_normal(self) -> bool { num::Float::is_normal(self) }
/// Returns the floating point category of the number. If only one property
/// is going to be tested, it is generally faster to use the specific
/// predicate instead.
///
/// ```
/// use std::num::FpCategory;
/// use std::f64;
2015-03-13 19:13:35 -05:00
///
/// let num = 12.4_f64;
/// let inf = f64::INFINITY;
2015-03-13 19:13:35 -05:00
///
/// assert_eq!(num.classify(), FpCategory::Normal);
/// assert_eq!(inf.classify(), FpCategory::Infinite);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn classify(self) -> FpCategory { num::Float::classify(self) }
/// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
/// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
/// The floating point encoding is documented in the [Reference][floating-point].
///
/// ```
2015-07-27 10:50:19 -04:00
/// #![feature(float_extras)]
///
/// let num = 2.0f64;
2015-03-13 19:13:35 -05:00
///
/// // (8388608, -22, 1)
/// let (mantissa, exponent, sign) = num.integer_decode();
/// let sign_f = sign as f64;
/// let mantissa_f = mantissa as f64;
/// let exponent_f = num.powf(exponent as f64);
2015-03-13 19:13:35 -05:00
///
/// // 1 * 8388608 * 2^(-22) == 2
/// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
/// [floating-point]: ../../../../../reference.html#machine-types
#[unstable(feature = "float_extras", reason = "signature is undecided",
issue = "27752")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn integer_decode(self) -> (u64, i16, i8) { num::Float::integer_decode(self) }
/// Returns the largest integer less than or equal to a number.
///
/// ```
/// let f = 3.99_f64;
/// let g = 3.0_f64;
2015-03-13 19:13:35 -05:00
///
/// assert_eq!(f.floor(), 3.0);
/// assert_eq!(g.floor(), 3.0);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn floor(self) -> f64 {
unsafe { intrinsics::floorf64(self) }
}
2015-03-13 19:13:35 -05:00
/// Returns the smallest integer greater than or equal to a number.
///
/// ```
/// let f = 3.01_f64;
/// let g = 4.0_f64;
2015-03-13 19:13:35 -05:00
///
/// assert_eq!(f.ceil(), 4.0);
/// assert_eq!(g.ceil(), 4.0);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn ceil(self) -> f64 {
unsafe { intrinsics::ceilf64(self) }
}
2015-03-13 19:13:35 -05:00
/// Returns the nearest integer to a number. Round half-way cases away from
/// `0.0`.
///
/// ```
/// let f = 3.3_f64;
/// let g = -3.3_f64;
2015-03-13 19:13:35 -05:00
///
/// assert_eq!(f.round(), 3.0);
/// assert_eq!(g.round(), -3.0);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn round(self) -> f64 {
unsafe { intrinsics::roundf64(self) }
}
2015-03-13 19:13:35 -05:00
/// Returns the integer part of a number.
2015-03-13 19:13:35 -05:00
///
/// ```
/// let f = 3.3_f64;
/// let g = -3.7_f64;
2015-03-13 19:13:35 -05:00
///
/// assert_eq!(f.trunc(), 3.0);
/// assert_eq!(g.trunc(), -3.0);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn trunc(self) -> f64 {
unsafe { intrinsics::truncf64(self) }
}
2015-03-13 19:13:35 -05:00
/// Returns the fractional part of a number.
///
/// ```
/// let x = 3.5_f64;
/// let y = -3.5_f64;
2015-03-13 19:13:35 -05:00
/// let abs_difference_x = (x.fract() - 0.5).abs();
/// let abs_difference_y = (y.fract() - (-0.5)).abs();
///
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn fract(self) -> f64 { self - self.trunc() }
2015-03-13 19:13:35 -05:00
/// Computes the absolute value of `self`. Returns `NAN` if the
/// number is `NAN`.
2015-03-13 19:13:35 -05:00
///
/// ```
/// use std::f64;
///
/// let x = 3.5_f64;
/// let y = -3.5_f64;
2015-03-13 19:13:35 -05:00
///
/// let abs_difference_x = (x.abs() - x).abs();
/// let abs_difference_y = (y.abs() - (-y)).abs();
///
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
///
/// assert!(f64::NAN.abs().is_nan());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn abs(self) -> f64 { num::Float::abs(self) }
/// Returns a number that represents the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is `NAN`
2015-03-13 19:13:35 -05:00
///
/// ```
/// use std::f64;
///
/// let f = 3.5_f64;
2015-03-13 19:13:35 -05:00
///
/// assert_eq!(f.signum(), 1.0);
/// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
///
/// assert!(f64::NAN.signum().is_nan());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn signum(self) -> f64 { num::Float::signum(self) }
/// Returns `true` if `self`'s sign bit is positive, including
/// `+0.0` and `INFINITY`.
2015-03-13 19:13:35 -05:00
///
/// ```
/// use std::f64;
///
/// let nan: f64 = f64::NAN;
///
/// let f = 7.0_f64;
/// let g = -7.0_f64;
2015-03-13 19:13:35 -05:00
///
/// assert!(f.is_sign_positive());
/// assert!(!g.is_sign_positive());
2015-03-13 19:13:35 -05:00
/// // Requires both tests to determine if is `NaN`
/// assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
2015-03-13 19:13:35 -05:00
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
std: Stabilize APIs for the 1.6 release This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2015-12-02 17:31:49 -08:00
pub fn is_sign_positive(self) -> bool { num::Float::is_sign_positive(self) }
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_positive")]
#[inline]
std: Stabilize APIs for the 1.6 release This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2015-12-02 17:31:49 -08:00
pub fn is_positive(self) -> bool { num::Float::is_sign_positive(self) }
2015-03-13 19:13:35 -05:00
/// Returns `true` if `self`'s sign is negative, including `-0.0`
/// and `NEG_INFINITY`.
2015-03-13 19:13:35 -05:00
///
/// ```
/// use std::f64;
///
/// let nan = f64::NAN;
///
/// let f = 7.0_f64;
/// let g = -7.0_f64;
2015-03-13 19:13:35 -05:00
///
/// assert!(!f.is_sign_negative());
/// assert!(g.is_sign_negative());
2015-03-13 19:13:35 -05:00
/// // Requires both tests to determine if is `NaN`.
