rust/src/libcollections/vec_deque.rs

2053 lines
65 KiB
Rust
Raw Normal View History

Deprecate the rev_iter pattern in all places where a DoubleEndedIterator is provided (everywhere but treemap) This commit deprecates rev_iter, mut_rev_iter, move_rev_iter everywhere (except treemap) and also deprecates related functions like rsplit, rev_components, and rev_str_components. In every case, these functions can be replaced with the non-reversed form followed by a call to .rev(). To make this more concrete, a translation table for all functional changes necessary follows: * container.rev_iter() -> container.iter().rev() * container.mut_rev_iter() -> container.mut_iter().rev() * container.move_rev_iter() -> container.move_iter().rev() * sliceorstr.rsplit(sep) -> sliceorstr.split(sep).rev() * path.rev_components() -> path.components().rev() * path.rev_str_components() -> path.str_components().rev() In terms of the type system, this change also deprecates any specialized reversed iterator types (except in treemap), opting instead to use Rev directly if any type annotations are needed. However, since methods directly returning reversed iterators are now discouraged, the need for such annotations should be small. However, in those cases, the general pattern for conversion is to take whatever follows Rev in the original reversed name and surround it with Rev<>: * RevComponents<'a> -> Rev<Components<'a>> * RevStrComponents<'a> -> Rev<StrComponents<'a>> * RevItems<'a, T> -> Rev<Items<'a, T>> * etc. The reasoning behind this change is that it makes the standard API much simpler without reducing readability, performance, or power. The presence of functions such as rev_iter adds more boilerplate code to libraries (all of which simply call .iter().rev()), clutters up the documentation, and only helps code by saving two characters. Additionally, the numerous type synonyms that were used to make the type signatures look nice like RevItems add even more boilerplate and clutter up the docs even more. With this change, all that cruft goes away. [breaking-change]
2014-04-20 23:59:12 -05:00
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! VecDeque is a double-ended queue, which is implemented with the help of a
//! growing ring buffer.
//!
2015-02-17 21:00:20 -06:00
//! This queue has `O(1)` amortized inserts and removals from both ends of the
//! container. It also has `O(1)` indexing like a vector. The contained elements
//! are not required to be copyable, and the queue will be sendable if the
//! contained type is sendable.
2015-01-23 23:48:20 -06:00
#![stable(feature = "rust1", since = "1.0.0")]
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-29 20:50:12 -05:00
use core::prelude::*;
use core::cmp::Ordering;
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-29 20:50:12 -05:00
use core::fmt;
use core::iter::{self, repeat, FromIterator, RandomAccessIterator};
use core::mem;
use core::ops::{Index, IndexMut};
2015-02-12 09:38:45 -06:00
use core::ptr::{self, Unique};
use core::slice;
use core::hash::{Hash, Hasher};
use core::cmp;
2013-05-05 23:42:54 -05:00
use alloc::heap;
const INITIAL_CAPACITY: usize = 7; // 2^3 - 1
const MINIMUM_CAPACITY: usize = 1; // 2 - 1
/// `VecDeque` is a growable ring buffer, which can be used as a
/// double-ended queue efficiently.
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub struct VecDeque<T> {
// tail and head are pointers into the buffer. Tail always points
// to the first element that could be read, Head always points
// to where data should be written.
// If tail == head the buffer is empty. The length of the ringbuf
// is defined as the distance between the two.
2015-02-04 20:17:19 -06:00
tail: usize,
head: usize,
cap: usize,
2015-02-12 09:38:45 -06:00
ptr: Unique<T>,
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> Clone for VecDeque<T> {
fn clone(&self) -> VecDeque<T> {
2015-02-04 20:17:19 -06:00
self.iter().cloned().collect()
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for VecDeque<T> {
fn drop(&mut self) {
self.clear();
unsafe {
if mem::size_of::<T>() != 0 {
2015-02-12 09:38:45 -06:00
heap::deallocate(*self.ptr as *mut u8,
self.cap * mem::size_of::<T>(),
mem::min_align_of::<T>())
}
}
}
2012-01-11 05:49:33 -06:00
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for VecDeque<T> {
#[inline]
fn default() -> VecDeque<T> { VecDeque::new() }
}
impl<T> VecDeque<T> {
/// Turn ptr into a slice
#[inline]
2014-12-30 18:07:53 -06:00
unsafe fn buffer_as_slice(&self) -> &[T] {
slice::from_raw_parts(*self.ptr, self.cap)
}
/// Turn ptr into a mut slice
#[inline]
2014-12-30 18:07:53 -06:00
unsafe fn buffer_as_mut_slice(&mut self) -> &mut [T] {
slice::from_raw_parts_mut(*self.ptr, self.cap)
}
/// Moves an element out of the buffer
#[inline]
2015-02-04 20:17:19 -06:00
unsafe fn buffer_read(&mut self, off: usize) -> T {
ptr::read(self.ptr.offset(off as isize))
}
/// Writes an element into the buffer, moving it.
#[inline]
2015-02-04 20:17:19 -06:00
unsafe fn buffer_write(&mut self, off: usize, t: T) {
ptr::write(self.ptr.offset(off as isize), t);
}
/// Returns true iff the buffer is at capacity
#[inline]
fn is_full(&self) -> bool { self.cap - self.len() == 1 }
2015-02-17 21:00:20 -06:00
/// Returns the index in the underlying buffer for a given logical element
/// index.
#[inline]
2015-02-04 20:17:19 -06:00
fn wrap_index(&self, idx: usize) -> usize { wrap_index(idx, self.cap) }
2014-12-03 11:12:30 -06:00
/// Returns the index in the underlying buffer for a given logical element
/// index + addend.
#[inline]
fn wrap_add(&self, idx: usize, addend: usize) -> usize {
wrap_index(idx.wrapping_add(addend), self.cap)
}
/// Returns the index in the underlying buffer for a given logical element
/// index - subtrahend.
#[inline]
fn wrap_sub(&self, idx: usize, subtrahend: usize) -> usize {
wrap_index(idx.wrapping_sub(subtrahend), self.cap)
}
2014-12-03 11:12:30 -06:00
/// Copies a contiguous block of memory len long from src to dst
#[inline]
2015-02-04 20:17:19 -06:00
unsafe fn copy(&self, dst: usize, src: usize, len: usize) {
2014-12-16 17:37:55 -06:00
debug_assert!(dst + len <= self.cap, "dst={} src={} len={} cap={}", dst, src, len,
self.cap);
debug_assert!(src + len <= self.cap, "dst={} src={} len={} cap={}", dst, src, len,
self.cap);
ptr::copy(
2015-02-04 20:17:19 -06:00
self.ptr.offset(src as isize),
self.ptr.offset(dst as isize),
len);
}
/// Copies a contiguous block of memory len long from src to dst
#[inline]
2015-02-04 20:17:19 -06:00
unsafe fn copy_nonoverlapping(&self, dst: usize, src: usize, len: usize) {
debug_assert!(dst + len <= self.cap, "dst={} src={} len={} cap={}", dst, src, len,
self.cap);
debug_assert!(src + len <= self.cap, "dst={} src={} len={} cap={}", dst, src, len,
self.cap);
ptr::copy_nonoverlapping(
2015-02-04 20:17:19 -06:00
self.ptr.offset(src as isize),
self.ptr.offset(dst as isize),
2014-12-16 17:37:55 -06:00
len);
2014-12-03 11:12:30 -06:00
}
}
impl<T> VecDeque<T> {
/// Creates an empty `VecDeque`.
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new() -> VecDeque<T> {
VecDeque::with_capacity(INITIAL_CAPACITY)
}
/// Creates an empty `VecDeque` with space for at least `n` elements.
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn with_capacity(n: usize) -> VecDeque<T> {
// +1 since the ringbuffer always leaves one space empty
let cap = cmp::max(n + 1, MINIMUM_CAPACITY + 1).next_power_of_two();
assert!(cap > n, "capacity overflow");
let size = cap.checked_mul(mem::size_of::<T>())
.expect("capacity overflow");
2015-02-12 09:38:45 -06:00
let ptr = unsafe {
if mem::size_of::<T>() != 0 {
let ptr = heap::allocate(size, mem::min_align_of::<T>()) as *mut T;;
if ptr.is_null() { ::alloc::oom() }
2015-02-12 09:38:45 -06:00
Unique::new(ptr)
} else {
Unique::new(heap::EMPTY as *mut T)
}
};
VecDeque {
tail: 0,
head: 0,
cap: cap,
2015-02-12 09:38:45 -06:00
ptr: ptr,
}
}
/// Retrieves an element in the `VecDeque` by index.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut buf = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// buf.push_back(3);
/// buf.push_back(4);
/// buf.push_back(5);
/// assert_eq!(buf.get(1).unwrap(), &4);
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-02-04 20:17:19 -06:00
pub fn get(&self, i: usize) -> Option<&T> {
if i < self.len() {
let idx = self.wrap_add(self.tail, i);
2015-02-04 20:17:19 -06:00
unsafe { Some(&*self.ptr.offset(idx as isize)) }
} else {
None
}
}
/// Retrieves an element in the `VecDeque` mutably by index.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut buf = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// buf.push_back(3);
/// buf.push_back(4);
/// buf.push_back(5);
/// if let Some(elem) = buf.get_mut(1) {
/// *elem = 7;
/// }
///
/// assert_eq!(buf[1], 7);
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-02-04 20:17:19 -06:00
pub fn get_mut(&mut self, i: usize) -> Option<&mut T> {
if i < self.len() {
let idx = self.wrap_add(self.tail, i);
2015-02-04 20:17:19 -06:00
unsafe { Some(&mut *self.ptr.offset(idx as isize)) }
} else {
None
}
}
2014-08-04 05:48:39 -05:00
/// Swaps elements at indices `i` and `j`.
///
/// `i` and `j` may be equal.
///
2014-08-04 05:48:39 -05:00
/// Fails if there is no element with either index.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut buf = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// buf.push_back(3);
/// buf.push_back(4);
/// buf.push_back(5);
/// buf.swap(0, 2);
/// assert_eq!(buf[0], 5);
/// assert_eq!(buf[2], 3);
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-02-04 20:17:19 -06:00
pub fn swap(&mut self, i: usize, j: usize) {
assert!(i < self.len());
assert!(j < self.len());
let ri = self.wrap_add(self.tail, i);
let rj = self.wrap_add(self.tail, j);
unsafe {
2015-02-04 20:17:19 -06:00
ptr::swap(self.ptr.offset(ri as isize), self.ptr.offset(rj as isize))
}
}
/// Returns the number of elements the `VecDeque` can hold without
/// reallocating.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let buf: VecDeque<i32> = VecDeque::with_capacity(10);
/// assert!(buf.capacity() >= 10);
/// ```
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-02-04 20:17:19 -06:00
pub fn capacity(&self) -> usize { self.cap - 1 }
/// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
/// given `VecDeque`. Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it requests. Therefore
/// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
/// insertions are expected.
///
/// # Panics
///
2015-02-04 20:17:19 -06:00
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut buf: VecDeque<i32> = vec![1].into_iter().collect();
/// buf.reserve_exact(10);
/// assert!(buf.capacity() >= 11);
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-02-04 20:17:19 -06:00
pub fn reserve_exact(&mut self, additional: usize) {
self.reserve(additional);
}
/// Reserves capacity for at least `additional` more elements to be inserted in the given
/// `Ringbuf`. The collection may reserve more space to avoid frequent reallocations.
///
/// # Panics
///
2015-02-04 20:17:19 -06:00
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut buf: VecDeque<i32> = vec![1].into_iter().collect();
/// buf.reserve(10);
/// assert!(buf.capacity() >= 11);
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-02-04 20:17:19 -06:00
pub fn reserve(&mut self, additional: usize) {
let new_len = self.len() + additional;
assert!(new_len + 1 > self.len(), "capacity overflow");
if new_len > self.capacity() {
let count = (new_len + 1).next_power_of_two();
assert!(count >= new_len + 1);
if mem::size_of::<T>() != 0 {
let old = self.cap * mem::size_of::<T>();
let new = count.checked_mul(mem::size_of::<T>())
.expect("capacity overflow");
unsafe {
2015-02-12 09:38:45 -06:00
let ptr = heap::reallocate(*self.ptr as *mut u8,
old,
new,
mem::min_align_of::<T>()) as *mut T;
if ptr.is_null() { ::alloc::oom() }
self.ptr = Unique::new(ptr);
}
}
// Move the shortest contiguous section of the ring buffer
// T H
// [o o o o o o o . ]
// T H
// A [o o o o o o o . . . . . . . . . ]
// H T
// [o o . o o o o o ]
// T H
// B [. . . o o o o o o o . . . . . . ]
// H T
// [o o o o o . o o ]
// H T
// C [o o o o o . . . . . . . . . o o ]
let oldcap = self.cap;
self.cap = count;
if self.tail <= self.head { // A
// Nop
} else if self.head < oldcap - self.tail { // B
unsafe {
self.copy_nonoverlapping(oldcap, 0, self.head);
}
self.head += oldcap;
debug_assert!(self.head > self.tail);
} else { // C
let new_tail = count - (oldcap - self.tail);
unsafe {
self.copy_nonoverlapping(new_tail, self.tail, oldcap - self.tail);
}
self.tail = new_tail;
debug_assert!(self.head < self.tail);
}
debug_assert!(self.head < self.cap);
debug_assert!(self.tail < self.cap);
debug_assert!(self.cap.count_ones() == 1);
}
}
/// Shrinks the capacity of the ringbuf as much as possible.
///
/// It will drop down as close as possible to the length but the allocator may still inform the
/// ringbuf that there is space for a few more elements.
///
/// # Examples
///
/// ```
2015-03-13 17:28:35 -05:00
/// # #![feature(collections)]
/// use std::collections::VecDeque;
///
/// let mut buf = VecDeque::with_capacity(15);
/// buf.extend(0..4);
/// assert_eq!(buf.capacity(), 15);
/// buf.shrink_to_fit();
/// assert!(buf.capacity() >= 4);
/// ```
pub fn shrink_to_fit(&mut self) {
// +1 since the ringbuffer always leaves one space empty
// len + 1 can't overflow for an existing, well-formed ringbuf.
let target_cap = cmp::max(self.len() + 1, MINIMUM_CAPACITY + 1).next_power_of_two();
if target_cap < self.cap {
// There are three cases of interest:
// All elements are out of desired bounds
// Elements are contiguous, and head is out of desired bounds
// Elements are discontiguous, and tail is out of desired bounds
//
// At all other times, element positions are unaffected.
