1298 lines
49 KiB
Rust
Raw Normal View History

//! Codegen of intrinsics. This includes `extern "rust-intrinsic"`, `extern "platform-intrinsic"`
//! and LLVM intrinsics that have symbol names starting with `llvm.`.
macro_rules! intrinsic_args {
($fx:expr, $args:expr => ($($arg:tt),*); $intrinsic:expr) => {
#[allow(unused_parens)]
let ($($arg),*) = if let [$($arg),*] = $args {
($(codegen_operand($fx, $arg)),*)
} else {
$crate::intrinsics::bug_on_incorrect_arg_count($intrinsic);
};
}
}
mod cpuid;
mod llvm;
mod simd;
pub(crate) use cpuid::codegen_cpuid_call;
pub(crate) use llvm::codegen_llvm_intrinsic_call;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::subst::SubstsRef;
use rustc_span::symbol::{kw, sym, Symbol};
use crate::prelude::*;
use cranelift_codegen::ir::AtomicRmwOp;
fn bug_on_incorrect_arg_count(intrinsic: impl std::fmt::Display) -> ! {
bug!("wrong number of args for intrinsic {}", intrinsic);
}
fn report_atomic_type_validation_error<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
intrinsic: Symbol,
span: Span,
ty: Ty<'tcx>,
) {
fx.tcx.sess.span_err(
span,
&format!(
"`{}` intrinsic: expected basic integer or raw pointer type, found `{:?}`",
intrinsic, ty
),
);
// Prevent verifier error
crate::trap::trap_unreachable(fx, "compilation should not have succeeded");
}
2020-03-28 15:33:50 +01:00
pub(crate) fn clif_vector_type<'tcx>(tcx: TyCtxt<'tcx>, layout: TyAndLayout<'tcx>) -> Option<Type> {
let (element, count) = match layout.abi {
Abi::Vector { element, count } => (element, count),
_ => unreachable!(),
};
match scalar_to_clif_type(tcx, element).by(u16::try_from(count).unwrap()) {
2020-03-29 12:02:00 +02:00
// Cranelift currently only implements icmp for 128bit vectors.
Some(vector_ty) if vector_ty.bits() == 128 => Some(vector_ty),
_ => None,
}
}
fn simd_for_each_lane<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
2019-11-18 21:29:34 +01:00
val: CValue<'tcx>,
ret: CPlace<'tcx>,
f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Ty<'tcx>, Ty<'tcx>, Value) -> Value,
2019-11-18 21:29:34 +01:00
) {
let layout = val.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let lane_layout = fx.layout_of(lane_ty);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
let ret_lane_layout = fx.layout_of(ret_lane_ty);
2019-11-18 21:29:34 +01:00
assert_eq!(lane_count, ret_lane_count);
for lane_idx in 0..lane_count {
let lane = val.value_lane(fx, lane_idx).load_scalar(fx);
2019-11-18 21:29:34 +01:00
let res_lane = f(fx, lane_layout.ty, ret_lane_layout.ty, lane);
let res_lane = CValue::by_val(res_lane, ret_lane_layout);
2019-11-18 21:29:34 +01:00
ret.place_lane(fx, lane_idx).write_cvalue(fx, res_lane);
2019-11-18 21:29:34 +01:00
}
}
fn simd_pair_for_each_lane<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
2019-07-27 17:48:24 +02:00
x: CValue<'tcx>,
y: CValue<'tcx>,
ret: CPlace<'tcx>,
f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Ty<'tcx>, Ty<'tcx>, Value, Value) -> Value,
2019-07-27 17:48:24 +02:00
) {
assert_eq!(x.layout(), y.layout());
let layout = x.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let lane_layout = fx.layout_of(lane_ty);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