/// assert!(!nan.is_sign_positive() && !nan.is_sign_negative());
2015-03-13 19:13:35 -05:00
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
std: Stabilize APIs for the 1.6 release This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2015-12-02 17:31:49 -08:00
pub fn is_sign_negative(self) -> bool { num::Float::is_sign_negative(self) }
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_negative")]
#[inline]
std: Stabilize APIs for the 1.6 release This commit is the standard API stabilization commit for the 1.6 release cycle. The list of issues and APIs below have all been through their cycle-long FCP and the libs team decisions are listed below Stabilized APIs * `Read::read_exact` * `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`) * libcore -- this was a bit of a nuanced stabilization, the crate itself is now marked as `#[stable]` and the methods appearing via traits for primitives like `char` and `str` are now also marked as stable. Note that the extension traits themeselves are marked as unstable as they're imported via the prelude. The `try!` macro was also moved from the standard library into libcore to have the same interface. Otherwise the functions all have copied stability from the standard library now. * The `#![no_std]` attribute * `fs::DirBuilder` * `fs::DirBuilder::new` * `fs::DirBuilder::recursive` * `fs::DirBuilder::create` * `os::unix::fs::DirBuilderExt` * `os::unix::fs::DirBuilderExt::mode` * `vec::Drain` * `vec::Vec::drain` * `string::Drain` * `string::String::drain` * `vec_deque::Drain` * `vec_deque::VecDeque::drain` * `collections::hash_map::Drain` * `collections::hash_map::HashMap::drain` * `collections::hash_set::Drain` * `collections::hash_set::HashSet::drain` * `collections::binary_heap::Drain` * `collections::binary_heap::BinaryHeap::drain` * `Vec::extend_from_slice` (renamed from `push_all`) * `Mutex::get_mut` * `Mutex::into_inner` * `RwLock::get_mut` * `RwLock::into_inner` * `Iterator::min_by_key` (renamed from `min_by`) * `Iterator::max_by_key` (renamed from `max_by`) Deprecated APIs * `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`) * `OsString::from_bytes` * `OsStr::to_cstring` * `OsStr::to_bytes` * `fs::walk_dir` and `fs::WalkDir` * `path::Components::peek` * `slice::bytes::MutableByteVector` * `slice::bytes::copy_memory` * `Vec::push_all` (renamed to `extend_from_slice`) * `Duration::span` * `IpAddr` * `SocketAddr::ip` * `Read::tee` * `io::Tee` * `Write::broadcast` * `io::Broadcast` * `Iterator::min_by` (renamed to `min_by_key`) * `Iterator::max_by` (renamed to `max_by_key`) * `net::lookup_addr` New APIs (still unstable) * `<[T]>::sort_by_key` (added to mirror `min_by_key`) Closes #27585 Closes #27704 Closes #27707 Closes #27710 Closes #27711 Closes #27727 Closes #27740 Closes #27744 Closes #27799 Closes #27801 cc #27801 (doesn't close as `Chars` is still unstable) Closes #28968
2015-12-02 17:31:49 -08:00
pub fn is_negative(self) -> bool { num::Float::is_sign_negative(self) }
2015-03-13 19:13:35 -05:00
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
/// error. This produces a more accurate result with better performance than
/// a separate multiplication operation followed by an add.
///
/// ```
/// let m = 10.0_f64;
/// let x = 4.0_f64;
/// let b = 60.0_f64;
2015-03-13 19:13:35 -05:00
///
/// // 100.0
/// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn mul_add(self, a: f64, b: f64) -> f64 {
unsafe { intrinsics::fmaf64(self, a, b) }
}
2015-03-13 19:13:35 -05:00
/// Takes the reciprocal (inverse) of a number, `1/x`.
2015-03-13 19:13:35 -05:00
///
/// ```
/// let x = 2.0_f64;
2015-03-13 19:13:35 -05:00
/// let abs_difference = (x.recip() - (1.0/x)).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn recip(self) -> f64 { num::Float::recip(self) }
/// Raises a number to an integer power.
2015-03-13 19:13:35 -05:00
///
/// Using this function is generally faster than using `powf`
///
/// ```
/// let x = 2.0_f64;
2015-03-13 19:13:35 -05:00
/// let abs_difference = (x.powi(2) - x*x).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn powi(self, n: i32) -> f64 { num::Float::powi(self, n) }
/// Raises a number to a floating point power.
2015-03-13 19:13:35 -05:00
///
/// ```
/// let x = 2.0_f64;
2015-03-13 19:13:35 -05:00
/// let abs_difference = (x.powf(2.0) - x*x).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn powf(self, n: f64) -> f64 {
unsafe { intrinsics::powf64(self, n) }
}
2015-03-13 19:13:35 -05:00
/// Takes the square root of a number.
2015-03-13 19:13:35 -05:00
///
/// Returns NaN if `self` is a negative number.
///
/// ```
/// let positive = 4.0_f64;
/// let negative = -4.0_f64;
2015-03-13 19:13:35 -05:00
///
/// let abs_difference = (positive.sqrt() - 2.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// assert!(negative.sqrt().is_nan());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sqrt(self) -> f64 {
if self < 0.0 {
NAN
} else {
unsafe { intrinsics::sqrtf64(self) }
}
}
2015-03-13 19:13:35 -05:00
/// Returns `e^(self)`, (the exponential function).
///
/// ```
/// let one = 1.0_f64;
2015-03-13 19:13:35 -05:00
/// // e^1
/// let e = one.exp();
///
/// // ln(e) - 1 == 0
/// let abs_difference = (e.ln() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn exp(self) -> f64 {
unsafe { intrinsics::expf64(self) }
}
2015-03-13 19:13:35 -05:00
/// Returns `2^(self)`.
///
/// ```
/// let f = 2.0_f64;
2015-03-13 19:13:35 -05:00
///
/// // 2^2 - 4 == 0
/// let abs_difference = (f.exp2() - 4.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn exp2(self) -> f64 {
unsafe { intrinsics::exp2f64(self) }
}
2015-03-13 19:13:35 -05:00
/// Returns the natural logarithm of the number.
///
/// ```
/// let one = 1.0_f64;
2015-03-13 19:13:35 -05:00
/// // e^1
/// let e = one.exp();
///
/// // ln(e) - 1 == 0
/// let abs_difference = (e.ln() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn ln(self) -> f64 {
unsafe { intrinsics::logf64(self) }
}
2015-03-13 19:13:35 -05:00
/// Returns the logarithm of the number with respect to an arbitrary base.
///
/// ```
/// let ten = 10.0_f64;
/// let two = 2.0_f64;
2015-03-13 19:13:35 -05:00
///
/// // log10(10) - 1 == 0
/// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
///
/// // log2(2) - 1 == 0
/// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
///
/// assert!(abs_difference_10 < 1e-10);
/// assert!(abs_difference_2 < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn log(self, base: f64) -> f64 { self.ln() / base.ln() }
2015-03-13 19:13:35 -05:00
/// Returns the base 2 logarithm of the number.
///
/// ```
/// let two = 2.0_f64;
2015-03-13 19:13:35 -05:00
///
/// // log2(2) - 1 == 0
/// let abs_difference = (two.log2() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn log2(self) -> f64 {
unsafe { intrinsics::log2f64(self) }
}
2015-03-13 19:13:35 -05:00
/// Returns the base 10 logarithm of the number.
///
/// ```
/// let ten = 10.0_f64;
2015-03-13 19:13:35 -05:00
///
/// // log10(10) - 1 == 0
/// let abs_difference = (ten.log10() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn log10(self) -> f64 {
unsafe { intrinsics::log10f64(self) }
}
2015-03-13 19:13:35 -05:00
/// Converts radians to degrees.
2015-03-13 19:13:35 -05:00
///
/// ```
/// use std::f64::consts;
///
/// let angle = consts::PI;
///
/// let abs_difference = (angle.to_degrees() - 180.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn to_degrees(self) -> f64 { num::Float::to_degrees(self) }
/// Converts degrees to radians.
2015-03-13 19:13:35 -05:00
///
/// ```
/// use std::f64::consts;
///
/// let angle = 180.0_f64;
2015-03-13 19:13:35 -05:00
///
/// let abs_difference = (angle.to_radians() - consts::PI).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn to_radians(self) -> f64 { num::Float::to_radians(self) }
/// Constructs a floating point number of `x*2^exp`.
///
/// ```
2015-07-27 10:50:19 -04:00
/// #![feature(float_extras)]
///
2015-03-13 19:13:35 -05:00
/// // 3*2^2 - 12 == 0
/// let abs_difference = (f64::ldexp(3.0, 2) - 12.0).abs();
2015-03-13 19:13:35 -05:00
///
/// assert!(abs_difference < 1e-10);
/// ```
2015-06-09 18:15:22 -07:00
#[unstable(feature = "float_extras",
reason = "pending integer conventions",
issue = "27752")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn ldexp(x: f64, exp: isize) -> f64 {
2015-03-13 19:13:35 -05:00
unsafe { cmath::ldexp(x, exp as c_int) }
}
/// Breaks the number into a normalized fraction and a base-2 exponent,
/// satisfying:
///
/// * `self = x * 2^exp`
/// * `0.5 <= abs(x) < 1.0`
///
/// ```
2015-07-27 10:50:19 -04:00
/// #![feature(float_extras)]
///
/// let x = 4.0_f64;
2015-03-13 19:13:35 -05:00
///
/// // (1/2)*2^3 -> 1 * 8/2 -> 4.0
/// let f = x.frexp();
/// let abs_difference_0 = (f.0 - 0.5).abs();
/// let abs_difference_1 = (f.1 as f64 - 3.0).abs();
///
/// assert!(abs_difference_0 < 1e-10);
/// assert!(abs_difference_1 < 1e-10);
/// ```
2015-06-09 18:15:22 -07:00
#[unstable(feature = "float_extras",
reason = "pending integer conventions",
issue = "27752")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn frexp(self) -> (f64, isize) {
2015-03-13 19:13:35 -05:00
unsafe {
let mut exp = 0;
let x = cmath::frexp(self, &mut exp);
(x, exp as isize)
2015-03-13 19:13:35 -05:00
}
}
/// Returns the next representable floating-point value in the direction of
/// `other`.
///
/// ```
2015-07-27 10:50:19 -04:00
/// #![feature(float_extras)]
2015-03-13 19:13:35 -05:00
///
/// let x = 1.0f32;
///
/// let abs_diff = (x.next_after(2.0) - 1.00000011920928955078125_f32).abs();
///
/// assert!(abs_diff < 1e-10);
/// ```
2015-06-09 18:15:22 -07:00
#[unstable(feature = "float_extras",
reason = "unsure about its place in the world",
issue = "27752")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn next_after(self, other: f64) -> f64 {
unsafe { cmath::nextafter(self, other) }
}
/// Returns the maximum of the two numbers.
///
/// ```
/// let x = 1.0_f64;
/// let y = 2.0_f64;
2015-03-13 19:13:35 -05:00
///
/// assert_eq!(x.max(y), y);
/// ```
///
/// If one of the arguments is NaN, then the other argument is returned.
2015-03-13 19:13:35 -05:00
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn max(self, other: f64) -> f64 {
unsafe { cmath::fmax(self, other) }
}
/// Returns the minimum of the two numbers.
///
/// ```
/// let x = 1.0_f64;
/// let y = 2.0_f64;
2015-03-13 19:13:35 -05:00
///
/// assert_eq!(x.min(y), x);
/// ```
///
/// If one of the arguments is NaN, then the other argument is returned.
2015-03-13 19:13:35 -05:00
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn min(self, other: f64) -> f64 {
unsafe { cmath::fmin(self, other) }
}
/// The positive difference of two numbers.
///
/// * If `self <= other`: `0:0`
/// * Else: `self - other`
///
/// ```
/// let x = 3.0_f64;
/// let y = -3.0_f64;
2015-03-13 19:13:35 -05:00
///
/// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
/// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
///
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn abs_sub(self, other: f64) -> f64 {
unsafe { cmath::fdim(self, other) }
}
/// Takes the cubic root of a number.
2015-03-13 19:13:35 -05:00
///
/// ```
/// let x = 8.0_f64;
2015-03-13 19:13:35 -05:00
///
/// // x^(1/3) - 2 == 0
/// let abs_difference = (x.cbrt() - 2.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn cbrt(self) -> f64 {
unsafe { cmath::cbrt(self) }
}
/// Calculates the length of the hypotenuse of a right-angle triangle given
2015-03-13 19:13:35 -05:00
/// legs of length `x` and `y`.
///
/// ```
/// let x = 2.0_f64;
/// let y = 3.0_f64;
2015-03-13 19:13:35 -05:00
///
/// // sqrt(x^2 + y^2)
/// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn hypot(self, other: f64) -> f64 {
unsafe { cmath::hypot(self, other) }
}
/// Computes the sine of a number (in radians).
///
/// ```
/// use std::f64;
///
/// let x = f64::consts::PI/2.0;
///
/// let abs_difference = (x.sin() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sin(self) -> f64 {
unsafe { intrinsics::sinf64(self) }
}
/// Computes the cosine of a number (in radians).
///
/// ```
/// use std::f64;
///
/// let x = 2.0*f64::consts::PI;
///
/// let abs_difference = (x.cos() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn cos(self) -> f64 {
unsafe { intrinsics::cosf64(self) }
}
/// Computes the tangent of a number (in radians).
///
/// ```
/// use std::f64;
///
/// let x = f64::consts::PI/4.0;
/// let abs_difference = (x.tan() - 1.0).abs();
///
/// assert!(abs_difference < 1e-14);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn tan(self) -> f64 {
unsafe { cmath::tan(self) }
}
/// Computes the arcsine of a number. Return value is in radians in
/// the range [-pi/2, pi/2] or NaN if the number is outside the range
/// [-1, 1].
///
/// ```
/// use std::f64;
///
/// let f = f64::consts::PI / 2.0;
///
/// // asin(sin(pi/2))
/// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn asin(self) -> f64 {
unsafe { cmath::asin(self) }
}
/// Computes the arccosine of a number. Return value is in radians in
/// the range [0, pi] or NaN if the number is outside the range
/// [-1, 1].
///
/// ```
/// use std::f64;
///
/// let f = f64::consts::PI / 4.0;
///
/// // acos(cos(pi/4))
/// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn acos(self) -> f64 {
unsafe { cmath::acos(self) }
}
/// Computes the arctangent of a number. Return value is in radians in the
/// range [-pi/2, pi/2];
///
/// ```
/// let f = 1.0_f64;
2015-03-13 19:13:35 -05:00
///
/// // atan(tan(1))
/// let abs_difference = (f.tan().atan() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn atan(self) -> f64 {
unsafe { cmath::atan(self) }
}
/// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
///
/// * `x = 0`, `y = 0`: `0`
/// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
/// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
/// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
///
/// ```
/// use std::f64;
///
/// let pi = f64::consts::PI;
/// // All angles from horizontal right (+x)
/// // 45 deg counter-clockwise
/// let x1 = 3.0_f64;
/// let y1 = -3.0_f64;
2015-03-13 19:13:35 -05:00
///
/// // 135 deg clockwise
/// let x2 = -3.0_f64;
/// let y2 = 3.0_f64;
2015-03-13 19:13:35 -05:00
///
/// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
/// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
///
/// assert!(abs_difference_1 < 1e-10);
/// assert!(abs_difference_2 < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn atan2(self, other: f64) -> f64 {
unsafe { cmath::atan2(self, other) }
}
/// Simultaneously computes the sine and cosine of the number, `x`. Returns
/// `(sin(x), cos(x))`.
///
/// ```
/// use std::f64;
///
/// let x = f64::consts::PI/4.0;
/// let f = x.sin_cos();
///
/// let abs_difference_0 = (f.0 - x.sin()).abs();
/// let abs_difference_1 = (f.1 - x.cos()).abs();
///
/// assert!(abs_difference_0 < 1e-10);
/// assert!(abs_difference_0 < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sin_cos(self) -> (f64, f64) {
(self.sin(), self.cos())
}
/// Returns `e^(self) - 1` in a way that is accurate even if the
/// number is close to zero.
///
/// ```
/// let x = 7.0_f64;
2015-03-13 19:13:35 -05:00
///
/// // e^(ln(7)) - 1
/// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn exp_m1(self) -> f64 {
unsafe { cmath::expm1(self) }
}
/// Returns `ln(1+n)` (natural logarithm) more accurately than if
/// the operations were performed separately.
///
/// ```
/// use std::f64;
///
/// let x = f64::consts::E - 1.0;
///
/// // ln(1 + (e - 1)) == ln(e) == 1
/// let abs_difference = (x.ln_1p() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
2015-03-13 19:13:35 -05:00
#[inline]
pub fn ln_1p(self) -> f64 {
unsafe { cmath::log1p(self) }
}
/// Hyperbolic sine function.
///
/// ```
/// use std::f64;
///
/// let e = f64::consts::E;
/// let x = 1.0_f64;
2015-03-13 19:13:35 -05:00
///
/// let f = x.sinh();
/// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
/// let g = (e*e - 1.0)/(2.0*e);
/// let abs_difference = (f - g).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sinh(self) -> f64 {
unsafe { cmath::sinh(self) }
}
/// Hyperbolic cosine function.
///
/// ```
/// use std::f64;
///
/// let e = f64::consts::E;
/// let x = 1.0_f64;
2015-03-13 19:13:35 -05:00
/// let f = x.cosh();
/// // Solving cosh() at 1 gives this result
/// let g = (e*e + 1.0)/(2.0*e);
/// let abs_difference = (f - g).abs();
///
/// // Same result
/// assert!(abs_difference < 1.0e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn cosh(self) -> f64 {
unsafe { cmath::cosh(self) }
}
/// Hyperbolic tangent function.
///
/// ```
/// use std::f64;
///
/// let e = f64::consts::E;
/// let x = 1.0_f64;
2015-03-13 19:13:35 -05:00
///
/// let f = x.tanh();
/// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
/// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
/// let abs_difference = (f - g).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn tanh(self) -> f64 {
unsafe { cmath::tanh(self) }
}
/// Inverse hyperbolic sine function.
///
/// ```
/// let x = 1.0_f64;
2015-03-13 19:13:35 -05:00
/// let f = x.sinh().asinh();
///
/// let abs_difference = (f - x).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn asinh(self) -> f64 {
match self {
NEG_INFINITY => NEG_INFINITY,
x => (x + ((x * x) + 1.0).sqrt()).ln(),
}
}
/// Inverse hyperbolic cosine function.
///
/// ```
/// let x = 1.0_f64;
2015-03-13 19:13:35 -05:00
/// let f = x.cosh().acosh();
///
/// let abs_difference = (f - x).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn acosh(self) -> f64 {
match self {
x if x < 1.0 => NAN,
2015-03-13 19:13:35 -05:00
x => (x + ((x * x) - 1.0).sqrt()).ln(),
}
}
/// Inverse hyperbolic tangent function.
///
/// ```
/// use std::f64;
///
/// let e = f64::consts::E;
/// let f = e.tanh().atanh();
///
/// let abs_difference = (f - e).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn atanh(self) -> f64 {
0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
}
}
#[cfg(test)]
mod tests {
use f64;
use f64::*;
use num::*;
use num::FpCategory as Fp;
#[test]
fn test_num_f64() {
test_num(10f64, 2f64);
}
#[test]
fn test_min_nan() {
assert_eq!(NAN.min(2.0), 2.0);
assert_eq!(2.0f64.min(NAN), 2.0);
}
#[test]
fn test_max_nan() {
assert_eq!(NAN.max(2.0), 2.0);
assert_eq!(2.0f64.max(NAN), 2.0);
}
#[test]
fn test_nan() {
let nan: f64 = NAN;
assert!(nan.is_nan());
assert!(!nan.is_infinite());
assert!(!nan.is_finite());
assert!(!nan.is_normal());
assert!(!nan.is_sign_positive());
assert!(!nan.is_sign_negative());
assert_eq!(Fp::Nan, nan.classify());
}
#[test]
fn test_infinity() {
let inf: f64 = INFINITY;
assert!(inf.is_infinite());
assert!(!inf.is_finite());
assert!(inf.is_sign_positive());
assert!(!inf.is_sign_negative());
assert!(!inf.is_nan());
assert!(!inf.is_normal());
assert_eq!(Fp::Infinite, inf.classify());
}
#[test]
fn test_neg_infinity() {
let neg_inf: f64 = NEG_INFINITY;
assert!(neg_inf.is_infinite());
assert!(!neg_inf.is_finite());
assert!(!neg_inf.is_sign_positive());
assert!(neg_inf.is_sign_negative());
assert!(!neg_inf.is_nan());
assert!(!neg_inf.is_normal());
assert_eq!(Fp::Infinite, neg_inf.classify());
}
#[test]
fn test_zero() {
let zero: f64 = 0.0f64;
assert_eq!(0.0, zero);
assert!(!zero.is_infinite());
assert!(zero.is_finite());
assert!(zero.is_sign_positive());
assert!(!zero.is_sign_negative());
assert!(!zero.is_nan());
assert!(!zero.is_normal());
assert_eq!(Fp::Zero, zero.classify());
}
#[test]
fn test_neg_zero() {
let neg_zero: f64 = -0.0;
assert_eq!(0.0, neg_zero);
assert!(!neg_zero.is_infinite());
assert!(neg_zero.is_finite());
assert!(!neg_zero.is_sign_positive());
assert!(neg_zero.is_sign_negative());
assert!(!neg_zero.is_nan());
assert!(!neg_zero.is_normal());
assert_eq!(Fp::Zero, neg_zero.classify());
}
#[test]
fn test_one() {
let one: f64 = 1.0f64;
assert_eq!(1.0, one);
assert!(!one.is_infinite());
assert!(one.is_finite());
assert!(one.is_sign_positive());
assert!(!one.is_sign_negative());
assert!(!one.is_nan());
assert!(one.is_normal());
assert_eq!(Fp::Normal, one.classify());
}
#[test]
fn test_is_nan() {
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
assert!(nan.is_nan());
assert!(!0.0f64.is_nan());
assert!(!5.3f64.is_nan());
assert!(!(-10.732f64).is_nan());
assert!(!inf.is_nan());
assert!(!neg_inf.is_nan());
}
#[test]
fn test_is_infinite() {
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
assert!(!nan.is_infinite());
assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());
assert!(!0.0f64.is_infinite());
assert!(!42.8f64.is_infinite());
assert!(!(-109.2f64).is_infinite());
}
#[test]
fn test_is_finite() {
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());
assert!(0.0f64.is_finite());
assert!(42.8f64.is_finite());
assert!((-109.2f64).is_finite());
}
#[test]
fn test_is_normal() {
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
let zero: f64 = 0.0f64;
let neg_zero: f64 = -0.0;
assert!(!nan.is_normal());
assert!(!inf.is_normal());
assert!(!neg_inf.is_normal());
assert!(!zero.is_normal());
assert!(!neg_zero.is_normal());
assert!(1f64.is_normal());
assert!(1e-307f64.is_normal());
assert!(!1e-308f64.is_normal());
}
#[test]
fn test_classify() {
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
let zero: f64 = 0.0f64;
let neg_zero: f64 = -0.0;
assert_eq!(nan.classify(), Fp::Nan);
assert_eq!(inf.classify(), Fp::Infinite);
assert_eq!(neg_inf.classify(), Fp::Infinite);
assert_eq!(zero.classify(), Fp::Zero);
assert_eq!(neg_zero.classify(), Fp::Zero);
assert_eq!(1e-307f64.classify(), Fp::Normal);
assert_eq!(1e-308f64.classify(), Fp::Subnormal);
}
#[test]
fn test_integer_decode() {
assert_eq!(3.14159265359f64.integer_decode(), (7074237752028906, -51, 1));
assert_eq!((-8573.5918555f64).integer_decode(), (4713381968463931, -39, -1));
assert_eq!(2f64.powf(100.0).integer_decode(), (4503599627370496, 48, 1));
assert_eq!(0f64.integer_decode(), (0, -1075, 1));
assert_eq!((-0f64).integer_decode(), (0, -1075, -1));
assert_eq!(INFINITY.integer_decode(), (4503599627370496, 972, 1));
assert_eq!(NEG_INFINITY.integer_decode(), (4503599627370496, 972, -1));
assert_eq!(NAN.integer_decode(), (6755399441055744, 972, 1));
}
#[test]
fn test_floor() {
2013-05-06 21:51:48 +10:00
assert_approx_eq!(1.0f64.floor(), 1.0f64);
assert_approx_eq!(1.3f64.floor(), 1.0f64);
assert_approx_eq!(1.5f64.floor(), 1.0f64);
assert_approx_eq!(1.7f64.floor(), 1.0f64);
assert_approx_eq!(0.0f64.floor(), 0.0f64);
assert_approx_eq!((-0.0f64).floor(), -0.0f64);
assert_approx_eq!((-1.0f64).floor(), -1.0f64);
assert_approx_eq!((-1.3f64).floor(), -2.0f64);
assert_approx_eq!((-1.5f64).floor(), -2.0f64);
assert_approx_eq!((-1.7f64).floor(), -2.0f64);
}
#[test]
fn test_ceil() {
2013-05-06 21:51:48 +10:00
assert_approx_eq!(1.0f64.ceil(), 1.0f64);
assert_approx_eq!(1.3f64.ceil(), 2.0f64);
assert_approx_eq!(1.5f64.ceil(), 2.0f64);
assert_approx_eq!(1.7f64.ceil(), 2.0f64);
assert_approx_eq!(0.0f64.ceil(), 0.0f64);
assert_approx_eq!((-0.0f64).ceil(), -0.0f64);
assert_approx_eq!((-1.0f64).ceil(), -1.0f64);
assert_approx_eq!((-1.3f64).ceil(), -1.0f64);
assert_approx_eq!((-1.5f64).ceil(), -1.0f64);
assert_approx_eq!((-1.7f64).ceil(), -1.0f64);
}
#[test]
fn test_round() {
2013-05-06 21:51:48 +10:00
assert_approx_eq!(1.0f64.round(), 1.0f64);
assert_approx_eq!(1.3f64.round(), 1.0f64);
assert_approx_eq!(1.5f64.round(), 2.0f64);
assert_approx_eq!(1.7f64.round(), 2.0f64);
assert_approx_eq!(0.0f64.round(), 0.0f64);
assert_approx_eq!((-0.0f64).round(), -0.0f64);
assert_approx_eq!((-1.0f64).round(), -1.0f64);
assert_approx_eq!((-1.3f64).round(), -1.0f64);
assert_approx_eq!((-1.5f64).round(), -2.0f64);
assert_approx_eq!((-1.7f64).round(), -2.0f64);
}
#[test]
fn test_trunc() {
2013-05-06 21:51:48 +10:00
assert_approx_eq!(1.0f64.trunc(), 1.0f64);
assert_approx_eq!(1.3f64.trunc(), 1.0f64);
assert_approx_eq!(1.5f64.trunc(), 1.0f64);
assert_approx_eq!(1.7f64.trunc(), 1.0f64);
assert_approx_eq!(0.0f64.trunc(), 0.0f64);
assert_approx_eq!((-0.0f64).trunc(), -0.0f64);
assert_approx_eq!((-1.0f64).trunc(), -1.0f64);
assert_approx_eq!((-1.3f64).trunc(), -1.0f64);
assert_approx_eq!((-1.5f64).trunc(), -1.0f64);
assert_approx_eq!((-1.7f64).trunc(), -1.0f64);
}
#[test]
fn test_fract() {
2013-05-06 21:51:48 +10:00
assert_approx_eq!(1.0f64.fract(), 0.0f64);
assert_approx_eq!(1.3f64.fract(), 0.3f64);
assert_approx_eq!(1.5f64.fract(), 0.5f64);
assert_approx_eq!(1.7f64.fract(), 0.7f64);
assert_approx_eq!(0.0f64.fract(), 0.0f64);
assert_approx_eq!((-0.0f64).fract(), -0.0f64);
assert_approx_eq!((-1.0f64).fract(), -0.0f64);
assert_approx_eq!((-1.3f64).fract(), -0.3f64);
assert_approx_eq!((-1.5f64).fract(), -0.5f64);
assert_approx_eq!((-1.7f64).fract(), -0.7f64);
}
#[test]
fn test_abs() {
assert_eq!(INFINITY.abs(), INFINITY);
assert_eq!(1f64.abs(), 1f64);
assert_eq!(0f64.abs(), 0f64);
assert_eq!((-0f64).abs(), 0f64);
assert_eq!((-1f64).abs(), 1f64);
assert_eq!(NEG_INFINITY.abs(), INFINITY);
assert_eq!((1f64/NEG_INFINITY).abs(), 0f64);
assert!(NAN.abs().is_nan());
}
#[test]
fn test_signum() {
assert_eq!(INFINITY.signum(), 1f64);
assert_eq!(1f64.signum(), 1f64);
assert_eq!(0f64.signum(), 1f64);
assert_eq!((-0f64).signum(), -1f64);
assert_eq!((-1f64).signum(), -1f64);
assert_eq!(NEG_INFINITY.signum(), -1f64);
assert_eq!((1f64/NEG_INFINITY).signum(), -1f64);
assert!(NAN.signum().is_nan());
}
#[test]
fn test_is_sign_positive() {
assert!(INFINITY.is_sign_positive());
assert!(1f64.is_sign_positive());
assert!(0f64.is_sign_positive());
assert!(!(-0f64).is_sign_positive());
assert!(!(-1f64).is_sign_positive());
assert!(!NEG_INFINITY.is_sign_positive());
assert!(!(1f64/NEG_INFINITY).is_sign_positive());
assert!(!NAN.is_sign_positive());
}
#[test]
fn test_is_sign_negative() {
assert!(!INFINITY.is_sign_negative());
assert!(!1f64.is_sign_negative());
assert!(!0f64.is_sign_negative());
assert!((-0f64).is_sign_negative());
assert!((-1f64).is_sign_negative());
assert!(NEG_INFINITY.is_sign_negative());
assert!((1f64/NEG_INFINITY).is_sign_negative());
assert!(!NAN.is_sign_negative());
}
#[test]
fn test_mul_add() {
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
assert_approx_eq!(12.3f64.mul_add(4.5, 6.7), 62.05);
assert_approx_eq!((-12.3f64).mul_add(-4.5, -6.7), 48.65);
assert_approx_eq!(0.0f64.mul_add(8.9, 1.2), 1.2);
assert_approx_eq!(3.4f64.mul_add(-0.0, 5.6), 5.6);
assert!(nan.mul_add(7.8, 9.0).is_nan());
assert_eq!(inf.mul_add(7.8, 9.0), inf);
assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf);
assert_eq!(8.9f64.mul_add(inf, 3.2), inf);
assert_eq!((-3.2f64).mul_add(2.4, neg_inf), neg_inf);
}
#[test]
fn test_recip() {
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
assert_eq!(1.0f64.recip(), 1.0);
assert_eq!(2.0f64.recip(), 0.5);
assert_eq!((-0.4f64).recip(), -2.5);
assert_eq!(0.0f64.recip(), inf);
assert!(nan.recip().is_nan());
assert_eq!(inf.recip(), 0.0);
assert_eq!(neg_inf.recip(), 0.0);
}
#[test]
fn test_powi() {
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
assert_eq!(1.0f64.powi(1), 1.0);
assert_approx_eq!((-3.1f64).powi(2), 9.61);
assert_approx_eq!(5.9f64.powi(-2), 0.028727);
assert_eq!(8.3f64.powi(0), 1.0);
assert!(nan.powi(2).is_nan());
assert_eq!(inf.powi(3), inf);
assert_eq!(neg_inf.powi(2), inf);
}
#[test]
fn test_powf() {
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
assert_eq!(1.0f64.powf(1.0), 1.0);
assert_approx_eq!(3.4f64.powf(4.5), 246.408183);
assert_approx_eq!(2.7f64.powf(-3.2), 0.041652);
assert_approx_eq!((-3.1f64).powf(2.0), 9.61);
assert_approx_eq!(5.9f64.powf(-2.0), 0.028727);
assert_eq!(8.3f64.powf(0.0), 1.0);
assert!(nan.powf(2.0).is_nan());
assert_eq!(inf.powf(2.0), inf);
assert_eq!(neg_inf.powf(3.0), neg_inf);
}
#[test]
fn test_sqrt_domain() {
assert!(NAN.sqrt().is_nan());
assert!(NEG_INFINITY.sqrt().is_nan());
assert!((-1.0f64).sqrt().is_nan());
assert_eq!((-0.0f64).sqrt(), -0.0);
assert_eq!(0.0f64.sqrt(), 0.0);
assert_eq!(1.0f64.sqrt(), 1.0);
assert_eq!(INFINITY.sqrt(), INFINITY);
}
#[test]
fn test_exp() {
assert_eq!(1.0, 0.0f64.exp());
assert_approx_eq!(2.718282, 1.0f64.exp());
assert_approx_eq!(148.413159, 5.0f64.exp());
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
let nan: f64 = NAN;
assert_eq!(inf, inf.exp());
assert_eq!(0.0, neg_inf.exp());
assert!(nan.exp().is_nan());
}
#[test]
fn test_exp2() {
assert_eq!(32.0, 5.0f64.exp2());
assert_eq!(1.0, 0.0f64.exp2());
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
let nan: f64 = NAN;
assert_eq!(inf, inf.exp2());
assert_eq!(0.0, neg_inf.exp2());
assert!(nan.exp2().is_nan());
}
#[test]
fn test_ln() {
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
assert_approx_eq!(1.0f64.exp().ln(), 1.0);
assert!(nan.ln().is_nan());
assert_eq!(inf.ln(), inf);
assert!(neg_inf.ln().is_nan());
assert!((-2.3f64).ln().is_nan());
assert_eq!((-0.0f64).ln(), neg_inf);
assert_eq!(0.0f64.ln(), neg_inf);
assert_approx_eq!(4.0f64.ln(), 1.386294);
}
#[test]
fn test_log() {
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
assert_eq!(10.0f64.log(10.0), 1.0);
assert_approx_eq!(2.3f64.log(3.5), 0.664858);
assert_eq!(1.0f64.exp().log(1.0f64.exp()), 1.0);
assert!(1.0f64.log(1.0).is_nan());
assert!(1.0f64.log(-13.9).is_nan());
assert!(nan.log(2.3).is_nan());
assert_eq!(inf.log(10.0), inf);
assert!(neg_inf.log(8.8).is_nan());
assert!((-2.3f64).log(0.1).is_nan());
assert_eq!((-0.0f64).log(2.0), neg_inf);
assert_eq!(0.0f64.log(7.0), neg_inf);
}
#[test]
fn test_log2() {
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
assert_approx_eq!(10.0f64.log2(), 3.321928);
assert_approx_eq!(2.3f64.log2(), 1.201634);
assert_approx_eq!(1.0f64.exp().log2(), 1.442695);
assert!(nan.log2().is_nan());
assert_eq!(inf.log2(), inf);
assert!(neg_inf.log2().is_nan());
assert!((-2.3f64).log2().is_nan());
assert_eq!((-0.0f64).log2(), neg_inf);
assert_eq!(0.0f64.log2(), neg_inf);
}
#[test]
fn test_log10() {
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
assert_eq!(10.0f64.log10(), 1.0);
assert_approx_eq!(2.3f64.log10(), 0.361728);
assert_approx_eq!(1.0f64.exp().log10(), 0.434294);
assert_eq!(1.0f64.log10(), 0.0);
assert!(nan.log10().is_nan());
assert_eq!(inf.log10(), inf);
assert!(neg_inf.log10().is_nan());
assert!((-2.3f64).log10().is_nan());
assert_eq!((-0.0f64).log10(), neg_inf);
assert_eq!(0.0f64.log10(), neg_inf);
}
#[test]
fn test_to_degrees() {
let pi: f64 = consts::PI;
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
assert_eq!(0.0f64.to_degrees(), 0.0);
assert_approx_eq!((-5.8f64).to_degrees(), -332.315521);
assert_eq!(pi.to_degrees(), 180.0);
assert!(nan.to_degrees().is_nan());
assert_eq!(inf.to_degrees(), inf);
assert_eq!(neg_inf.to_degrees(), neg_inf);
}
#[test]
fn test_to_radians() {
let pi: f64 = consts::PI;
let nan: f64 = NAN;
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
assert_eq!(0.0f64.to_radians(), 0.0);
assert_approx_eq!(154.6f64.to_radians(), 2.698279);
assert_approx_eq!((-332.31f64).to_radians(), -5.799903);
assert_eq!(180.0f64.to_radians(), pi);
assert!(nan.to_radians().is_nan());
assert_eq!(inf.to_radians(), inf);
assert_eq!(neg_inf.to_radians(), neg_inf);
}
#[test]
fn test_ldexp() {
let f1 = 2.0f64.powi(-123);
let f2 = 2.0f64.powi(-111);
let f3 = 1.75 * 2.0f64.powi(-12);
assert_eq!(f64::ldexp(1f64, -123), f1);
assert_eq!(f64::ldexp(1f64, -111), f2);
assert_eq!(f64::ldexp(1.75f64, -12), f3);
assert_eq!(f64::ldexp(0f64, -123), 0f64);
assert_eq!(f64::ldexp(-0f64, -123), -0f64);
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
let nan: f64 = NAN;
assert_eq!(f64::ldexp(inf, -123), inf);
assert_eq!(f64::ldexp(neg_inf, -123), neg_inf);
assert!(f64::ldexp(nan, -123).is_nan());
}
#[test]
fn test_frexp() {
let f1 = 2.0f64.powi(-123);
let f2 = 2.0f64.powi(-111);
let f3 = 1.75 * 2.0f64.powi(-123);
let (x1, exp1) = f1.frexp();
let (x2, exp2) = f2.frexp();
let (x3, exp3) = f3.frexp();
assert_eq!((x1, exp1), (0.5f64, -122));
assert_eq!((x2, exp2), (0.5f64, -110));
assert_eq!((x3, exp3), (0.875f64, -122));
assert_eq!(f64::ldexp(x1, exp1), f1);
assert_eq!(f64::ldexp(x2, exp2), f2);
assert_eq!(f64::ldexp(x3, exp3), f3);
assert_eq!(0f64.frexp(), (0f64, 0));
assert_eq!((-0f64).frexp(), (-0f64, 0));
}
#[test] #[cfg_attr(windows, ignore)] // FIXME #8755
fn test_frexp_nowin() {
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
let nan: f64 = NAN;
assert_eq!(match inf.frexp() { (x, _) => x }, inf);
assert_eq!(match neg_inf.frexp() { (x, _) => x }, neg_inf);
assert!(match nan.frexp() { (x, _) => x.is_nan() })
}
#[test]
fn test_abs_sub() {
assert_eq!((-1f64).abs_sub(1f64), 0f64);
assert_eq!(1f64.abs_sub(1f64), 0f64);
assert_eq!(1f64.abs_sub(0f64), 1f64);
assert_eq!(1f64.abs_sub(-1f64), 2f64);
assert_eq!(NEG_INFINITY.abs_sub(0f64), 0f64);
assert_eq!(INFINITY.abs_sub(1f64), INFINITY);
assert_eq!(0f64.abs_sub(NEG_INFINITY), INFINITY);
assert_eq!(0f64.abs_sub(INFINITY), 0f64);
}
#[test]
fn test_abs_sub_nowin() {
assert!(NAN.abs_sub(-1f64).is_nan());
assert!(1f64.abs_sub(NAN).is_nan());
}
2013-05-14 00:11:35 +10:00
#[test]
fn test_asinh() {
assert_eq!(0.0f64.asinh(), 0.0f64);
assert_eq!((-0.0f64).asinh(), -0.0f64);
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
let nan: f64 = NAN;
assert_eq!(inf.asinh(), inf);
assert_eq!(neg_inf.asinh(), neg_inf);
assert!(nan.asinh().is_nan());
2013-05-14 00:11:35 +10:00
assert_approx_eq!(2.0f64.asinh(), 1.443635475178810342493276740273105f64);
assert_approx_eq!((-2.0f64).asinh(), -1.443635475178810342493276740273105f64);
}
#[test]
fn test_acosh() {
assert_eq!(1.0f64.acosh(), 0.0f64);
assert!(0.999f64.acosh().is_nan());
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
let nan: f64 = NAN;
assert_eq!(inf.acosh(), inf);
assert!(neg_inf.acosh().is_nan());
assert!(nan.acosh().is_nan());
2013-05-14 00:11:35 +10:00
assert_approx_eq!(2.0f64.acosh(), 1.31695789692481670862504634730796844f64);
assert_approx_eq!(3.0f64.acosh(), 1.76274717403908605046521864995958461f64);
}
#[test]
fn test_atanh() {
assert_eq!(0.0f64.atanh(), 0.0f64);
assert_eq!((-0.0f64).atanh(), -0.0f64);
let inf: f64 = INFINITY;
let neg_inf: f64 = NEG_INFINITY;
let nan: f64 = NAN;
assert_eq!(1.0f64.atanh(), inf);
assert_eq!((-1.0f64).atanh(), neg_inf);
assert!(2f64.atanh().atanh().is_nan());
assert!((-2f64).atanh().atanh().is_nan());
assert!(inf.atanh().is_nan());
assert!(neg_inf.atanh().is_nan());
assert!(nan.atanh().is_nan());
2013-05-14 00:11:35 +10:00
assert_approx_eq!(0.5f64.atanh(), 0.54930614433405484569762261846126285f64);
assert_approx_eq!((-0.5f64).atanh(), -0.54930614433405484569762261846126285f64);
}
#[test]
fn test_real_consts() {
std: Second pass stabilization for `comm` This commit is a second pass stabilization for the `std::comm` module, performing the following actions: * The entire `std::comm` module was moved under `std::sync::mpsc`. This movement reflects that channels are just yet another synchronization primitive, and they don't necessarily deserve a special place outside of the other concurrency primitives that the standard library offers. * The `send` and `recv` methods have all been removed. * The `send_opt` and `recv_opt` methods have been renamed to `send` and `recv`. This means that all send/receive operations return a `Result` now indicating whether the operation was successful or not. * The error type of `send` is now a `SendError` to implement a custom error message and allow for `unwrap()`. The error type contains an `into_inner` method to extract the value. * The error type of `recv` is now `RecvError` for the same reasons as `send`. * The `TryRecvError` and `TrySendError` types have had public reexports removed of their variants and the variant names have been tweaked with enum namespacing rules. * The `Messages` iterator is renamed to `Iter` This functionality is now all `#[stable]`: * `Sender` * `SyncSender` * `Receiver` * `std::sync::mpsc` * `channel` * `sync_channel` * `Iter` * `Sender::send` * `Sender::clone` * `SyncSender::send` * `SyncSender::try_send` * `SyncSender::clone` * `Receiver::recv` * `Receiver::try_recv` * `Receiver::iter` * `SendError` * `RecvError` * `TrySendError::{mod, Full, Disconnected}` * `TryRecvError::{mod, Empty, Disconnected}` * `SendError::into_inner` * `TrySendError::into_inner` This is a breaking change due to the modification of where this module is located, as well as the changing of the semantics of `send` and `recv`. Most programs just need to rename imports of `std::comm` to `std::sync::mpsc` and add calls to `unwrap` after a send or a receive operation. [breaking-change]
2014-12-23 11:53:35 -08:00
use super::consts;
let pi: f64 = consts::PI;
let frac_pi_2: f64 = consts::FRAC_PI_2;
let frac_pi_3: f64 = consts::FRAC_PI_3;
let frac_pi_4: f64 = consts::FRAC_PI_4;
let frac_pi_6: f64 = consts::FRAC_PI_6;
let frac_pi_8: f64 = consts::FRAC_PI_8;
let frac_1_pi: f64 = consts::FRAC_1_PI;
let frac_2_pi: f64 = consts::FRAC_2_PI;
let frac_2_sqrtpi: f64 = consts::FRAC_2_SQRT_PI;
let sqrt2: f64 = consts::SQRT_2;
let frac_1_sqrt2: f64 = consts::FRAC_1_SQRT_2;
std: Second pass stabilization for `comm` This commit is a second pass stabilization for the `std::comm` module, performing the following actions: * The entire `std::comm` module was moved under `std::sync::mpsc`. This movement reflects that channels are just yet another synchronization primitive, and they don't necessarily deserve a special place outside of the other concurrency primitives that the standard library offers. * The `send` and `recv` methods have all been removed. * The `send_opt` and `recv_opt` methods have been renamed to `send` and `recv`. This means that all send/receive operations return a `Result` now indicating whether the operation was successful or not. * The error type of `send` is now a `SendError` to implement a custom error message and allow for `unwrap()`. The error type contains an `into_inner` method to extract the value. * The error type of `recv` is now `RecvError` for the same reasons as `send`. * The `TryRecvError` and `TrySendError` types have had public reexports removed of their variants and the variant names have been tweaked with enum namespacing rules. * The `Messages` iterator is renamed to `Iter` This functionality is now all `#[stable]`: * `Sender` * `SyncSender` * `Receiver` * `std::sync::mpsc` * `channel` * `sync_channel` * `Iter` * `Sender::send` * `Sender::clone` * `SyncSender::send` * `SyncSender::try_send` * `SyncSender::clone` * `Receiver::recv` * `Receiver::try_recv` * `Receiver::iter` * `SendError` * `RecvError` * `TrySendError::{mod, Full, Disconnected}` * `TryRecvError::{mod, Empty, Disconnected}` * `SendError::into_inner` * `TrySendError::into_inner` This is a breaking change due to the modification of where this module is located, as well as the changing of the semantics of `send` and `recv`. Most programs just need to rename imports of `std::comm` to `std::sync::mpsc` and add calls to `unwrap` after a send or a receive operation. [breaking-change]
2014-12-23 11:53:35 -08:00
let e: f64 = consts::E;
let log2_e: f64 = consts::LOG2_E;
let log10_e: f64 = consts::LOG10_E;
let ln_2: f64 = consts::LN_2;
let ln_10: f64 = consts::LN_10;
assert_approx_eq!(frac_pi_2, pi / 2f64);
assert_approx_eq!(frac_pi_3, pi / 3f64);
assert_approx_eq!(frac_pi_4, pi / 4f64);
assert_approx_eq!(frac_pi_6, pi / 6f64);
assert_approx_eq!(frac_pi_8, pi / 8f64);
assert_approx_eq!(frac_1_pi, 1f64 / pi);
assert_approx_eq!(frac_2_pi, 2f64 / pi);
assert_approx_eq!(frac_2_sqrtpi, 2f64 / pi.sqrt());
assert_approx_eq!(sqrt2, 2f64.sqrt());
assert_approx_eq!(frac_1_sqrt2, 1f64 / 2f64.sqrt());
assert_approx_eq!(log2_e, e.log2());
assert_approx_eq!(log10_e, e.log10());
assert_approx_eq!(ln_2, 2f64.ln());
assert_approx_eq!(ln_10, 10f64.ln());
}
}