rust/crates/ra_hir_def/src/nameres.rs

303 lines
10 KiB
Rust
Raw Normal View History

2019-11-03 14:49:44 -06:00
//! This module implements import-resolution/macro expansion algorithm.
//!
//! The result of this module is `CrateDefMap`: a data structure which contains:
//!
//! * a tree of modules for the crate
//! * for each module, a set of items visible in the module (directly declared
//! or imported)
//!
//! Note that `CrateDefMap` contains fully macro expanded code.
//!
//! Computing `CrateDefMap` can be partitioned into several logically
//! independent "phases". The phases are mutually recursive though, there's no
//! strict ordering.
//!
//! ## Collecting RawItems
//!
//! This happens in the `raw` module, which parses a single source file into a
//! set of top-level items. Nested imports are desugared to flat imports in
//! this phase. Macro calls are represented as a triple of (Path, Option<Name>,
//! TokenTree).
//!
//! ## Collecting Modules
//!
//! This happens in the `collector` module. In this phase, we recursively walk
//! tree of modules, collect raw items from submodules, populate module scopes
//! with defined items (so, we assign item ids in this phase) and record the set
//! of unresolved imports and macros.
//!
//! While we walk tree of modules, we also record macro_rules definitions and
//! expand calls to macro_rules defined macros.
//!
//! ## Resolving Imports
//!
//! We maintain a list of currently unresolved imports. On every iteration, we
//! try to resolve some imports from this list. If the import is resolved, we
//! record it, by adding an item to current module scope and, if necessary, by
//! recursively populating glob imports.
//!
//! ## Resolving Macros
//!
//! macro_rules from the same crate use a global mutable namespace. We expand
//! them immediately, when we collect modules.
//!
//! Macros from other crates (including proc-macros) can be used with
//! `foo::bar!` syntax. We handle them similarly to imports. There's a list of
//! unexpanded macros. On every iteration, we try to resolve each macro call
//! path and, upon success, we run macro expansion and "collect module" phase
//! on the result
2019-10-30 09:40:13 -05:00
2019-10-31 02:31:29 -05:00
// FIXME: review privacy of submodules
2019-10-30 08:12:55 -05:00
pub mod raw;
2019-10-31 10:45:10 -05:00
pub mod per_ns;
2019-11-04 12:42:25 -06:00
mod collector;
mod mod_resolution;
2019-11-08 15:17:17 -06:00
mod path_resolution;
2019-10-31 10:45:10 -05:00
2019-11-03 14:35:48 -06:00
#[cfg(test)]
mod tests;
2019-10-31 10:45:10 -05:00
use std::sync::Arc;
use hir_expand::{diagnostics::DiagnosticSink, name::Name, MacroDefId};
use once_cell::sync::Lazy;
use ra_arena::Arena;
use ra_db::{CrateId, Edition, FileId};
use ra_prof::profile;
use ra_syntax::ast;
use rustc_hash::{FxHashMap, FxHashSet};
use crate::{
builtin_type::BuiltinType,
db::DefDatabase2,
2019-11-08 15:17:17 -06:00
nameres::{
diagnostics::DefDiagnostic, path_resolution::ResolveMode, per_ns::PerNs, raw::ImportId,
},
path::Path,
AstId, CrateModuleId, ModuleDefId, ModuleId, TraitId,
2019-10-31 10:45:10 -05:00
};
/// Contains all top-level defs from a macro-expanded crate
#[derive(Debug, PartialEq, Eq)]
pub struct CrateDefMap {
krate: CrateId,
edition: Edition,
/// The prelude module for this crate. This either comes from an import
/// marked with the `prelude_import` attribute, or (in the normal case) from
/// a dependency (`std` or `core`).
prelude: Option<ModuleId>,
extern_prelude: FxHashMap<Name, ModuleDefId>,
root: CrateModuleId,
pub modules: Arena<CrateModuleId, ModuleData>,
/// Some macros are not well-behavior, which leads to infinite loop
/// e.g. macro_rules! foo { ($ty:ty) => { foo!($ty); } }
/// We mark it down and skip it in collector
///
/// FIXME:
/// Right now it only handle a poison macro in a single crate,
/// such that if other crate try to call that macro,
/// the whole process will do again until it became poisoned in that crate.
/// We should handle this macro set globally
/// However, do we want to put it as a global variable?
poison_macros: FxHashSet<MacroDefId>,
diagnostics: Vec<DefDiagnostic>,
}
impl std::ops::Index<CrateModuleId> for CrateDefMap {
type Output = ModuleData;
fn index(&self, id: CrateModuleId) -> &ModuleData {
&self.modules[id]
}
}
#[derive(Default, Debug, PartialEq, Eq)]
pub struct ModuleData {
pub parent: Option<CrateModuleId>,
pub children: FxHashMap<Name, CrateModuleId>,
pub scope: ModuleScope,
/// None for root
pub declaration: Option<AstId<ast::Module>>,
/// None for inline modules.
///
/// Note that non-inline modules, by definition, live inside non-macro file.
pub definition: Option<FileId>,
}
#[derive(Debug, Default, PartialEq, Eq, Clone)]
pub struct ModuleScope {
pub items: FxHashMap<Name, Resolution>,
/// Macros visable in current module in legacy textual scope
///
/// For macros invoked by an unquatified identifier like `bar!()`, `legacy_macros` will be searched in first.
/// If it yields no result, then it turns to module scoped `macros`.
/// It macros with name quatified with a path like `crate::foo::bar!()`, `legacy_macros` will be skipped,
/// and only normal scoped `macros` will be searched in.
///
/// Note that this automatically inherit macros defined textually before the definition of module itself.
///
/// Module scoped macros will be inserted into `items` instead of here.
// FIXME: Macro shadowing in one module is not properly handled. Non-item place macros will
// be all resolved to the last one defined if shadowing happens.
legacy_macros: FxHashMap<Name, MacroDefId>,
}
static BUILTIN_SCOPE: Lazy<FxHashMap<Name, Resolution>> = Lazy::new(|| {
BuiltinType::ALL
.iter()
.map(|(name, ty)| {
(name.clone(), Resolution { def: PerNs::types(ty.clone().into()), import: None })
})
.collect()
});
/// Legacy macros can only be accessed through special methods like `get_legacy_macros`.
/// Other methods will only resolve values, types and module scoped macros only.
impl ModuleScope {
pub fn entries<'a>(&'a self) -> impl Iterator<Item = (&'a Name, &'a Resolution)> + 'a {
//FIXME: shadowing
self.items.iter().chain(BUILTIN_SCOPE.iter())
}
/// Iterate over all module scoped macros
pub fn macros<'a>(&'a self) -> impl Iterator<Item = (&'a Name, MacroDefId)> + 'a {
self.items
.iter()
.filter_map(|(name, res)| res.def.get_macros().map(|macro_| (name, macro_)))
}
/// Iterate over all legacy textual scoped macros visable at the end of the module
pub fn legacy_macros<'a>(&'a self) -> impl Iterator<Item = (&'a Name, MacroDefId)> + 'a {
self.legacy_macros.iter().map(|(name, def)| (name, *def))
}
/// Get a name from current module scope, legacy macros are not included
pub fn get(&self, name: &Name) -> Option<&Resolution> {
self.items.get(name).or_else(|| BUILTIN_SCOPE.get(name))
}
pub fn traits<'a>(&'a self) -> impl Iterator<Item = TraitId> + 'a {
self.items.values().filter_map(|r| match r.def.take_types() {
Some(ModuleDefId::TraitId(t)) => Some(t),
_ => None,
})
}
fn get_legacy_macro(&self, name: &Name) -> Option<MacroDefId> {
self.legacy_macros.get(name).copied()
}
}
#[derive(Debug, Clone, PartialEq, Eq, Default)]
pub struct Resolution {
/// None for unresolved
pub def: PerNs,
/// ident by which this is imported into local scope.
pub import: Option<ImportId>,
}
impl CrateDefMap {
pub(crate) fn crate_def_map_query(
// Note that this doesn't have `+ AstDatabase`!
// This gurantess that `CrateDefMap` is stable across reparses.
db: &impl DefDatabase2,
krate: CrateId,
) -> Arc<CrateDefMap> {
let _p = profile("crate_def_map_query");
let def_map = {
let crate_graph = db.crate_graph();
let edition = crate_graph.edition(krate);
let mut modules: Arena<CrateModuleId, ModuleData> = Arena::default();
let root = modules.alloc(ModuleData::default());
CrateDefMap {
krate,
edition,
extern_prelude: FxHashMap::default(),
prelude: None,
root,
modules,
poison_macros: FxHashSet::default(),
diagnostics: Vec::new(),
}
};
let def_map = collector::collect_defs(db, def_map);
Arc::new(def_map)
}
pub fn krate(&self) -> CrateId {
self.krate
}
pub fn root(&self) -> CrateModuleId {
self.root
}
pub fn prelude(&self) -> Option<ModuleId> {
self.prelude
}
pub fn extern_prelude(&self) -> &FxHashMap<Name, ModuleDefId> {
&self.extern_prelude
}
pub fn add_diagnostics(
&self,
db: &impl DefDatabase2,
module: CrateModuleId,
sink: &mut DiagnosticSink,
) {
self.diagnostics.iter().for_each(|it| it.add_to(db, module, sink))
}
pub fn resolve_path(
&self,
db: &impl DefDatabase2,
original_module: CrateModuleId,
path: &Path,
) -> (PerNs, Option<usize>) {
let res = self.resolve_path_fp_with_macro(db, ResolveMode::Other, original_module, path);
(res.resolved_def, res.segment_index)
}
}
mod diagnostics {
use hir_expand::diagnostics::DiagnosticSink;
2019-11-03 16:14:17 -06:00
use ra_db::RelativePathBuf;
2019-10-31 10:45:10 -05:00
use ra_syntax::{ast, AstPtr};
use crate::{db::DefDatabase2, diagnostics::UnresolvedModule, nameres::CrateModuleId, AstId};
#[derive(Debug, PartialEq, Eq)]
pub(super) enum DefDiagnostic {
UnresolvedModule {
module: CrateModuleId,
declaration: AstId<ast::Module>,
candidate: RelativePathBuf,
},
}
impl DefDiagnostic {
pub(super) fn add_to(
&self,
db: &impl DefDatabase2,
target_module: CrateModuleId,
sink: &mut DiagnosticSink,
) {
match self {
DefDiagnostic::UnresolvedModule { module, declaration, candidate } => {
if *module != target_module {
return;
}
let decl = declaration.to_node(db);
sink.push(UnresolvedModule {
file: declaration.file_id(),
decl: AstPtr::new(&decl),
candidate: candidate.clone(),
})
}
}
}
}
}