let ret_lane_layout = fx.layout_of(ret_lane_ty);
2019-07-27 17:48:24 +02:00
assert_eq!(lane_count, ret_lane_count);
for lane_idx in 0..lane_count {
let x_lane = x.value_lane(fx, lane_idx).load_scalar(fx);
let y_lane = y.value_lane(fx, lane_idx).load_scalar(fx);
2019-07-27 17:48:24 +02:00
let res_lane = f(fx, lane_layout.ty, ret_lane_layout.ty, x_lane, y_lane);
let res_lane = CValue::by_val(res_lane, ret_lane_layout);
2019-07-27 17:48:24 +02:00
ret.place_lane(fx, lane_idx).write_cvalue(fx, res_lane);
2019-07-27 17:48:24 +02:00
}
}
fn simd_reduce<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
val: CValue<'tcx>,
acc: Option<Value>,
ret: CPlace<'tcx>,
f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Ty<'tcx>, Value, Value) -> Value,
) {
let (lane_count, lane_ty) = val.layout().ty.simd_size_and_type(fx.tcx);
let lane_layout = fx.layout_of(lane_ty);
assert_eq!(lane_layout, ret.layout());
let (mut res_val, start_lane) =
if let Some(acc) = acc { (acc, 0) } else { (val.value_lane(fx, 0).load_scalar(fx), 1) };
for lane_idx in start_lane..lane_count {
let lane = val.value_lane(fx, lane_idx).load_scalar(fx);
res_val = f(fx, lane_layout.ty, res_val, lane);
}
let res = CValue::by_val(res_val, lane_layout);
ret.write_cvalue(fx, res);
}
// FIXME move all uses to `simd_reduce`
fn simd_reduce_bool<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
val: CValue<'tcx>,
ret: CPlace<'tcx>,
f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Value, Value) -> Value,
) {
let (lane_count, _lane_ty) = val.layout().ty.simd_size_and_type(fx.tcx);
assert!(ret.layout().ty.is_bool());
let res_val = val.value_lane(fx, 0).load_scalar(fx);
let mut res_val = fx.bcx.ins().band_imm(res_val, 1); // mask to boolean
for lane_idx in 1..lane_count {
let lane = val.value_lane(fx, lane_idx).load_scalar(fx);
let lane = fx.bcx.ins().band_imm(lane, 1); // mask to boolean
res_val = f(fx, res_val, lane);
}
let res_val = if fx.bcx.func.dfg.value_type(res_val) != types::I8 {
fx.bcx.ins().ireduce(types::I8, res_val)
} else {
res_val
};
let res = CValue::by_val(res_val, ret.layout());
ret.write_cvalue(fx, res);
}
fn bool_to_zero_or_max_uint<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
ty: Ty<'tcx>,
2019-07-28 09:45:01 +02:00
val: Value,
) -> Value {
let ty = fx.clif_type(ty).unwrap();
2019-07-28 09:45:01 +02:00
2019-07-30 14:37:20 +02:00
let int_ty = match ty {
types::F32 => types::I32,
types::F64 => types::I64,
ty => ty,
};
let val = fx.bcx.ins().bint(int_ty, val);
let mut res = fx.bcx.ins().ineg(val);
2019-07-30 14:37:20 +02:00
if ty.is_float() {
res = fx.bcx.ins().bitcast(ty, res);
}
res
2019-07-30 14:37:20 +02:00
}
pub(crate) fn codegen_intrinsic_call<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
instance: Instance<'tcx>,
2019-07-28 11:24:33 +02:00
args: &[mir::Operand<'tcx>],
destination: CPlace<'tcx>,
target: Option<BasicBlock>,
source_info: mir::SourceInfo,
) {
2021-10-12 05:06:37 +00:00
let intrinsic = fx.tcx.item_name(instance.def_id());
let substs = instance.substs;
let target = if let Some(target) = target {
target
} else {
// Insert non returning intrinsics here
match intrinsic {
sym::abort => {
fx.bcx.ins().trap(TrapCode::User(0));
}
sym::transmute => {