//
// Indicates that elements at the head should be moved.
let head_outside = self.head == 0 || self.head >= target_cap;
// Move elements from out of desired bounds (positions after target_cap)
if self.tail >= target_cap && head_outside {
// T H
// [. . . . . . . . o o o o o o o . ]
// T H
// [o o o o o o o . ]
unsafe {
self.copy_nonoverlapping(0, self.tail, self.len());
}
self.head = self.len();
self.tail = 0;
} else if self.tail != 0 && self.tail < target_cap && head_outside {
// T H
// [. . . o o o o o o o . . . . . . ]
// H T
// [o o . o o o o o ]
let len = self.wrap_sub(self.head, target_cap);
unsafe {
self.copy_nonoverlapping(0, target_cap, len);
}
self.head = len;
debug_assert!(self.head < self.tail);
} else if self.tail >= target_cap {
// H T
// [o o o o o . . . . . . . . . o o ]
// H T
// [o o o o o . o o ]
debug_assert!(self.wrap_sub(self.head, 1) < target_cap);
let len = self.cap - self.tail;
let new_tail = target_cap - len;
unsafe {
self.copy_nonoverlapping(new_tail, self.tail, len);
}
self.tail = new_tail;
debug_assert!(self.head < self.tail);
}
if mem::size_of::<T>() != 0 {
let old = self.cap * mem::size_of::<T>();
let new_size = target_cap * mem::size_of::<T>();
unsafe {
2015-02-12 09:38:45 -06:00
let ptr = heap::reallocate(*self.ptr as *mut u8,
old,
new_size,
mem::min_align_of::<T>()) as *mut T;
if ptr.is_null() { ::alloc::oom() }
self.ptr = Unique::new(ptr);
}
}
self.cap = target_cap;
debug_assert!(self.head < self.cap);
debug_assert!(self.tail < self.cap);
debug_assert!(self.cap.count_ones() == 1);
}
}
2013-06-25 14:08:47 -05:00
/// Shortens a ringbuf, dropping excess elements from the back.
///
/// If `len` is greater than the ringbuf's current length, this has no
/// effect.
///
/// # Examples
///
/// ```
2015-03-13 17:28:35 -05:00
/// # #![feature(collections)]
/// use std::collections::VecDeque;
///
/// let mut buf = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// buf.push_back(5);
/// buf.push_back(10);
/// buf.push_back(15);
/// buf.truncate(1);
/// assert_eq!(buf.len(), 1);
/// assert_eq!(Some(&5), buf.get(0));
/// ```
#[unstable(feature = "deque_extras",
reason = "matches collection reform specification; waiting on panic semantics")]
2015-02-04 20:17:19 -06:00
pub fn truncate(&mut self, len: usize) {
for _ in len..self.len() {
self.pop_back();
}
}
2014-08-04 05:48:39 -05:00
/// Returns a front-to-back iterator.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut buf = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// buf.push_back(5);
/// buf.push_back(3);
/// buf.push_back(4);
2014-08-06 04:59:40 -05:00
/// let b: &[_] = &[&5, &3, &4];
2015-03-30 11:22:46 -05:00
/// let c: Vec<&i32> = buf.iter().collect();
/// assert_eq!(&c[..], b);
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter(&self) -> Iter<T> {
Iter {
tail: self.tail,
head: self.head,
ring: unsafe { self.buffer_as_slice() }
}
2013-06-25 14:08:47 -05:00
}
/// Returns a front-to-back iterator that returns mutable references.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut buf = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// buf.push_back(5);
/// buf.push_back(3);
/// buf.push_back(4);
2014-09-14 22:27:36 -05:00
/// for num in buf.iter_mut() {
/// *num = *num - 2;
/// }
2014-08-06 04:59:40 -05:00
/// let b: &[_] = &[&mut 3, &mut 1, &mut 2];
/// assert_eq!(&buf.iter_mut().collect::<Vec<&mut i32>>()[..], b);
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter_mut(&mut self) -> IterMut<T> {
IterMut {
tail: self.tail,
head: self.head,
ring: unsafe { self.buffer_as_mut_slice() },
}
2013-06-25 14:08:47 -05:00
}
/// Returns a pair of slices which contain, in order, the contents of the
/// `VecDeque`.
#[inline]
#[unstable(feature = "deque_extras",
reason = "matches collection reform specification, waiting for dust to settle")]
pub fn as_slices(&self) -> (&[T], &[T]) {
unsafe {
let contiguous = self.is_contiguous();
let buf = self.buffer_as_slice();
if contiguous {
let (empty, buf) = buf.split_at(0);
2015-01-07 10:58:31 -06:00
(&buf[self.tail..self.head], empty)
} else {
let (mid, right) = buf.split_at(self.tail);
let (left, _) = mid.split_at(self.head);
(right, left)
}
}
}
/// Returns a pair of slices which contain, in order, the contents of the
/// `VecDeque`.
#[inline]
#[unstable(feature = "deque_extras",
reason = "matches collection reform specification, waiting for dust to settle")]
pub fn as_mut_slices(&mut self) -> (&mut [T], &mut [T]) {
unsafe {
let contiguous = self.is_contiguous();
let head = self.head;
let tail = self.tail;
let buf = self.buffer_as_mut_slice();
if contiguous {
let (empty, buf) = buf.split_at_mut(0);
2015-01-17 18:15:52 -06:00
(&mut buf[tail .. head], empty)
} else {
let (mid, right) = buf.split_at_mut(tail);
let (left, _) = mid.split_at_mut(head);
(right, left)
}
}
}
/// Returns the number of elements in the `VecDeque`.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut v = VecDeque::new();
/// assert_eq!(v.len(), 0);
2015-01-25 15:05:03 -06:00
/// v.push_back(1);
/// assert_eq!(v.len(), 1);
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-02-04 20:17:19 -06:00
pub fn len(&self) -> usize { count(self.tail, self.head, self.cap) }
/// Returns true if the buffer contains no elements
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut v = VecDeque::new();
/// assert!(v.is_empty());
2015-01-25 15:05:03 -06:00
/// v.push_front(1);
/// assert!(!v.is_empty());
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_empty(&self) -> bool { self.len() == 0 }
/// Creates a draining iterator that clears the `VecDeque` and iterates over
/// the removed items from start to end.
