rust/src/rustllvm/rustllvm.h

95 lines
3.0 KiB
C
Raw Normal View History

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/PassManager.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/Lint.h"
Implement LTO This commit implements LTO for rust leveraging LLVM's passes. What this means is: * When compiling an rlib, in addition to insdering foo.o into the archive, also insert foo.bc (the LLVM bytecode) of the optimized module. * When the compiler detects the -Z lto option, it will attempt to perform LTO on a staticlib or binary output. The compiler will emit an error if a dylib or rlib output is being generated. * The actual act of performing LTO is as follows: 1. Force all upstream libraries to have an rlib version available. 2. Load the bytecode of each upstream library from the rlib. 3. Link all this bytecode into the current LLVM module (just using llvm apis) 4. Run an internalization pass which internalizes all symbols except those found reachable for the local crate of compilation. 5. Run the LLVM LTO pass manager over this entire module 6a. If assembling an archive, then add all upstream rlibs into the output archive. This ignores all of the object/bitcode/metadata files rust generated and placed inside the rlibs. 6b. If linking a binary, create copies of all upstream rlibs, remove the rust-generated object-file, and then link everything as usual. As I have explained in #10741, this process is excruciatingly slow, so this is *not* turned on by default, and it is also why I have decided to hide it behind a -Z flag for now. The good news is that the binary sizes are about as small as they can be as a result of LTO, so it's definitely working. Closes #10741 Closes #10740
2013-12-02 23:19:29 -08:00
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Memory.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/Interpreter.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Vectorize.h"
Implement LTO This commit implements LTO for rust leveraging LLVM's passes. What this means is: * When compiling an rlib, in addition to insdering foo.o into the archive, also insert foo.bc (the LLVM bytecode) of the optimized module. * When the compiler detects the -Z lto option, it will attempt to perform LTO on a staticlib or binary output. The compiler will emit an error if a dylib or rlib output is being generated. * The actual act of performing LTO is as follows: 1. Force all upstream libraries to have an rlib version available. 2. Load the bytecode of each upstream library from the rlib. 3. Link all this bytecode into the current LLVM module (just using llvm apis) 4. Run an internalization pass which internalizes all symbols except those found reachable for the local crate of compilation. 5. Run the LLVM LTO pass manager over this entire module 6a. If assembling an archive, then add all upstream rlibs into the output archive. This ignores all of the object/bitcode/metadata files rust generated and placed inside the rlibs. 6b. If linking a binary, create copies of all upstream rlibs, remove the rust-generated object-file, and then link everything as usual. As I have explained in #10741, this process is excruciatingly slow, so this is *not* turned on by default, and it is also why I have decided to hide it behind a -Z flag for now. The good news is that the binary sizes are about as small as they can be as a result of LTO, so it's definitely working. Closes #10741 Closes #10740
2013-12-02 23:19:29 -08:00
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm-c/Core.h"
#include "llvm-c/BitReader.h"
#include "llvm-c/ExecutionEngine.h"
#include "llvm-c/Object.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/Linker/Linker.h"
// Used by RustMCJITMemoryManager::getPointerToNamedFunction()
// to get around glibc issues. See the function for more information.
#ifdef __linux__
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#endif
2013-08-22 20:58:42 -07:00
void LLVMRustSetLastError(const char*);
2014-09-09 23:12:09 -07:00
typedef struct OpaqueRustString *RustStringRef;
typedef struct LLVMOpaqueTwine *LLVMTwineRef;
typedef struct LLVMOpaqueDebugLoc *LLVMDebugLocRef;
typedef struct LLVMOpaqueSMDiagnostic *LLVMSMDiagnosticRef;
2014-11-24 11:55:14 -07:00
typedef struct LLVMOpaqueRustJITMemoryManager *LLVMRustJITMemoryManagerRef;
2014-09-09 23:12:09 -07:00
extern "C" void
rust_llvm_string_write_impl(RustStringRef str, const char *ptr, size_t size);
class raw_rust_string_ostream : public llvm::raw_ostream {
RustStringRef str;
uint64_t pos;
void write_impl(const char *ptr, size_t size) override {
rust_llvm_string_write_impl(str, ptr, size);
pos += size;
}
uint64_t current_pos() const override {
return pos;
}
public:
explicit raw_rust_string_ostream(RustStringRef str)
: str(str), pos(0) { }
~raw_rust_string_ostream() {
// LLVM requires this.
flush();
}
};