crate::base::codegen_panic(fx, "Transmuting to uninhabited type.", source_info);
}
_ => unimplemented!("unsupported instrinsic {}", intrinsic),
}
return;
};
if intrinsic.as_str().starts_with("simd_") {
self::simd::codegen_simd_intrinsic_call(
fx,
intrinsic,
substs,
args,
destination,
source_info.span,
);
let ret_block = fx.get_block(target);
2020-02-14 18:23:29 +01:00
fx.bcx.ins().jump(ret_block, &[]);
} else if codegen_float_intrinsic_call(fx, intrinsic, args, destination) {
let ret_block = fx.get_block(target);
fx.bcx.ins().jump(ret_block, &[]);
} else {
codegen_regular_intrinsic_call(
fx,
instance,
intrinsic,
substs,
args,
destination,
Some(target),
source_info,
);
}
}
fn codegen_float_intrinsic_call<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
intrinsic: Symbol,
args: &[mir::Operand<'tcx>],
ret: CPlace<'tcx>,
) -> bool {
let (name, arg_count, ty) = match intrinsic {
sym::expf32 => ("expf", 1, fx.tcx.types.f32),
sym::expf64 => ("exp", 1, fx.tcx.types.f64),
sym::exp2f32 => ("exp2f", 1, fx.tcx.types.f32),
sym::exp2f64 => ("exp2", 1, fx.tcx.types.f64),
sym::sqrtf32 => ("sqrtf", 1, fx.tcx.types.f32),
sym::sqrtf64 => ("sqrt", 1, fx.tcx.types.f64),
sym::powif32 => ("__powisf2", 2, fx.tcx.types.f32), // compiler-builtins
sym::powif64 => ("__powidf2", 2, fx.tcx.types.f64), // compiler-builtins
sym::powf32 => ("powf", 2, fx.tcx.types.f32),
sym::powf64 => ("pow", 2, fx.tcx.types.f64),
sym::logf32 => ("logf", 1, fx.tcx.types.f32),
sym::logf64 => ("log", 1, fx.tcx.types.f64),
sym::log2f32 => ("log2f", 1, fx.tcx.types.f32),
sym::log2f64 => ("log2", 1, fx.tcx.types.f64),
sym::log10f32 => ("log10f", 1, fx.tcx.types.f32),
sym::log10f64 => ("log10", 1, fx.tcx.types.f64),
sym::fabsf32 => ("fabsf", 1, fx.tcx.types.f32),
sym::fabsf64 => ("fabs", 1, fx.tcx.types.f64),
sym::fmaf32 => ("fmaf", 3, fx.tcx.types.f32),
sym::fmaf64 => ("fma", 3, fx.tcx.types.f64),
sym::copysignf32 => ("copysignf", 2, fx.tcx.types.f32),
sym::copysignf64 => ("copysign", 2, fx.tcx.types.f64),
sym::floorf32 => ("floorf", 1, fx.tcx.types.f32),
sym::floorf64 => ("floor", 1, fx.tcx.types.f64),
sym::ceilf32 => ("ceilf", 1, fx.tcx.types.f32),
sym::ceilf64 => ("ceil", 1, fx.tcx.types.f64),
sym::truncf32 => ("truncf", 1, fx.tcx.types.f32),
sym::truncf64 => ("trunc", 1, fx.tcx.types.f64),
sym::roundf32 => ("roundf", 1, fx.tcx.types.f32),
sym::roundf64 => ("round", 1, fx.tcx.types.f64),
sym::sinf32 => ("sinf", 1, fx.tcx.types.f32),
sym::sinf64 => ("sin", 1, fx.tcx.types.f64),
sym::cosf32 => ("cosf", 1, fx.tcx.types.f32),
sym::cosf64 => ("cos", 1, fx.tcx.types.f64),
_ => return false,
};
if args.len() != arg_count {
bug!("wrong number of args for intrinsic {:?}", intrinsic);
2019-07-27 16:51:48 +02:00
}
let (a, b, c);
let args = match args {
[x] => {
a = [codegen_operand(fx, x)];
&a as &[_]
}
[x, y] => {
b = [codegen_operand(fx, x), codegen_operand(fx, y)];
&b
}
[x, y, z] => {
c = [codegen_operand(fx, x), codegen_operand(fx, y), codegen_operand(fx, z)];
&c
}
_ => unreachable!(),
};
let res = fx.easy_call(name, &args, ty);
ret.write_cvalue(fx, res);
true
}
fn codegen_regular_intrinsic_call<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
instance: Instance<'tcx>,
intrinsic: Symbol,
substs: SubstsRef<'tcx>,
args: &[mir::Operand<'tcx>],
ret: CPlace<'tcx>,
destination: Option<BasicBlock>,
source_info: mir::SourceInfo,
) {
let usize_layout = fx.layout_of(fx.tcx.types.usize);
match intrinsic {
sym::assume => {
intrinsic_args!(fx, args => (_a); intrinsic);
}
sym::likely | sym::unlikely => {
intrinsic_args!(fx, args => (a); intrinsic);
ret.write_cvalue(fx, a);
}
sym::breakpoint => {
intrinsic_args!(fx, args => (); intrinsic);
fx.bcx.ins().debugtrap();
}
sym::copy | sym::copy_nonoverlapping => {
intrinsic_args!(fx, args => (src, dst, count); intrinsic);
let src = src.load_scalar(fx);
let dst = dst.load_scalar(fx);
let count = count.load_scalar(fx);
let elem_ty = substs.type_at(0);
let elem_size: u64 = fx.layout_of(elem_ty).size.bytes();
assert_eq!(args.len(), 3);
let byte_amount =
if elem_size != 1 { fx.bcx.ins().imul_imm(count, elem_size as i64) } else { count };
if intrinsic == sym::copy_nonoverlapping {
2020-05-01 17:28:45 +02:00
// FIXME emit_small_memcpy
fx.bcx.call_memcpy(fx.target_config, dst, src, byte_amount);
2020-05-01 17:28:45 +02:00
} else {
// FIXME emit_small_memmove
fx.bcx.call_memmove(fx.target_config, dst, src, byte_amount);
2020-05-01 17:28:45 +02:00
}
}
sym::volatile_copy_memory | sym::volatile_copy_nonoverlapping_memory => {
// NOTE: the volatile variants have src and dst swapped
intrinsic_args!(fx, args => (dst, src, count); intrinsic);
let dst = dst.load_scalar(fx);
let src = src.load_scalar(fx);
let count = count.load_scalar(fx);
let elem_ty = substs.type_at(0);
2020-05-01 17:28:45 +02:00
let elem_size: u64 = fx.layout_of(elem_ty).size.bytes();
assert_eq!(args.len(), 3);
let byte_amount =
if elem_size != 1 { fx.bcx.ins().imul_imm(count, elem_size as i64) } else { count };
2020-05-01 17:28:45 +02:00
// FIXME make the copy actually volatile when using emit_small_mem{cpy,move}
if intrinsic == sym::volatile_copy_nonoverlapping_memory {
2020-01-04 12:33:39 +01:00
// FIXME emit_small_memcpy
fx.bcx.call_memcpy(fx.target_config, dst, src, byte_amount);
} else {
2020-01-04 12:33:39 +01:00
// FIXME emit_small_memmove
fx.bcx.call_memmove(fx.target_config, dst, src, byte_amount);
}
}
sym::size_of_val => {
intrinsic_args!(fx, args => (ptr); intrinsic);
let layout = fx.layout_of(substs.type_at(0));
// Note: Can't use is_unsized here as truly unsized types need to take the fixed size
// branch
let size = if let Abi::ScalarPair(_, _) = ptr.layout().abi {
let (_ptr, info) = ptr.load_scalar_pair(fx);
let (size, _align) = crate::unsize::size_and_align_of_dst(fx, layout, info);
size
} else {
fx.bcx.ins().iconst(fx.pointer_type, layout.size.bytes() as i64)
};
ret.write_cvalue(fx, CValue::by_val(size, usize_layout));
}
sym::min_align_of_val => {
intrinsic_args!(fx, args => (ptr); intrinsic);
let layout = fx.layout_of(substs.type_at(0));
// Note: Can't use is_unsized here as truly unsized types need to take the fixed size
// branch
let align = if let Abi::ScalarPair(_, _) = ptr.layout().abi {
let (_ptr, info) = ptr.load_scalar_pair(fx);
let (_size, align) = crate::unsize::size_and_align_of_dst(fx, layout, info);
align
} else {
fx.bcx.ins().iconst(fx.pointer_type, layout.align.abi.bytes() as i64)
};
ret.write_cvalue(fx, CValue::by_val(align, usize_layout));
}
sym::vtable_size => {
intrinsic_args!(fx, args => (vtable); intrinsic);
let vtable = vtable.load_scalar(fx);
2019-06-23 16:33:34 +02:00
let size = crate::vtable::size_of_obj(fx, vtable);
ret.write_cvalue(fx, CValue::by_val(size, usize_layout));
}
sym::vtable_align => {
intrinsic_args!(fx, args => (vtable); intrinsic);
let vtable = vtable.load_scalar(fx);
let align = crate::vtable::min_align_of_obj(fx, vtable);
ret.write_cvalue(fx, CValue::by_val(align, usize_layout));
}
sym::unchecked_add
| sym::unchecked_sub
| sym::unchecked_mul
| sym::unchecked_div
| sym::exact_div
| sym::unchecked_rem
| sym::unchecked_shl
| sym::unchecked_shr => {
intrinsic_args!(fx, args => (x, y); intrinsic);
// FIXME trap on overflow
let bin_op = match intrinsic {
sym::unchecked_add => BinOp::Add,
sym::unchecked_sub => BinOp::Sub,
sym::unchecked_mul => BinOp::Mul,
sym::unchecked_div | sym::exact_div => BinOp::Div,
sym::unchecked_rem => BinOp::Rem,
sym::unchecked_shl => BinOp::Shl,
sym::unchecked_shr => BinOp::Shr,
_ => unreachable!(),
};
let res = crate::num::codegen_int_binop(fx, bin_op, x, y);
ret.write_cvalue(fx, res);
}
sym::add_with_overflow | sym::sub_with_overflow | sym::mul_with_overflow => {
intrinsic_args!(fx, args => (x, y); intrinsic);
assert_eq!(x.layout().ty, y.layout().ty);
let bin_op = match intrinsic {
sym::add_with_overflow => BinOp::Add,
sym::sub_with_overflow => BinOp::Sub,
sym::mul_with_overflow => BinOp::Mul,
_ => unreachable!(),
};
let res = crate::num::codegen_checked_int_binop(fx, bin_op, x, y);
ret.write_cvalue(fx, res);
}
sym::saturating_add | sym::saturating_sub => {
intrinsic_args!(fx, args => (lhs, rhs); intrinsic);
assert_eq!(lhs.layout().ty, rhs.layout().ty);
let bin_op = match intrinsic {
sym::saturating_add => BinOp::Add,
sym::saturating_sub => BinOp::Sub,
_ => unreachable!(),
};
let signed = type_sign(lhs.layout().ty);
let checked_res = crate::num::codegen_checked_int_binop(fx, bin_op, lhs, rhs);
let (val, has_overflow) = checked_res.load_scalar_pair(fx);
let clif_ty = fx.clif_type(lhs.layout().ty).unwrap();
let (min, max) = type_min_max_value(&mut fx.bcx, clif_ty, signed);
let val = match (intrinsic, signed) {
(sym::saturating_add, false) => fx.bcx.ins().select(has_overflow, max, val),
(sym::saturating_sub, false) => fx.bcx.ins().select(has_overflow, min, val),
(sym::saturating_add, true) => {
let rhs = rhs.load_scalar(fx);
let rhs_ge_zero =
fx.bcx.ins().icmp_imm(IntCC::SignedGreaterThanOrEqual, rhs, 0);
let sat_val = fx.bcx.ins().select(rhs_ge_zero, max, min);
fx.bcx.ins().select(has_overflow, sat_val, val)
}
(sym::saturating_sub, true) => {
let rhs = rhs.load_scalar(fx);
let rhs_ge_zero =
fx.bcx.ins().icmp_imm(IntCC::SignedGreaterThanOrEqual, rhs, 0);
let sat_val = fx.bcx.ins().select(rhs_ge_zero, min, max);
fx.bcx.ins().select(has_overflow, sat_val, val)
}
_ => unreachable!(),
};
let res = CValue::by_val(val, lhs.layout());
ret.write_cvalue(fx, res);
}
sym::rotate_left => {
intrinsic_args!(fx, args => (x, y); intrinsic);
let y = y.load_scalar(fx);
let layout = x.layout();
let x = x.load_scalar(fx);
let res = fx.bcx.ins().rotl(x, y);
ret.write_cvalue(fx, CValue::by_val(res, layout));
}
sym::rotate_right => {
intrinsic_args!(fx, args => (x, y); intrinsic);
let y = y.load_scalar(fx);
let layout = x.layout();
let x = x.load_scalar(fx);
let res = fx.bcx.ins().rotr(x, y);
ret.write_cvalue(fx, CValue::by_val(res, layout));
}
2019-02-16 13:49:42 +01:00
// The only difference between offset and arith_offset is regarding UB. Because Cranelift
// doesn't have UB both are codegen'ed the same way
sym::offset | sym::arith_offset => {
intrinsic_args!(fx, args => (base, offset); intrinsic);
let offset = offset.load_scalar(fx);
let pointee_ty = base.layout().ty.builtin_deref(true).unwrap().ty;
let pointee_size = fx.layout_of(pointee_ty).size.bytes();
let ptr_diff = if pointee_size != 1 {
fx.bcx.ins().imul_imm(offset, pointee_size as i64)
} else {
offset
};
let base_val = base.load_scalar(fx);
let res = fx.bcx.ins().iadd(base_val, ptr_diff);
2019-07-28 11:24:33 +02:00
ret.write_cvalue(fx, CValue::by_val(res, base.layout()));
}
sym::ptr_mask => {
intrinsic_args!(fx, args => (ptr, mask); intrinsic);
fx.bcx.ins().band(ptr, mask);
}
sym::transmute => {
intrinsic_args!(fx, args => (from); intrinsic);
2019-02-16 13:49:42 +01:00
2020-04-13 14:53:25 +02:00
ret.write_cvalue_transmute(fx, from);
}
sym::write_bytes | sym::volatile_set_memory => {
intrinsic_args!(fx, args => (dst, val, count); intrinsic);
let val = val.load_scalar(fx);
let count = count.load_scalar(fx);
2019-02-16 13:49:42 +01:00
let pointee_ty = dst.layout().ty.builtin_deref(true).unwrap().ty;
let pointee_size = fx.layout_of(pointee_ty).size.bytes();
let count = if pointee_size != 1 {
fx.bcx.ins().imul_imm(count, pointee_size as i64)
} else {
count
};
2019-02-16 13:49:42 +01:00
let dst_ptr = dst.load_scalar(fx);
2020-05-01 17:28:45 +02:00
// FIXME make the memset actually volatile when switching to emit_small_memset
// FIXME use emit_small_memset
fx.bcx.call_memset(fx.target_config, dst_ptr, val, count);
}
sym::ctlz | sym::ctlz_nonzero => {
intrinsic_args!(fx, args => (arg); intrinsic);
let val = arg.load_scalar(fx);
// FIXME trap on `ctlz_nonzero` with zero arg.
let res = fx.bcx.ins().clz(val);
let res = CValue::by_val(res, arg.layout());
ret.write_cvalue(fx, res);
}
sym::cttz | sym::cttz_nonzero => {
intrinsic_args!(fx, args => (arg); intrinsic);
let val = arg.load_scalar(fx);
// FIXME trap on `cttz_nonzero` with zero arg.
let res = fx.bcx.ins().ctz(val);
let res = CValue::by_val(res, arg.layout());
ret.write_cvalue(fx, res);
}
sym::ctpop => {
intrinsic_args!(fx, args => (arg); intrinsic);
let val = arg.load_scalar(fx);
let res = fx.bcx.ins().popcnt(val);
let res = CValue::by_val(res, arg.layout());
ret.write_cvalue(fx, res);
}
sym::bitreverse => {
intrinsic_args!(fx, args => (arg); intrinsic);
let val = arg.load_scalar(fx);
let res = fx.bcx.ins().bitrev(val);
let res = CValue::by_val(res, arg.layout());
ret.write_cvalue(fx, res);
}
sym::bswap => {
2018-11-17 18:52:47 +01:00
// FIXME(CraneStation/cranelift#794) add bswap instruction to cranelift
fn swap(bcx: &mut FunctionBuilder<'_>, v: Value) -> Value {
2018-11-17 18:52:47 +01:00
match bcx.func.dfg.value_type(v) {
types::I8 => v,
// https://code.woboq.org/gcc/include/bits/byteswap.h.html
types::I16 => {
let tmp1 = bcx.ins().ishl_imm(v, 8);
let n1 = bcx.ins().band_imm(tmp1, 0xFF00);
let tmp2 = bcx.ins().ushr_imm(v, 8);
let n2 = bcx.ins().band_imm(tmp2, 0x00FF);
bcx.ins().bor(n1, n2)
}
types::I32 => {
let tmp1 = bcx.ins().ishl_imm(v, 24);
let n1 = bcx.ins().band_imm(tmp1, 0xFF00_0000);
let tmp2 = bcx.ins().ishl_imm(v, 8);
let n2 = bcx.ins().band_imm(tmp2, 0x00FF_0000);
let tmp3 = bcx.ins().ushr_imm(v, 8);
let n3 = bcx.ins().band_imm(tmp3, 0x0000_FF00);
let tmp4 = bcx.ins().ushr_imm(v, 24);
let n4 = bcx.ins().band_imm(tmp4, 0x0000_00FF);
let or_tmp1 = bcx.ins().bor(n1, n2);
let or_tmp2 = bcx.ins().bor(n3, n4);
bcx.ins().bor(or_tmp1, or_tmp2)
}
types::I64 => {
let tmp1 = bcx.ins().ishl_imm(v, 56);
let n1 = bcx.ins().band_imm(tmp1, 0xFF00_0000_0000_0000u64 as i64);
let tmp2 = bcx.ins().ishl_imm(v, 40);
let n2 = bcx.ins().band_imm(tmp2, 0x00FF_0000_0000_0000u64 as i64);
let tmp3 = bcx.ins().ishl_imm(v, 24);
let n3 = bcx.ins().band_imm(tmp3, 0x0000_FF00_0000_0000u64 as i64);
let tmp4 = bcx.ins().ishl_imm(v, 8);
let n4 = bcx.ins().band_imm(tmp4, 0x0000_00FF_0000_0000u64 as i64);
let tmp5 = bcx.ins().ushr_imm(v, 8);
let n5 = bcx.ins().band_imm(tmp5, 0x0000_0000_FF00_0000u64 as i64);
let tmp6 = bcx.ins().ushr_imm(v, 24);
let n6 = bcx.ins().band_imm(tmp6, 0x0000_0000_00FF_0000u64 as i64);
let tmp7 = bcx.ins().ushr_imm(v, 40);
let n7 = bcx.ins().band_imm(tmp7, 0x0000_0000_0000_FF00u64 as i64);
let tmp8 = bcx.ins().ushr_imm(v, 56);
let n8 = bcx.ins().band_imm(tmp8, 0x0000_0000_0000_00FFu64 as i64);
let or_tmp1 = bcx.ins().bor(n1, n2);
let or_tmp2 = bcx.ins().bor(n3, n4);
let or_tmp3 = bcx.ins().bor(n5, n6);
let or_tmp4 = bcx.ins().bor(n7, n8);
let or_tmp5 = bcx.ins().bor(or_tmp1, or_tmp2);
let or_tmp6 = bcx.ins().bor(or_tmp3, or_tmp4);
bcx.ins().bor(or_tmp5, or_tmp6)
}
2019-06-29 16:53:20 +02:00
types::I128 => {
let (lo, hi) = bcx.ins().isplit(v);
let lo = swap(bcx, lo);
let hi = swap(bcx, hi);
bcx.ins().iconcat(hi, lo)
}
ty => unreachable!("bswap {}", ty),
2018-11-17 18:52:47 +01:00
}
}
intrinsic_args!(fx, args => (arg); intrinsic);
let val = arg.load_scalar(fx);
let res = CValue::by_val(swap(&mut fx.bcx, val), arg.layout());
2018-11-17 18:52:47 +01:00
ret.write_cvalue(fx, res);
}
sym::assert_inhabited | sym::assert_zero_valid | sym::assert_uninit_valid => {
intrinsic_args!(fx, args => (); intrinsic);
let layout = fx.layout_of(substs.type_at(0));
if layout.abi.is_uninhabited() {
with_no_trimmed_paths!({
crate::base::codegen_panic(
fx,
&format!("attempted to instantiate uninhabited type `{}`", layout.ty),
source_info,
)
});
return;
}
if intrinsic == sym::assert_zero_valid && !fx.tcx.permits_zero_init(layout) {
with_no_trimmed_paths!({
crate::base::codegen_panic(
fx,
&format!(
"attempted to zero-initialize type `{}`, which is invalid",
layout.ty
),
source_info,
);
});
return;
}
if intrinsic == sym::assert_uninit_valid && !fx.tcx.permits_uninit_init(layout) {
with_no_trimmed_paths!({
crate::base::codegen_panic(
fx,
&format!(
"attempted to leave type `{}` uninitialized, which is invalid",
layout.ty
),
source_info,
)
});
2019-01-06 18:11:30 +01:00
return;
}
}
sym::volatile_load | sym::unaligned_volatile_load => {
intrinsic_args!(fx, args => (ptr); intrinsic);
2018-10-06 10:24:09 +02:00
2019-06-23 16:33:34 +02:00
// