rust/tests/ui/rfcs/rfc-1857-stabilize-drop-order/drop-order.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

225 lines
8.1 KiB
Rust
Raw Normal View History

// run-pass
// needs-unwind
std: Add a new wasm32-unknown-unknown target This commit adds a new target to the compiler: wasm32-unknown-unknown. This target is a reimagining of what it looks like to generate WebAssembly code from Rust. Instead of using Emscripten which can bring with it a weighty runtime this instead is a target which uses only the LLVM backend for WebAssembly and a "custom linker" for now which will hopefully one day be direct calls to lld. Notable features of this target include: * There is zero runtime footprint. The target assumes nothing exists other than the wasm32 instruction set. * There is zero toolchain footprint beyond adding the target. No custom linker is needed, rustc contains everything. * Very small wasm modules can be generated directly from Rust code using this target. * Most of the standard library is stubbed out to return an error, but anything related to allocation works (aka `HashMap`, `Vec`, etc). * Naturally, any `#[no_std]` crate should be 100% compatible with this new target. This target is currently somewhat janky due to how linking works. The "linking" is currently unconditional whole program LTO (aka LLVM is being used as a linker). Naturally that means compiling programs is pretty slow! Eventually though this target should have a linker. This target is also intended to be quite experimental. I'm hoping that this can act as a catalyst for further experimentation in Rust with WebAssembly. Breaking changes are very likely to land to this target, so it's not recommended to rely on it in any critical capacity yet. We'll let you know when it's "production ready". --- Currently testing-wise this target is looking pretty good but isn't complete. I've got almost the entire `run-pass` test suite working with this target (lots of tests ignored, but many passing as well). The `core` test suite is still getting LLVM bugs fixed to get that working and will take some time. Relatively simple programs all seem to work though! --- It's worth nothing that you may not immediately see the "smallest possible wasm module" for the input you feed to rustc. For various reasons it's very difficult to get rid of the final "bloat" in vanilla rustc (again, a real linker should fix all this). For now what you'll have to do is: cargo install --git https://github.com/alexcrichton/wasm-gc wasm-gc foo.wasm bar.wasm And then `bar.wasm` should be the smallest we can get it! --- In any case for now I'd love feedback on this, particularly on the various integration points if you've got better ideas of how to approach them!
2017-10-22 22:01:00 -05:00
#![allow(dead_code, unreachable_code)]
use std::cell::RefCell;
use std::rc::Rc;
use std::panic::{self, AssertUnwindSafe, UnwindSafe};
// This struct is used to record the order in which elements are dropped
struct PushOnDrop {
vec: Rc<RefCell<Vec<u32>>>,
val: u32
}
impl PushOnDrop {
fn new(val: u32, vec: Rc<RefCell<Vec<u32>>>) -> PushOnDrop {
PushOnDrop { vec, val }
}
}
impl Drop for PushOnDrop {
fn drop(&mut self) {
self.vec.borrow_mut().push(self.val)
}
}
impl UnwindSafe for PushOnDrop { }
// Structs
struct TestStruct {
x: PushOnDrop,
y: PushOnDrop,
z: PushOnDrop
}
// Tuple structs
struct TestTupleStruct(PushOnDrop, PushOnDrop, PushOnDrop);
// Enum variants
enum TestEnum {
Tuple(PushOnDrop, PushOnDrop, PushOnDrop),
Struct { x: PushOnDrop, y: PushOnDrop, z: PushOnDrop }
}
fn test_drop_tuple() {
// Tuple fields are dropped in the same order they are declared
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let test_tuple = (PushOnDrop::new(1, dropped_fields.clone()),
PushOnDrop::new(2, dropped_fields.clone()));
drop(test_tuple);
assert_eq!(*dropped_fields.borrow(), &[1, 2]);
// Panic during construction means that fields are treated as local variables
// Therefore they are dropped in reverse order of initialization
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let cloned = AssertUnwindSafe(dropped_fields.clone());
panic::catch_unwind(|| {
(PushOnDrop::new(2, cloned.clone()),
PushOnDrop::new(1, cloned.clone()),
2018-02-16 08:56:50 -06:00
panic!("this panic is caught :D"));
}).err().unwrap();
assert_eq!(*dropped_fields.borrow(), &[1, 2]);
}
fn test_drop_struct() {
// Struct fields are dropped in the same order they are declared
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let test_struct = TestStruct {
x: PushOnDrop::new(1, dropped_fields.clone()),
y: PushOnDrop::new(2, dropped_fields.clone()),
z: PushOnDrop::new(3, dropped_fields.clone()),
};
drop(test_struct);
assert_eq!(*dropped_fields.borrow(), &[1, 2, 3]);
// The same holds for tuple structs
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let test_tuple_struct = TestTupleStruct(PushOnDrop::new(1, dropped_fields.clone()),
PushOnDrop::new(2, dropped_fields.clone()),
PushOnDrop::new(3, dropped_fields.clone()));
drop(test_tuple_struct);
assert_eq!(*dropped_fields.borrow(), &[1, 2, 3]);
// Panic during struct construction means that fields are treated as local variables
// Therefore they are dropped in reverse order of initialization
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let cloned = AssertUnwindSafe(dropped_fields.clone());
panic::catch_unwind(|| {
TestStruct {
x: PushOnDrop::new(2, cloned.clone()),
y: PushOnDrop::new(1, cloned.clone()),
2018-02-16 08:56:50 -06:00
z: panic!("this panic is caught :D")
};
}).err().unwrap();
assert_eq!(*dropped_fields.borrow(), &[1, 2]);
// Test with different initialization order
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let cloned = AssertUnwindSafe(dropped_fields.clone());
panic::catch_unwind(|| {
TestStruct {
y: PushOnDrop::new(2, cloned.clone()),
x: PushOnDrop::new(1, cloned.clone()),
2018-02-16 08:56:50 -06:00
z: panic!("this panic is caught :D")
};
}).err().unwrap();
assert_eq!(*dropped_fields.borrow(), &[1, 2]);
// The same holds for tuple structs
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let cloned = AssertUnwindSafe(dropped_fields.clone());
panic::catch_unwind(|| {
TestTupleStruct(PushOnDrop::new(2, cloned.clone()),
PushOnDrop::new(1, cloned.clone()),
2018-02-16 08:56:50 -06:00
panic!("this panic is caught :D"));
}).err().unwrap();
assert_eq!(*dropped_fields.borrow(), &[1, 2]);
}
fn test_drop_enum() {
// Enum variants are dropped in the same order they are declared
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let test_struct_enum = TestEnum::Struct {
x: PushOnDrop::new(1, dropped_fields.clone()),
y: PushOnDrop::new(2, dropped_fields.clone()),
z: PushOnDrop::new(3, dropped_fields.clone())
};
drop(test_struct_enum);
assert_eq!(*dropped_fields.borrow(), &[1, 2, 3]);
// The same holds for tuple enum variants
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let test_tuple_enum = TestEnum::Tuple(PushOnDrop::new(1, dropped_fields.clone()),
PushOnDrop::new(2, dropped_fields.clone()),
PushOnDrop::new(3, dropped_fields.clone()));
drop(test_tuple_enum);
assert_eq!(*dropped_fields.borrow(), &[1, 2, 3]);
// Panic during enum construction means that fields are treated as local variables
// Therefore they are dropped in reverse order of initialization
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let cloned = AssertUnwindSafe(dropped_fields.clone());
panic::catch_unwind(|| {
TestEnum::Struct {
x: PushOnDrop::new(2, cloned.clone()),
y: PushOnDrop::new(1, cloned.clone()),
2018-02-16 08:56:50 -06:00
z: panic!("this panic is caught :D")
};
}).err().unwrap();
assert_eq!(*dropped_fields.borrow(), &[1, 2]);
// Test with different initialization order
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let cloned = AssertUnwindSafe(dropped_fields.clone());
panic::catch_unwind(|| {
TestEnum::Struct {
y: PushOnDrop::new(2, cloned.clone()),
x: PushOnDrop::new(1, cloned.clone()),
2018-02-16 08:56:50 -06:00
z: panic!("this panic is caught :D")
};
}).err().unwrap();
assert_eq!(*dropped_fields.borrow(), &[1, 2]);
// The same holds for tuple enum variants
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let cloned = AssertUnwindSafe(dropped_fields.clone());
panic::catch_unwind(|| {
TestEnum::Tuple(PushOnDrop::new(2, cloned.clone()),
PushOnDrop::new(1, cloned.clone()),
2018-02-16 08:56:50 -06:00
panic!("this panic is caught :D"));
}).err().unwrap();
assert_eq!(*dropped_fields.borrow(), &[1, 2]);
}
fn test_drop_list() {
// Elements in a Vec are dropped in the same order they are pushed
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let xs = vec![PushOnDrop::new(1, dropped_fields.clone()),
PushOnDrop::new(2, dropped_fields.clone()),
PushOnDrop::new(3, dropped_fields.clone())];
drop(xs);
assert_eq!(*dropped_fields.borrow(), &[1, 2, 3]);
// The same holds for arrays
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let xs = [PushOnDrop::new(1, dropped_fields.clone()),
PushOnDrop::new(2, dropped_fields.clone()),
PushOnDrop::new(3, dropped_fields.clone())];
drop(xs);
assert_eq!(*dropped_fields.borrow(), &[1, 2, 3]);
// Panic during vec construction means that fields are treated as local variables
// Therefore they are dropped in reverse order of initialization
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let cloned = AssertUnwindSafe(dropped_fields.clone());
panic::catch_unwind(|| {
vec![
PushOnDrop::new(2, cloned.clone()),
PushOnDrop::new(1, cloned.clone()),
2018-02-16 08:56:50 -06:00
panic!("this panic is caught :D")
];
}).err().unwrap();
assert_eq!(*dropped_fields.borrow(), &[1, 2]);
// The same holds for arrays
let dropped_fields = Rc::new(RefCell::new(Vec::new()));
let cloned = AssertUnwindSafe(dropped_fields.clone());
panic::catch_unwind(|| {
[
PushOnDrop::new(2, cloned.clone()),
PushOnDrop::new(1, cloned.clone()),
2018-02-16 08:56:50 -06:00
panic!("this panic is caught :D")
];
}).err().unwrap();
assert_eq!(*dropped_fields.borrow(), &[1, 2]);
}
fn main() {
test_drop_tuple();
test_drop_struct();
test_drop_enum();
test_drop_list();
}