rust/compiler/rustc_mir_transform/src/dataflow_const_prop.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

635 lines
24 KiB
Rust
Raw Normal View History

//! A constant propagation optimization pass based on dataflow analysis.
//!
2022-10-24 17:28:41 -05:00
//! Currently, this pass only propagates scalar values.
use rustc_const_eval::const_eval::CheckAlignment;
use rustc_const_eval::interpret::{ConstValue, ImmTy, Immediate, InterpCx, Scalar};
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def::DefKind;
use rustc_middle::mir::visit::{MutVisitor, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::layout::TyAndLayout;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_mir_dataflow::value_analysis::{Map, State, TrackElem, ValueAnalysis, ValueOrPlace};
use rustc_mir_dataflow::{lattice::FlatSet, Analysis, ResultsVisitor, SwitchIntEdgeEffects};
use rustc_span::DUMMY_SP;
use rustc_target::abi::{Align, FieldIdx, VariantIdx};
use crate::MirPass;
2022-11-12 07:07:54 -06:00
// These constants are somewhat random guesses and have not been optimized.
2022-11-12 13:14:34 -06:00
// If `tcx.sess.mir_opt_level() >= 4`, we ignore the limits (this can become very expensive).
const BLOCK_LIMIT: usize = 100;
const PLACE_LIMIT: usize = 100;
pub struct DataflowConstProp;
impl<'tcx> MirPass<'tcx> for DataflowConstProp {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
2022-11-12 08:24:23 -06:00
sess.mir_opt_level() >= 3
}
#[instrument(skip_all level = "debug")]
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
debug!(def_id = ?body.source.def_id());
2022-11-12 13:14:34 -06:00
if tcx.sess.mir_opt_level() < 4 && body.basic_blocks.len() > BLOCK_LIMIT {
debug!("aborted dataflow const prop due too many basic blocks");
return;
}
// We want to have a somewhat linear runtime w.r.t. the number of statements/terminators.
// Let's call this number `n`. Dataflow analysis has `O(h*n)` transfer function
// applications, where `h` is the height of the lattice. Because the height of our lattice
// is linear w.r.t. the number of tracked places, this is `O(tracked_places * n)`. However,
// because every transfer function application could traverse the whole map, this becomes
// `O(num_nodes * tracked_places * n)` in terms of time complexity. Since the number of
// map nodes is strongly correlated to the number of tracked places, this becomes more or
// less `O(n)` if we place a constant limit on the number of tracked places.
let place_limit = if tcx.sess.mir_opt_level() < 4 { Some(PLACE_LIMIT) } else { None };
// Decide which places to track during the analysis.
let map = Map::from_filter(tcx, body, Ty::is_scalar, place_limit);
// Perform the actual dataflow analysis.
let analysis = ConstAnalysis::new(tcx, body, map);
let results = debug_span!("analyze")
.in_scope(|| analysis.wrap().into_engine(tcx, body).iterate_to_fixpoint());
// Collect results and patch the body afterwards.
let mut visitor = CollectAndPatch::new(tcx, &results.analysis.0.map);
debug_span!("collect").in_scope(|| results.visit_reachable_with(body, &mut visitor));
debug_span!("patch").in_scope(|| visitor.visit_body(body));
}
}
struct ConstAnalysis<'a, 'tcx> {
map: Map,
tcx: TyCtxt<'tcx>,
local_decls: &'a LocalDecls<'tcx>,
ecx: InterpCx<'tcx, 'tcx, DummyMachine>,
param_env: ty::ParamEnv<'tcx>,
}
impl<'tcx> ConstAnalysis<'_, 'tcx> {
2023-02-13 11:01:03 -06:00
fn eval_discriminant(
&self,
enum_ty: Ty<'tcx>,
variant_index: VariantIdx,
) -> Option<ScalarTy<'tcx>> {
if !enum_ty.is_enum() {
return None;
}
let discr = enum_ty.discriminant_for_variant(self.tcx, variant_index)?;
let discr_layout = self.tcx.layout_of(self.param_env.and(discr.ty)).ok()?;
let discr_value = Scalar::try_from_uint(discr.val, discr_layout.size)?;
Some(ScalarTy(discr_value, discr.ty))
}
}
impl<'tcx> ValueAnalysis<'tcx> for ConstAnalysis<'_, 'tcx> {
type Value = FlatSet<ScalarTy<'tcx>>;
const NAME: &'static str = "ConstAnalysis";
fn map(&self) -> &Map {
&self.map
}
fn handle_statement(&self, statement: &Statement<'tcx>, state: &mut State<Self::Value>) {
match statement.kind {
StatementKind::SetDiscriminant { box ref place, variant_index } => {
state.flood_discr(place.as_ref(), &self.map);
if self.map.find_discr(place.as_ref()).is_some() {
let enum_ty = place.ty(self.local_decls, self.tcx).ty;
2023-02-13 11:01:03 -06:00
if let Some(discr) = self.eval_discriminant(enum_ty, variant_index) {
state.assign_discr(
place.as_ref(),
ValueOrPlace::Value(FlatSet::Elem(discr)),
&self.map,
);
}
}
}
_ => self.super_statement(statement, state),
}
}
fn handle_assign(
&self,
target: Place<'tcx>,
rvalue: &Rvalue<'tcx>,
state: &mut State<Self::Value>,
) {
match rvalue {
Rvalue::Aggregate(kind, operands) => {
// If we assign `target = Enum::Variant#0(operand)`,
// we must make sure that all `target as Variant#i` are `Top`.
state.flood(target.as_ref(), self.map());
if let Some(target_idx) = self.map().find(target.as_ref()) {
let (variant_target, variant_index) = match **kind {
AggregateKind::Tuple | AggregateKind::Closure(..) => {
(Some(target_idx), None)
}
AggregateKind::Adt(def_id, variant_index, ..) => {
match self.tcx.def_kind(def_id) {
DefKind::Struct => (Some(target_idx), None),
DefKind::Enum => (
self.map.apply(target_idx, TrackElem::Variant(variant_index)),
Some(variant_index),
),
_ => (None, None),
}
}
_ => (None, None),
};
if let Some(variant_target_idx) = variant_target {
for (field_index, operand) in operands.iter().enumerate() {
if let Some(field) = self.map().apply(
variant_target_idx,
TrackElem::Field(FieldIdx::from_usize(field_index)),
) {
let result = self.handle_operand(operand, state);
2023-02-03 10:39:10 -06:00
state.insert_idx(field, result, self.map());
}
}
}
if let Some(variant_index) = variant_index
&& let Some(discr_idx) = self.map().apply(target_idx, TrackElem::Discriminant)
{
// We are assigning the discriminant as part of an aggregate.
// This discriminant can only alias a variant field's value if the operand
// had an invalid value for that type.
// Using invalid values is UB, so we are allowed to perform the assignment
// without extra flooding.
let enum_ty = target.ty(self.local_decls, self.tcx).ty;
2023-02-13 11:01:03 -06:00
if let Some(discr_val) = self.eval_discriminant(enum_ty, variant_index) {
2023-02-03 10:39:10 -06:00
state.insert_value_idx(discr_idx, FlatSet::Elem(discr_val), &self.map);
}
}
}
}
Rvalue::CheckedBinaryOp(op, box (left, right)) => {
2023-02-03 10:39:10 -06:00
// Flood everything now, so we can use `insert_value_idx` directly later.
state.flood(target.as_ref(), self.map());
let target = self.map().find(target.as_ref());
let value_target = target
.and_then(|target| self.map().apply(target, TrackElem::Field(0_u32.into())));
let overflow_target = target
.and_then(|target| self.map().apply(target, TrackElem::Field(1_u32.into())));
if value_target.is_some() || overflow_target.is_some() {
2022-10-15 16:40:03 -05:00
let (val, overflow) = self.binary_op(state, *op, left, right);
if let Some(value_target) = value_target {
2023-02-03 10:39:10 -06:00
// We have flooded `target` earlier.
state.insert_value_idx(value_target, val, self.map());
}
if let Some(overflow_target) = overflow_target {
2022-10-15 16:40:03 -05:00
let overflow = match overflow {
FlatSet::Top => FlatSet::Top,
FlatSet::Elem(overflow) => {
2023-02-08 14:28:39 -06:00
self.wrap_scalar(Scalar::from_bool(overflow), self.tcx.types.bool)
2022-10-15 16:40:03 -05:00
}
FlatSet::Bottom => FlatSet::Bottom,
};
2023-02-03 10:39:10 -06:00
// We have flooded `target` earlier.
state.insert_value_idx(overflow_target, overflow, self.map());
}
}
}
_ => self.super_assign(target, rvalue, state),
}
}
fn handle_rvalue(
&self,
rvalue: &Rvalue<'tcx>,
state: &mut State<Self::Value>,
) -> ValueOrPlace<Self::Value> {
match rvalue {
2022-10-12 18:02:18 -05:00
Rvalue::Cast(
2022-10-26 07:46:27 -05:00
kind @ (CastKind::IntToInt
2022-10-12 18:02:18 -05:00
| CastKind::FloatToInt
| CastKind::FloatToFloat
2022-10-26 07:46:27 -05:00
| CastKind::IntToFloat),
2022-10-12 18:02:18 -05:00
operand,
ty,
2022-10-26 07:46:27 -05:00
) => match self.eval_operand(operand, state) {
FlatSet::Elem(op) => match kind {
CastKind::IntToInt | CastKind::IntToFloat => {
self.ecx.int_to_int_or_float(&op, *ty)
}
CastKind::FloatToInt | CastKind::FloatToFloat => {
self.ecx.float_to_float_or_int(&op, *ty)
}
_ => unreachable!(),
}
.map(|result| ValueOrPlace::Value(self.wrap_immediate(result, *ty)))
.unwrap_or(ValueOrPlace::top()),
_ => ValueOrPlace::top(),
2022-10-26 07:46:27 -05:00
},
Rvalue::BinaryOp(op, box (left, right)) => {
2022-10-15 16:40:03 -05:00
// Overflows must be ignored here.
let (val, _overflow) = self.binary_op(state, *op, left, right);
ValueOrPlace::Value(val)
}
Rvalue::UnaryOp(op, operand) => match self.eval_operand(operand, state) {
FlatSet::Elem(value) => self
.ecx
.unary_op(*op, &value)
.map(|val| ValueOrPlace::Value(self.wrap_immty(val)))
.unwrap_or(ValueOrPlace::Value(FlatSet::Top)),
FlatSet::Bottom => ValueOrPlace::Value(FlatSet::Bottom),
FlatSet::Top => ValueOrPlace::Value(FlatSet::Top),
},
Rvalue::Discriminant(place) => {
ValueOrPlace::Value(state.get_discr(place.as_ref(), self.map()))
}
_ => self.super_rvalue(rvalue, state),
}
}
fn handle_constant(
&self,
constant: &Constant<'tcx>,
_state: &mut State<Self::Value>,
) -> Self::Value {
constant
.literal
.eval(self.tcx, self.param_env)
.try_to_scalar()
.map(|value| FlatSet::Elem(ScalarTy(value, constant.ty())))
.unwrap_or(FlatSet::Top)
}
fn handle_switch_int(
&self,
discr: &Operand<'tcx>,
apply_edge_effects: &mut impl SwitchIntEdgeEffects<State<Self::Value>>,
) {
// FIXME: The dataflow framework only provides the state if we call `apply()`, which makes
// this more inefficient than it has to be.
let mut discr_value = None;
let mut handled = false;
apply_edge_effects.apply(|state, target| {
let discr_value = match discr_value {
Some(value) => value,
None => {
let value = match self.handle_operand(discr, state) {
ValueOrPlace::Value(value) => value,
ValueOrPlace::Place(place) => state.get_idx(place, self.map()),
};
let result = match value {
FlatSet::Top => FlatSet::Top,
FlatSet::Elem(ScalarTy(scalar, _)) => {
let int = scalar.assert_int();
FlatSet::Elem(int.assert_bits(int.size()))
}
FlatSet::Bottom => FlatSet::Bottom,
};
discr_value = Some(result);
result
}
};
let FlatSet::Elem(choice) = discr_value else {
// Do nothing if we don't know which branch will be taken.
return
};
if target.value.map(|n| n == choice).unwrap_or(!handled) {
// Branch is taken. Has no effect on state.
handled = true;
} else {
2022-09-02 07:41:27 -05:00
// Branch is not taken.
state.mark_unreachable();
}
})
}
}
#[derive(Clone, PartialEq, Eq)]
struct ScalarTy<'tcx>(Scalar, Ty<'tcx>);
impl<'tcx> std::fmt::Debug for ScalarTy<'tcx> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// This is used for dataflow visualization, so we return something more concise.
std::fmt::Display::fmt(&ConstantKind::Val(ConstValue::Scalar(self.0), self.1), f)
}
}
impl<'a, 'tcx> ConstAnalysis<'a, 'tcx> {
pub fn new(tcx: TyCtxt<'tcx>, body: &'a Body<'tcx>, map: Map) -> Self {
2022-10-23 08:31:46 -05:00
let param_env = tcx.param_env(body.source.def_id());
Self {
map,
tcx,
local_decls: &body.local_decls,
2022-10-23 08:31:46 -05:00
ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine),
param_env: param_env,
}
}
fn binary_op(
&self,
state: &mut State<FlatSet<ScalarTy<'tcx>>>,
op: BinOp,
left: &Operand<'tcx>,
right: &Operand<'tcx>,
2022-10-15 16:40:03 -05:00
) -> (FlatSet<ScalarTy<'tcx>>, FlatSet<bool>) {
let left = self.eval_operand(left, state);
let right = self.eval_operand(right, state);
match (left, right) {
(FlatSet::Elem(left), FlatSet::Elem(right)) => {
match self.ecx.overflowing_binary_op(op, &left, &right) {
2022-10-15 16:40:03 -05:00
Ok((val, overflow, ty)) => (self.wrap_scalar(val, ty), FlatSet::Elem(overflow)),
_ => (FlatSet::Top, FlatSet::Top),
}
}
(FlatSet::Bottom, _) | (_, FlatSet::Bottom) => (FlatSet::Bottom, FlatSet::Bottom),
(_, _) => {
// Could attempt some algebraic simplifcations here.
(FlatSet::Top, FlatSet::Top)
}
}
}
fn eval_operand(
&self,
op: &Operand<'tcx>,
state: &mut State<FlatSet<ScalarTy<'tcx>>>,
) -> FlatSet<ImmTy<'tcx>> {
let value = match self.handle_operand(op, state) {
ValueOrPlace::Value(value) => value,
ValueOrPlace::Place(place) => state.get_idx(place, &self.map),
};
match value {
FlatSet::Top => FlatSet::Top,
2022-10-23 08:31:46 -05:00
FlatSet::Elem(ScalarTy(scalar, ty)) => self
.tcx
.layout_of(self.param_env.and(ty))
.map(|layout| FlatSet::Elem(ImmTy::from_scalar(scalar, layout)))
.unwrap_or(FlatSet::Top),
FlatSet::Bottom => FlatSet::Bottom,
}
}
fn wrap_scalar(&self, scalar: Scalar, ty: Ty<'tcx>) -> FlatSet<ScalarTy<'tcx>> {
FlatSet::Elem(ScalarTy(scalar, ty))
}
fn wrap_immediate(&self, imm: Immediate, ty: Ty<'tcx>) -> FlatSet<ScalarTy<'tcx>> {
match imm {
Immediate::Scalar(scalar) => self.wrap_scalar(scalar, ty),
_ => FlatSet::Top,
}
}
fn wrap_immty(&self, val: ImmTy<'tcx>) -> FlatSet<ScalarTy<'tcx>> {
self.wrap_immediate(*val, val.layout.ty)
}
}
struct CollectAndPatch<'tcx, 'map> {
tcx: TyCtxt<'tcx>,
map: &'map Map,
2022-10-24 17:28:41 -05:00
/// For a given MIR location, this stores the values of the operands used by that location. In
/// particular, this is before the effect, such that the operands of `_1 = _1 + _2` are
/// properly captured. (This may become UB soon, but it is currently emitted even by safe code.)
before_effect: FxHashMap<(Location, Place<'tcx>), ScalarTy<'tcx>>,
2022-10-24 17:28:41 -05:00
/// Stores the assigned values for assignments where the Rvalue is constant.
assignments: FxHashMap<Location, ScalarTy<'tcx>>,
}
impl<'tcx, 'map> CollectAndPatch<'tcx, 'map> {
fn new(tcx: TyCtxt<'tcx>, map: &'map Map) -> Self {
Self { tcx, map, before_effect: FxHashMap::default(), assignments: FxHashMap::default() }
}
fn make_operand(&self, scalar: ScalarTy<'tcx>) -> Operand<'tcx> {
Operand::Constant(Box::new(Constant {
span: DUMMY_SP,
user_ty: None,
literal: ConstantKind::Val(ConstValue::Scalar(scalar.0), scalar.1),
}))
}
}
impl<'mir, 'tcx, 'map> ResultsVisitor<'mir, 'tcx> for CollectAndPatch<'tcx, 'map> {
type FlowState = State<FlatSet<ScalarTy<'tcx>>>;
fn visit_statement_before_primary_effect(
&mut self,
state: &Self::FlowState,
statement: &'mir Statement<'tcx>,
location: Location,
) {
match &statement.kind {
StatementKind::Assign(box (_, rvalue)) => {
OperandCollector { state, visitor: self }.visit_rvalue(rvalue, location);
}
_ => (),
}
}
fn visit_statement_after_primary_effect(
&mut self,
state: &Self::FlowState,
statement: &'mir Statement<'tcx>,
location: Location,
) {
match statement.kind {
StatementKind::Assign(box (_, Rvalue::Use(Operand::Constant(_)))) => {
// Don't overwrite the assignment if it already uses a constant (to keep the span).
}
StatementKind::Assign(box (place, _)) => match state.get(place.as_ref(), self.map) {
FlatSet::Top => (),
FlatSet::Elem(value) => {
self.assignments.insert(location, value);
}
FlatSet::Bottom => {
// This assignment is either unreachable, or an uninitialized value is assigned.
}
},
_ => (),
}
}
fn visit_terminator_before_primary_effect(
&mut self,
state: &Self::FlowState,
terminator: &'mir Terminator<'tcx>,
location: Location,
) {
OperandCollector { state, visitor: self }.visit_terminator(terminator, location);
}
}
impl<'tcx, 'map> MutVisitor<'tcx> for CollectAndPatch<'tcx, 'map> {
fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
if let Some(value) = self.assignments.get(&location) {
match &mut statement.kind {
StatementKind::Assign(box (_, rvalue)) => {
*rvalue = Rvalue::Use(self.make_operand(value.clone()));
}
_ => bug!("found assignment info for non-assign statement"),
}
} else {
self.super_statement(statement, location);
}
}
fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
match operand {
Operand::Copy(place) | Operand::Move(place) => {
if let Some(value) = self.before_effect.get(&(location, *place)) {
*operand = self.make_operand(value.clone());
}
}
_ => (),
}
}
}
struct OperandCollector<'tcx, 'map, 'a> {
state: &'a State<FlatSet<ScalarTy<'tcx>>>,
visitor: &'a mut CollectAndPatch<'tcx, 'map>,
}
impl<'tcx, 'map, 'a> Visitor<'tcx> for OperandCollector<'tcx, 'map, 'a> {
fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
match operand {
Operand::Copy(place) | Operand::Move(place) => {
match self.state.get(place.as_ref(), self.visitor.map) {
FlatSet::Top => (),
FlatSet::Elem(value) => {
self.visitor.before_effect.insert((location, *place), value);
}
FlatSet::Bottom => (),
}
}
_ => (),
}
}
fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) {
match rvalue {
Rvalue::Discriminant(place) => {
match self.state.get_discr(place.as_ref(), self.visitor.map) {
FlatSet::Top => (),
FlatSet::Elem(value) => {
self.visitor.before_effect.insert((location, *place), value);
}
FlatSet::Bottom => (),
}
}
_ => self.super_rvalue(rvalue, location),
}
}
}
struct DummyMachine;
impl<'mir, 'tcx> rustc_const_eval::interpret::Machine<'mir, 'tcx> for DummyMachine {
rustc_const_eval::interpret::compile_time_machine!(<'mir, 'tcx>);
type MemoryKind = !;
const PANIC_ON_ALLOC_FAIL: bool = true;
fn enforce_alignment(_ecx: &InterpCx<'mir, 'tcx, Self>) -> CheckAlignment {
unimplemented!()
}
fn enforce_validity(_ecx: &InterpCx<'mir, 'tcx, Self>, _layout: TyAndLayout<'tcx>) -> bool {
unimplemented!()
}
fn alignment_check_failed(
_ecx: &InterpCx<'mir, 'tcx, Self>,
_has: Align,
_required: Align,
_check: CheckAlignment,
) -> interpret::InterpResult<'tcx, ()> {
unimplemented!()
}
fn find_mir_or_eval_fn(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_instance: ty::Instance<'tcx>,
_abi: rustc_target::spec::abi::Abi,
_args: &[rustc_const_eval::interpret::OpTy<'tcx, Self::Provenance>],
_destination: &rustc_const_eval::interpret::PlaceTy<'tcx, Self::Provenance>,
_target: Option<BasicBlock>,
2022-11-15 12:27:21 -06:00
_unwind: UnwindAction,
) -> interpret::InterpResult<'tcx, Option<(&'mir Body<'tcx>, ty::Instance<'tcx>)>> {
unimplemented!()
}
fn call_intrinsic(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_instance: ty::Instance<'tcx>,
_args: &[rustc_const_eval::interpret::OpTy<'tcx, Self::Provenance>],
_destination: &rustc_const_eval::interpret::PlaceTy<'tcx, Self::Provenance>,
_target: Option<BasicBlock>,
2022-11-15 12:27:21 -06:00
_unwind: UnwindAction,
) -> interpret::InterpResult<'tcx> {
unimplemented!()
}
fn assert_panic(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_msg: &rustc_middle::mir::AssertMessage<'tcx>,
2022-11-15 12:27:21 -06:00
_unwind: UnwindAction,
) -> interpret::InterpResult<'tcx> {
unimplemented!()
}
fn binary_ptr_op(
_ecx: &InterpCx<'mir, 'tcx, Self>,
_bin_op: BinOp,
_left: &rustc_const_eval::interpret::ImmTy<'tcx, Self::Provenance>,
_right: &rustc_const_eval::interpret::ImmTy<'tcx, Self::Provenance>,
) -> interpret::InterpResult<'tcx, (interpret::Scalar<Self::Provenance>, bool, Ty<'tcx>)> {
2022-10-19 09:29:01 -05:00
throw_unsup!(Unsupported("".into()))
}
fn expose_ptr(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_ptr: interpret::Pointer<Self::Provenance>,
) -> interpret::InterpResult<'tcx> {
unimplemented!()
}
fn init_frame_extra(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_frame: rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance>,
) -> interpret::InterpResult<
'tcx,
rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>,
> {
unimplemented!()
}
fn stack<'a>(
_ecx: &'a InterpCx<'mir, 'tcx, Self>,
) -> &'a [rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>]
{
unimplemented!()
}
fn stack_mut<'a>(
_ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
) -> &'a mut Vec<
rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>,
> {
unimplemented!()
}
}