///
/// # Examples
///
/// ```
2015-03-13 17:28:35 -05:00
/// # #![feature(collections)]
/// use std::collections::VecDeque;
///
/// let mut v = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// v.push_back(1);
/// assert_eq!(v.drain().next(), Some(1));
/// assert!(v.is_empty());
/// ```
#[inline]
#[unstable(feature = "drain",
reason = "matches collection reform specification, waiting for dust to settle")]
2014-12-30 18:07:53 -06:00
pub fn drain(&mut self) -> Drain<T> {
Drain {
inner: self,
}
}
/// Clears the buffer, removing all values.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut v = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// v.push_back(1);
/// v.clear();
/// assert!(v.is_empty());
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn clear(&mut self) {
self.drain();
}
/// Provides a reference to the front element, or `None` if the sequence is
/// empty.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut d = VecDeque::new();
/// assert_eq!(d.front(), None);
///
2015-01-25 15:05:03 -06:00
/// d.push_back(1);
/// d.push_back(2);
/// assert_eq!(d.front(), Some(&1));
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn front(&self) -> Option<&T> {
if !self.is_empty() { Some(&self[0]) } else { None }
}
/// Provides a mutable reference to the front element, or `None` if the
/// sequence is empty.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut d = VecDeque::new();
/// assert_eq!(d.front_mut(), None);
///
2015-01-25 15:05:03 -06:00
/// d.push_back(1);
/// d.push_back(2);
/// match d.front_mut() {
2015-01-25 15:05:03 -06:00
/// Some(x) => *x = 9,
/// None => (),
/// }
2015-01-25 15:05:03 -06:00
/// assert_eq!(d.front(), Some(&9));
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn front_mut(&mut self) -> Option<&mut T> {
if !self.is_empty() { Some(&mut self[0]) } else { None }
}
/// Provides a reference to the back element, or `None` if the sequence is
/// empty.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut d = VecDeque::new();
/// assert_eq!(d.back(), None);
///
2015-01-25 15:05:03 -06:00
/// d.push_back(1);
/// d.push_back(2);
/// assert_eq!(d.back(), Some(&2));
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn back(&self) -> Option<&T> {
if !self.is_empty() { Some(&self[self.len() - 1]) } else { None }
}
/// Provides a mutable reference to the back element, or `None` if the
/// sequence is empty.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut d = VecDeque::new();
/// assert_eq!(d.back(), None);
///
2015-01-25 15:05:03 -06:00
/// d.push_back(1);
/// d.push_back(2);
/// match d.back_mut() {
2015-01-25 15:05:03 -06:00
/// Some(x) => *x = 9,
/// None => (),
/// }
2015-01-25 15:05:03 -06:00
/// assert_eq!(d.back(), Some(&9));
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn back_mut(&mut self) -> Option<&mut T> {
let len = self.len();
if !self.is_empty() { Some(&mut self[len - 1]) } else { None }
}
/// Removes the first element and returns it, or `None` if the sequence is
/// empty.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut d = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// d.push_back(1);
/// d.push_back(2);
///
2015-01-25 15:05:03 -06:00
/// assert_eq!(d.pop_front(), Some(1));
/// assert_eq!(d.pop_front(), Some(2));
/// assert_eq!(d.pop_front(), None);
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop_front(&mut self) -> Option<T> {
if self.is_empty() {
None
} else {
let tail = self.tail;
self.tail = self.wrap_add(self.tail, 1);
unsafe { Some(self.buffer_read(tail)) }
}
}
/// Inserts an element first in the sequence.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut d = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// d.push_front(1);
/// d.push_front(2);
/// assert_eq!(d.front(), Some(&2));
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push_front(&mut self, t: T) {
if self.is_full() {
self.reserve(1);
debug_assert!(!self.is_full());
}
self.tail = self.wrap_sub(self.tail, 1);
let tail = self.tail;
unsafe { self.buffer_write(tail, t); }
}
/// Appends an element to the back of a buffer
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut buf = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// buf.push_back(1);
/// buf.push_back(3);
/// assert_eq!(3, *buf.back().unwrap());
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push_back(&mut self, t: T) {
if self.is_full() {
self.reserve(1);
debug_assert!(!self.is_full());
}
let head = self.head;
self.head = self.wrap_add(self.head, 1);
unsafe { self.buffer_write(head, t) }
}
/// Removes the last element from a buffer and returns it, or `None` if
/// it is empty.
///
/// # Examples
///
/// ```
/// use std::collections::VecDeque;
///
/// let mut buf = VecDeque::new();
/// assert_eq!(buf.pop_back(), None);
2015-01-25 15:05:03 -06:00
/// buf.push_back(1);
/// buf.push_back(3);
/// assert_eq!(buf.pop_back(), Some(3));
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop_back(&mut self) -> Option<T> {
if self.is_empty() {
None
} else {
self.head = self.wrap_sub(self.head, 1);
let head = self.head;
unsafe { Some(self.buffer_read(head)) }
}
}
2014-12-03 11:12:30 -06:00
#[inline]
fn is_contiguous(&self) -> bool {
self.tail <= self.head
}
/// Removes an element from anywhere in the ringbuf and returns it, replacing it with the last
/// element.
///
/// This does not preserve ordering, but is O(1).
///
/// Returns `None` if `index` is out of bounds.
///
/// # Examples
///
/// ```
2015-03-13 17:28:35 -05:00
/// # #![feature(collections)]
/// use std::collections::VecDeque;
///
/// let mut buf = VecDeque::new();
/// assert_eq!(buf.swap_back_remove(0), None);
2015-01-25 15:05:03 -06:00
/// buf.push_back(5);
/// buf.push_back(99);
/// buf.push_back(15);
/// buf.push_back(20);
/// buf.push_back(10);
/// assert_eq!(buf.swap_back_remove(1), Some(99));
/// ```
#[unstable(feature = "deque_extras",
reason = "the naming of this function may be altered")]
2015-02-04 20:17:19 -06:00
pub fn swap_back_remove(&mut self, index: usize) -> Option<T> {
let length = self.len();
if length > 0 && index < length - 1 {
self.swap(index, length - 1);
} else if index >= length {
return None;
}
self.pop_back()
}
/// Removes an element from anywhere in the ringbuf and returns it, replacing it with the first
/// element.
///
/// This does not preserve ordering, but is O(1).
///
/// Returns `None` if `index` is out of bounds.
///
/// # Examples
///
/// ```
2015-03-13 17:28:35 -05:00
/// # #![feature(collections)]
/// use std::collections::VecDeque;
///
/// let mut buf = VecDeque::new();
/// assert_eq!(buf.swap_front_remove(0), None);
2015-01-25 15:05:03 -06:00
/// buf.push_back(15);
/// buf.push_back(5);
/// buf.push_back(10);
/// buf.push_back(99);
2015-01-25 15:05:03 -06:00
/// buf.push_back(20);
/// assert_eq!(buf.swap_front_remove(3), Some(99));
/// ```
#[unstable(feature = "deque_extras",
reason = "the naming of this function may be altered")]
2015-02-04 20:17:19 -06:00
pub fn swap_front_remove(&mut self, index: usize) -> Option<T> {
let length = self.len();
if length > 0 && index < length && index != 0 {
self.swap(index, 0);
} else if index >= length {
return None;
}
self.pop_front()
}
2014-12-03 11:12:30 -06:00
/// Inserts an element at position `i` within the ringbuf. Whichever
/// end is closer to the insertion point will be moved to make room,
/// and all the affected elements will be moved to new positions.
///
/// # Panics
///
/// Panics if `i` is greater than ringbuf's length
///
/// # Examples
/// ```
2015-03-13 17:28:35 -05:00
/// # #![feature(collections)]
/// use std::collections::VecDeque;
2014-12-03 11:12:30 -06:00
///
/// let mut buf = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// buf.push_back(10);
2014-12-03 11:12:30 -06:00
/// buf.push_back(12);
/// buf.insert(1,11);
/// assert_eq!(Some(&11), buf.get(1));
/// ```
2015-02-04 20:17:19 -06:00
pub fn insert(&mut self, i: usize, t: T) {
2014-12-03 11:12:30 -06:00
assert!(i <= self.len(), "index out of bounds");
if self.is_full() {
self.reserve(1);
debug_assert!(!self.is_full());
}
// Move the least number of elements in the ring buffer and insert
// the given object
//
// At most len/2 - 1 elements will be moved. O(min(n, n-i))
//
// There are three main cases:
// Elements are contiguous
// - special case when tail is 0
// Elements are discontiguous and the insert is in the tail section
// Elements are discontiguous and the insert is in the head section
//
// For each of those there are two more cases:
// Insert is closer to tail
// Insert is closer to head
//
// Key: H - self.head
// T - self.tail
// o - Valid element
// I - Insertion element
// A - The element that should be after the insertion point
// M - Indicates element was moved
let idx = self.wrap_add(self.tail, i);
2014-12-03 11:12:30 -06:00
let distance_to_tail = i;
let distance_to_head = self.len() - i;
let contiguous = self.is_contiguous();
2014-12-03 11:12:30 -06:00
match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) {
(true, true, _) if i == 0 => {
// push_front
//
// T
// I H
// [A o o o o o o . . . . . . . . .]
//
// H T
// [A o o o o o o o . . . . . I]
//
self.tail = self.wrap_sub(self.tail, 1);
2014-12-03 11:12:30 -06:00
},
2014-12-16 17:37:55 -06:00
(true, true, _) => unsafe {
2014-12-03 11:12:30 -06:00
// contiguous, insert closer to tail:
//
// T I H
// [. . . o o A o o o o . . . . . .]
//
// T H
// [. . o o I A o o o o . . . . . .]
// M M
//
// contiguous, insert closer to tail and tail is 0:
//
//
// T I H
// [o o A o o o o . . . . . . . . .]
//
// H T
// [o I A o o o o o . . . . . . . o]
// M M
let new_tail = self.wrap_sub(self.tail, 1);
2014-12-16 17:37:55 -06:00
self.copy(new_tail, self.tail, 1);
// Already moved the tail, so we only copy `i - 1` elements.
self.copy(self.tail, self.tail + 1, i - 1);
2014-12-03 11:12:30 -06:00
2014-12-16 17:37:55 -06:00
self.tail = new_tail;
2014-12-03 11:12:30 -06:00
},
2014-12-16 17:37:55 -06:00
(true, false, _) => unsafe {
2014-12-03 11:12:30 -06:00
// contiguous, insert closer to head:
//
// T I H
// [. . . o o o o A o o . . . . . .]
//
// T H
// [. . . o o o o I A o o . . . . .]
// M M M
2014-12-16 17:37:55 -06:00
self.copy(idx + 1, idx, self.head - idx);
self.head = self.wrap_add(self.head, 1);
2014-12-03 11:12:30 -06:00
},
2014-12-16 17:37:55 -06:00
(false, true, true) => unsafe {
// discontiguous, insert closer to tail, tail section:
2014-12-03 11:12:30 -06:00
//
// H T I
// [o o o o o o . . . . . o o A o o]
//
// H T
// [o o o o o o . . . . o o I A o o]
// M M
2014-12-16 17:37:55 -06:00
self.copy(self.tail - 1, self.tail, i);
self.tail -= 1;
2014-12-03 11:12:30 -06:00
},
2014-12-16 17:37:55 -06:00
(false, false, true) => unsafe {
// discontiguous, insert closer to head, tail section:
2014-12-03 11:12:30 -06:00
//
// H T I
// [o o . . . . . . . o o o o o A o]
//
// H T
// [o o o . . . . . . o o o o o I A]
// M M M M
// copy elements up to new head
2014-12-16 17:37:55 -06:00
self.copy(1, 0, self.head);
2014-12-03 11:12:30 -06:00
// copy last element into empty spot at bottom of buffer
self.copy(0, self.cap - 1, 1);
// move elements from idx to end forward not including ^ element
self.copy(idx + 1, idx, self.cap - 1 - idx);
2014-12-16 17:37:55 -06:00
self.head += 1;
2014-12-03 11:12:30 -06:00
},
2014-12-16 17:37:55 -06:00
(false, true, false) if idx == 0 => unsafe {
// discontiguous, insert is closer to tail, head section,
2014-12-03 11:12:30 -06:00
// and is at index zero in the internal buffer:
//
// I H T
// [A o o o o o o o o o . . . o o o]
//
// H T
// [A o o o o o o o o o . . o o o I]
// M M M
// copy elements up to new tail
2014-12-16 17:37:55 -06:00
self.copy(self.tail - 1, self.tail, self.cap - self.tail);
2014-12-03 11:12:30 -06:00
// copy last element into empty spot at bottom of buffer
self.copy(self.cap - 1, 0, 1);
2014-12-16 17:37:55 -06:00
self.tail -= 1;
2014-12-03 11:12:30 -06:00
},
2014-12-16 17:37:55 -06:00
(false, true, false) => unsafe {
// discontiguous, insert closer to tail, head section:
2014-12-03 11:12:30 -06:00
//
// I H T
// [o o o A o o o o o o . . . o o o]
//
// H T
// [o o I A o o o o o o . . o o o o]
// M M M M M M
// copy elements up to new tail
2014-12-16 17:37:55 -06:00
self.copy(self.tail - 1, self.tail, self.cap - self.tail);
2014-12-03 11:12:30 -06:00
// copy last element into empty spot at bottom of buffer
self.copy(self.cap - 1, 0, 1);
// move elements from idx-1 to end forward not including ^ element
self.copy(0, 1, idx - 1);
2014-12-16 17:37:55 -06:00
self.tail -= 1;
},
(false, false, false) => unsafe {
// discontiguous, insert closer to head, head section:
2014-12-03 11:12:30 -06:00
//
// I H T
// [o o o o A o o . . . . . . o o o]
//
// H T
// [o o o o I A o o . . . . . o o o]
// M M M
2014-12-16 17:37:55 -06:00
self.copy(idx + 1, idx, self.head - idx);
self.head += 1;
2014-12-03 11:12:30 -06:00
}
}
// tail might've been changed so we need to recalculate
let new_idx = self.wrap_add(self.tail, i);
2014-12-03 11:12:30 -06:00
unsafe {
self.buffer_write(new_idx, t);
}
}
2014-12-16 17:37:55 -06:00
/// Removes and returns the element at position `i` from the ringbuf.
/// Whichever end is closer to the removal point will be moved to make
/// room, and all the affected elements will be moved to new positions.
/// Returns `None` if `i` is out of bounds.
///
/// # Examples
/// ```
/// use std::collections::VecDeque;
2014-12-16 17:37:55 -06:00
///
/// let mut buf = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// buf.push_back(5);
/// buf.push_back(10);
/// buf.push_back(12);
2014-12-16 17:37:55 -06:00
/// buf.push_back(15);
/// buf.remove(2);
/// assert_eq!(Some(&15), buf.get(2));
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-02-04 20:17:19 -06:00
pub fn remove(&mut self, i: usize) -> Option<T> {
2014-12-16 17:37:55 -06:00
if self.is_empty() || self.len() <= i {
return None;
}
// There are three main cases:
// Elements are contiguous
// Elements are discontiguous and the removal is in the tail section
// Elements are discontiguous and the removal is in the head section
// - special case when elements are technically contiguous,
// but self.head = 0
//
// For each of those there are two more cases:
// Insert is closer to tail
// Insert is closer to head
//
// Key: H - self.head
// T - self.tail
// o - Valid element
// x - Element marked for removal
// R - Indicates element that is being removed
// M - Indicates element was moved
let idx = self.wrap_add(self.tail, i);
2014-12-16 17:37:55 -06:00
let elem = unsafe {
Some(self.buffer_read(idx))
};
let distance_to_tail = i;
let distance_to_head = self.len() - i;
let contiguous = self.is_contiguous();
2014-12-16 17:37:55 -06:00
match (contiguous, distance_to_tail <= distance_to_head, idx >= self.tail) {
(true, true, _) => unsafe {
// contiguous, remove closer to tail:
//
// T R H
// [. . . o o x o o o o . . . . . .]
//
// T H
// [. . . . o o o o o o . . . . . .]
// M M
self.copy(self.tail + 1, self.tail, i);
self.tail += 1;
},
(true, false, _) => unsafe {
// contiguous, remove closer to head:
//
// T R H
// [. . . o o o o x o o . . . . . .]
//
// T H
// [. . . o o o o o o . . . . . . .]
// M M
self.copy(idx, idx + 1, self.head - idx - 1);
self.head -= 1;
},
(false, true, true) => unsafe {
// discontiguous, remove closer to tail, tail section:
//
// H T R
// [o o o o o o . . . . . o o x o o]
//
// H T
// [o o o o o o . . . . . . o o o o]
// M M
self.copy(self.tail + 1, self.tail, i);
self.tail = self.wrap_add(self.tail, 1);
2014-12-16 17:37:55 -06:00
},
(false, false, false) => unsafe {
// discontiguous, remove closer to head, head section:
//
// R H T
// [o o o o x o o . . . . . . o o o]
//
// H T
// [o o o o o o . . . . . . . o o o]
// M M
self.copy(idx, idx + 1, self.head - idx - 1);
self.head -= 1;
},
(false, false, true) => unsafe {
// discontiguous, remove closer to head, tail section:
//
// H T R
// [o o o . . . . . . o o o o o x o]
//
// H T
// [o o . . . . . . . o o o o o o o]
// M M M M
//
// or quasi-discontiguous, remove next to head, tail section:
//
// H T R
// [. . . . . . . . . o o o o o x o]
//
// T H
// [. . . . . . . . . o o o o o o .]
// M
// draw in elements in the tail section
self.copy(idx, idx + 1, self.cap - idx - 1);
// Prevents underflow.
if self.head != 0 {
// copy first element into empty spot
self.copy(self.cap - 1, 0, 1);
// move elements in the head section backwards
self.copy(0, 1, self.head - 1);
}
self.head = self.wrap_sub(self.head, 1);
2014-12-16 17:37:55 -06:00
},
(false, true, false) => unsafe {
// discontiguous, remove closer to tail, head section:
//
// R H T
// [o o x o o o o o o o . . . o o o]
//
// H T
// [o o o o o o o o o o . . . . o o]
// M M M M M
// draw in elements up to idx
self.copy(1, 0, idx);
// copy last element into empty spot
self.copy(0, self.cap - 1, 1);
// move elements from tail to end forward, excluding the last one
self.copy(self.tail + 1, self.tail, self.cap - self.tail - 1);
self.tail = self.wrap_add(self.tail, 1);
2014-12-16 17:37:55 -06:00
}
}
return elem;
}
2015-02-07 10:46:16 -06:00
/// Splits the collection into two at the given index.
///
/// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
/// and the returned `Self` contains elements `[at, len)`.
///
/// Note that the capacity of `self` does not change.
///
/// # Panics
///
/// Panics if `at > len`
///
/// # Examples
2015-02-07 11:13:32 -06:00
///
/// ```
2015-03-13 17:28:35 -05:00
/// # #![feature(collections)]
/// use std::collections::VecDeque;
2015-02-07 11:13:32 -06:00
///
/// let mut buf: VecDeque<_> = vec![1,2,3].into_iter().collect();
2015-02-07 10:46:16 -06:00
/// let buf2 = buf.split_off(1);
/// // buf = [1], buf2 = [2, 3]
/// assert_eq!(buf.len(), 1);
/// assert_eq!(buf2.len(), 2);
/// ```
#[inline]
#[unstable(feature = "split_off",
2015-02-07 10:46:16 -06:00
reason = "new API, waiting for dust to settle")]
pub fn split_off(&mut self, at: usize) -> Self {
let len = self.len();
assert!(at <= len, "`at` out of bounds");
let other_len = len - at;
let mut other = VecDeque::with_capacity(other_len);
2015-02-07 10:46:16 -06:00
unsafe {
let (first_half, second_half) = self.as_slices();
let first_len = first_half.len();
let second_len = second_half.len();
if at < first_len {
// `at` lies in the first half.
let amount_in_first = first_len - at;
ptr::copy_nonoverlapping(first_half.as_ptr().offset(at as isize),
*other.ptr,
amount_in_first);
2015-02-07 10:46:16 -06:00
// just take all of the second half.
ptr::copy_nonoverlapping(second_half.as_ptr(),
other.ptr.offset(amount_in_first as isize),
second_len);
2015-02-07 10:46:16 -06:00
} else {
// `at` lies in the second half, need to factor in the elements we skipped
// in the first half.
let offset = at - first_len;
let amount_in_second = second_len - offset;
ptr::copy_nonoverlapping(second_half.as_ptr().offset(offset as isize),
*other.ptr,
amount_in_second);
2015-02-07 10:46:16 -06:00
}
}
// Cleanup where the ends of the buffers are
self.head = self.wrap_sub(self.head, other_len);
2015-02-07 10:46:16 -06:00
other.head = other.wrap_index(other_len);
other
}
2015-02-07 11:13:32 -06:00
/// Moves all the elements of `other` into `Self`, leaving `other` empty.
///
/// # Panics
///
/// Panics if the new number of elements in self overflows a `usize`.
///
/// # Examples
///
/// ```
2015-03-13 17:28:35 -05:00
/// # #![feature(collections)]
/// use std::collections::VecDeque;
2015-02-07 11:13:32 -06:00
///
/// let mut buf: VecDeque<_> = vec![1, 2, 3].into_iter().collect();
/// let mut buf2: VecDeque<_> = vec![4, 5, 6].into_iter().collect();
2015-02-07 11:13:32 -06:00
/// buf.append(&mut buf2);
/// assert_eq!(buf.len(), 6);
/// assert_eq!(buf2.len(), 0);
/// ```
#[inline]
#[unstable(feature = "append",
2015-02-07 11:13:32 -06:00
reason = "new API, waiting for dust to settle")]
pub fn append(&mut self, other: &mut Self) {
// naive impl
self.extend(other.drain());
}
2015-04-27 12:47:19 -05:00
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements `e` such that `f(&e)` returns false.
/// This method operates in place and preserves the order of the retained
/// elements.
///
/// # Examples
///
/// ```
/// # #![feature(vec_deque_retain)]
/// use std::collections::VecDeque;
///
/// let mut buf = VecDeque::new();
/// buf.extend(1..5);
/// buf.retain(|&x| x%2 == 0);
///
/// let v: Vec<_> = buf.into_iter().collect();
/// assert_eq!(&v[..], &[2, 4]);
/// ```
#[unstable(feature = "vec_deque_retain",
reason = "new API, waiting for dust to settle")]
pub fn retain<F>(&mut self, mut f: F) where F: FnMut(&T) -> bool {
let len = self.len();
let mut del = 0;
for i in 0..len {
if !f(&self[i]) {
del += 1;
} else if del > 0 {
self.swap(i-del, i);
}
}
if del > 0 {
self.truncate(len - del);
}
}
2013-06-25 14:08:47 -05:00
}
impl<T: Clone> VecDeque<T> {
/// Modifies the ringbuf in-place so that `len()` is equal to new_len,
/// either by removing excess elements or by appending copies of a value to the back.
///
/// # Examples
///
/// ```
2015-03-13 17:28:35 -05:00
/// # #![feature(collections)]
/// use std::collections::VecDeque;
///
/// let mut buf = VecDeque::new();
2015-01-25 15:05:03 -06:00
/// buf.push_back(5);
/// buf.push_back(10);
/// buf.push_back(15);
/// buf.resize(2, 0);
/// buf.resize(6, 20);
/// for (a, b) in [5, 10, 20, 20, 20, 20].iter().zip(&buf) {
/// assert_eq!(a, b);
/// }
/// ```
#[unstable(feature = "deque_extras",
reason = "matches collection reform specification; waiting on panic semantics")]
2015-02-04 20:17:19 -06:00
pub fn resize(&mut self, new_len: usize, value: T) {
let len = self.len();
if new_len > len {
self.extend(repeat(value).take(new_len - len))
} else {
self.truncate(new_len);
}
}
}
/// Returns the index in the underlying buffer for a given logical element index.
#[inline]
2015-02-04 20:17:19 -06:00
fn wrap_index(index: usize, size: usize) -> usize {
// size is always a power of 2
index & (size - 1)
}
/// Calculate the number of elements left to be read in the buffer
#[inline]
2015-02-04 20:17:19 -06:00
fn count(tail: usize, head: usize, size: usize) -> usize {
// size is always a power of 2
(head.wrapping_sub(tail)) & (size - 1)
}
/// `VecDeque` iterator.
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter<'a, T:'a> {
ring: &'a [T],
2015-02-04 20:17:19 -06:00
tail: usize,
head: usize
}
// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
impl<'a, T> Clone for Iter<'a, T> {
fn clone(&self) -> Iter<'a, T> {
Iter {
ring: self.ring,
tail: self.tail,
head: self.head
}
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
#[inline]
fn next(&mut self) -> Option<&'a T> {
if self.tail == self.head {
return None;
}
let tail = self.tail;
self.tail = wrap_index(self.tail.wrapping_add(1), self.ring.len());
2014-12-30 12:51:18 -06:00
unsafe { Some(self.ring.get_unchecked(tail)) }
}
#[inline]
2015-02-04 20:17:19 -06:00
fn size_hint(&self) -> (usize, Option<usize>) {
let len = count(self.tail, self.head, self.ring.len());
(len, Some(len))
2013-07-15 18:13:26 -05:00
}
2013-06-25 14:08:47 -05:00
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a T> {
if self.tail == self.head {
return None;
}
self.head = wrap_index(self.head.wrapping_sub(1), self.ring.len());
2014-12-30 12:51:18 -06:00
unsafe { Some(self.ring.get_unchecked(self.head)) }
}
2013-06-25 14:08:47 -05:00
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, T> ExactSizeIterator for Iter<'a, T> {}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, T> RandomAccessIterator for Iter<'a, T> {
#[inline]
2015-02-04 20:17:19 -06:00
fn indexable(&self) -> usize {
let (len, _) = self.size_hint();
len
}
#[inline]
2015-02-04 20:17:19 -06:00
fn idx(&mut self, j: usize) -> Option<&'a T> {
if j >= self.indexable() {
None
} else {
let idx = wrap_index(self.tail.wrapping_add(j), self.ring.len());
2014-12-30 12:51:18 -06:00
unsafe { Some(self.ring.get_unchecked(idx)) }
}
}
}
/// `VecDeque` mutable iterator.
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IterMut<'a, T:'a> {
ring: &'a mut [T],
2015-02-04 20:17:19 -06:00
tail: usize,
head: usize,
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, T> Iterator for IterMut<'a, T> {
type Item = &'a mut T;
#[inline]
fn next(&mut self) -> Option<&'a mut T> {
if self.tail == self.head {
return None;
}
let tail = self.tail;
self.tail = wrap_index(self.tail.wrapping_add(1), self.ring.len());
2014-11-22 20:34:11 -06:00
unsafe {
let elem = self.ring.get_unchecked_mut(tail);
Some(&mut *(elem as *mut _))
}
}
#[inline]
2015-02-04 20:17:19 -06:00
fn size_hint(&self) -> (usize, Option<usize>) {
let len = count(self.tail, self.head, self.ring.len());
(len, Some(len))
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a mut T> {
if self.tail == self.head {
return None;
}
self.head = wrap_index(self.head.wrapping_sub(1), self.ring.len());
2014-11-22 20:34:11 -06:00
unsafe {
let elem = self.ring.get_unchecked_mut(self.head);
Some(&mut *(elem as *mut _))
2014-11-22 20:34:11 -06:00
}
}
2013-06-25 14:08:47 -05:00
}
2012-01-11 05:49:33 -06:00
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, T> ExactSizeIterator for IterMut<'a, T> {}
/// A by-value VecDeque iterator
#[derive(Clone)]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IntoIter<T> {
inner: VecDeque<T>,
2014-11-22 20:34:11 -06:00
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<T> Iterator for IntoIter<T> {
type Item = T;
2014-11-22 20:34:11 -06:00
#[inline]
fn next(&mut self) -> Option<T> {
self.inner.pop_front()
}
#[inline]
2015-02-04 20:17:19 -06:00
fn size_hint(&self) -> (usize, Option<usize>) {
2014-11-22 20:34:11 -06:00
let len = self.inner.len();
(len, Some(len))
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<T> DoubleEndedIterator for IntoIter<T> {
2014-11-22 20:34:11 -06:00
#[inline]
fn next_back(&mut self) -> Option<T> {
self.inner.pop_back()
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<T> ExactSizeIterator for IntoIter<T> {}
2014-11-22 20:34:11 -06:00
/// A draining VecDeque iterator
#[unstable(feature = "drain",
reason = "matches collection reform specification, waiting for dust to settle")]
pub struct Drain<'a, T: 'a> {
inner: &'a mut VecDeque<T>,
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: 'a> Drop for Drain<'a, T> {
fn drop(&mut self) {
2015-01-10 20:50:07 -06:00
for _ in self.by_ref() {}
self.inner.head = 0;
self.inner.tail = 0;
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, T: 'a> Iterator for Drain<'a, T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
self.inner.pop_front()
}
#[inline]
2015-02-04 20:17:19 -06:00
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.inner.len();
(len, Some(len))
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<T> {
self.inner.pop_back()
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> {}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: PartialEq> PartialEq for VecDeque<A> {
fn eq(&self, other: &VecDeque<A>) -> bool {
self.len() == other.len() &&
self.iter().zip(other).all(|(a, b)| a.eq(b))
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Eq> Eq for VecDeque<A> {}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: PartialOrd> PartialOrd for VecDeque<A> {
fn partial_cmp(&self, other: &VecDeque<A>) -> Option<Ordering> {
2014-07-26 22:18:56 -05:00
iter::order::partial_cmp(self.iter(), other.iter())
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Ord> Ord for VecDeque<A> {
#[inline]
fn cmp(&self, other: &VecDeque<A>) -> Ordering {
iter::order::cmp(self.iter(), other.iter())
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Hash> Hash for VecDeque<A> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.len().hash(state);
for elt in self {
elt.hash(state);
}
}
}
2014-07-26 21:33:47 -05:00
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> Index<usize> for VecDeque<A> {
2015-01-03 09:40:10 -06:00
type Output = A;
#[inline]
fn index(&self, i: usize) -> &A {
self.get(i).expect("Out of bounds access")
}
2015-01-03 09:40:10 -06:00
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> IndexMut<usize> for VecDeque<A> {
#[inline]
fn index_mut(&mut self, i: usize) -> &mut A {
self.get_mut(i).expect("Out of bounds access")
}
2015-01-03 09:40:10 -06:00
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> FromIterator<A> for VecDeque<A> {
fn from_iter<T: IntoIterator<Item=A>>(iterable: T) -> VecDeque<A> {
let iterator = iterable.into_iter();
2013-07-29 19:06:49 -05:00
let (lower, _) = iterator.size_hint();
let mut deq = VecDeque::with_capacity(lower);
2013-07-29 19:06:49 -05:00
deq.extend(iterator);
deq
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> IntoIterator for VecDeque<T> {
type Item = T;
type IntoIter = IntoIter<T>;
/// Consumes the list into a front-to-back iterator yielding elements by
/// value.
fn into_iter(self) -> IntoIter<T> {
IntoIter {
inner: self,
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> IntoIterator for &'a VecDeque<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> IntoIterator for &'a mut VecDeque<T> {
type Item = &'a mut T;
type IntoIter = IterMut<'a, T>;
2015-01-07 21:01:05 -06:00
fn into_iter(mut self) -> IterMut<'a, T> {
self.iter_mut()
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> Extend<A> for VecDeque<A> {
fn extend<T: IntoIterator<Item=A>>(&mut self, iter: T) {
for elt in iter {
self.push_back(elt);
}
}
}
2015-06-03 05:38:42 -05:00
#[stable(feature = "extend_ref", since = "1.2.0")]
impl<'a, T: 'a + Copy> Extend<&'a T> for VecDeque<T> {
fn extend<I: IntoIterator<Item=&'a T>>(&mut self, iter: I) {
self.extend(iter.into_iter().cloned());
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug> fmt::Debug for VecDeque<T> {
2014-06-04 09:15:04 -05:00
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "["));
2014-06-04 09:15:04 -05:00
for (i, e) in self.iter().enumerate() {
if i != 0 { try!(write!(f, ", ")); }
try!(write!(f, "{:?}", *e));
2014-06-04 09:15:04 -05:00
}
write!(f, "]")
}
}
2015-03-11 19:44:02 -05:00
#[cfg(test)]
mod tests {
use core::iter::Iterator;
2015-03-11 19:44:02 -05:00
use core::option::Option::Some;
use test;
use super::VecDeque;
#[bench]
fn bench_push_back_100(b: &mut test::Bencher) {
let mut deq = VecDeque::with_capacity(101);
b.iter(|| {
for i in 0..100 {
deq.push_back(i);
}
deq.head = 0;
deq.tail = 0;
})
}
#[bench]
fn bench_push_front_100(b: &mut test::Bencher) {
let mut deq = VecDeque::with_capacity(101);
b.iter(|| {
for i in 0..100 {
deq.push_front(i);
}
deq.head = 0;
deq.tail = 0;
})
}
#[bench]
fn bench_pop_back_100(b: &mut test::Bencher) {
let mut deq= VecDeque::<i32>::with_capacity(101);
b.iter(|| {
deq.head = 100;
deq.tail = 0;
while !deq.is_empty() {
test::black_box(deq.pop_back());
}
})
}
#[bench]
fn bench_pop_front_100(b: &mut test::Bencher) {
let mut deq = VecDeque::<i32>::with_capacity(101);
b.iter(|| {
deq.head = 100;
deq.tail = 0;
while !deq.is_empty() {
test::black_box(deq.pop_front());
}
})
}
#[test]
fn test_swap_front_back_remove() {
fn test(back: bool) {
// This test checks that every single combination of tail position and length is tested.
// Capacity 15 should be large enough to cover every case.
let mut tester = VecDeque::with_capacity(15);
let usable_cap = tester.capacity();
let final_len = usable_cap / 2;
for len in 0..final_len {
let expected = if back {
(0..len).collect()
} else {
(0..len).rev().collect()
};
for tail_pos in 0..usable_cap {
tester.tail = tail_pos;
tester.head = tail_pos;
if back {
for i in 0..len * 2 {
tester.push_front(i);
}
for i in 0..len {
assert_eq!(tester.swap_back_remove(i), Some(len * 2 - 1 - i));
}
} else {
for i in 0..len * 2 {
tester.push_back(i);
}
for i in 0..len {
let idx = tester.len() - 1 - i;
assert_eq!(tester.swap_front_remove(idx), Some(len * 2 - 1 - i));
}
}
assert!(tester.tail < tester.cap);
assert!(tester.head < tester.cap);
assert_eq!(tester, expected);
}
}
}
test(true);
test(false);
}
#[test]
fn test_insert() {
// This test checks that every single combination of tail position, length, and
// insertion position is tested. Capacity 15 should be large enough to cover every case.
let mut tester = VecDeque::with_capacity(15);
// can't guarantee we got 15, so have to get what we got.
// 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else
// this test isn't covering what it wants to
let cap = tester.capacity();
// len is the length *after* insertion
for len in 1..cap {
// 0, 1, 2, .., len - 1
let expected = (0..).take(len).collect();
2015-03-11 19:44:02 -05:00
for tail_pos in 0..cap {
for to_insert in 0..len {
tester.tail = tail_pos;
tester.head = tail_pos;
for i in 0..len {
if i != to_insert {
tester.push_back(i);
}
}
tester.insert(to_insert, to_insert);
assert!(tester.tail < tester.cap);
assert!(tester.head < tester.cap);
assert_eq!(tester, expected);
}
}
}
}
#[test]
fn test_remove() {
// This test checks that every single combination of tail position, length, and
// removal position is tested. Capacity 15 should be large enough to cover every case.
let mut tester = VecDeque::with_capacity(15);
// can't guarantee we got 15, so have to get what we got.
// 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else
// this test isn't covering what it wants to
let cap = tester.capacity();
// len is the length *after* removal
for len in 0..cap - 1 {
// 0, 1, 2, .., len - 1
let expected = (0..).take(len).collect();
2015-03-11 19:44:02 -05:00
for tail_pos in 0..cap {
for to_remove in 0..len + 1 {
tester.tail = tail_pos;
tester.head = tail_pos;
for i in 0..len {
if i == to_remove {
tester.push_back(1234);
}
tester.push_back(i);
}
if to_remove == len {
tester.push_back(1234);
}
tester.remove(to_remove);
assert!(tester.tail < tester.cap);
assert!(tester.head < tester.cap);
assert_eq!(tester, expected);
}
}
}
}
#[test]
fn test_shrink_to_fit() {
// This test checks that every single combination of head and tail position,
// is tested. Capacity 15 should be large enough to cover every case.
let mut tester = VecDeque::with_capacity(15);
// can't guarantee we got 15, so have to get what we got.
// 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else
// this test isn't covering what it wants to
let cap = tester.capacity();
tester.reserve(63);
let max_cap = tester.capacity();
for len in 0..cap + 1 {
// 0, 1, 2, .., len - 1
let expected = (0..).take(len).collect();
2015-03-11 19:44:02 -05:00
for tail_pos in 0..max_cap + 1 {
tester.tail = tail_pos;
tester.head = tail_pos;
tester.reserve(63);
for i in 0..len {
tester.push_back(i);
}
tester.shrink_to_fit();
assert!(tester.capacity() <= cap);
assert!(tester.tail < tester.cap);
assert!(tester.head < tester.cap);
assert_eq!(tester, expected);
}
}
}
#[test]
fn test_split_off() {
// This test checks that every single combination of tail position, length, and
// split position is tested. Capacity 15 should be large enough to cover every case.
let mut tester = VecDeque::with_capacity(15);
// can't guarantee we got 15, so have to get what we got.
// 15 would be great, but we will definitely get 2^k - 1, for k >= 4, or else
// this test isn't covering what it wants to
let cap = tester.capacity();
// len is the length *before* splitting
for len in 0..cap {
// index to split at
for at in 0..len + 1 {
// 0, 1, 2, .., at - 1 (may be empty)
let expected_self = (0..).take(at).collect();
2015-03-11 19:44:02 -05:00
// at, at + 1, .., len - 1 (may be empty)
let expected_other = (at..).take(len - at).collect();
2015-03-11 19:44:02 -05:00
for tail_pos in 0..cap {
tester.tail = tail_pos;
tester.head = tail_pos;
for i in 0..len {
tester.push_back(i);
}
let result = tester.split_off(at);
assert!(tester.tail < tester.cap);
assert!(tester.head < tester.cap);
assert!(result.tail < result.cap);
assert!(result.head < result.cap);
assert_eq!(tester, expected_self);
assert_eq!(result, expected_other);
}
}
}
}
}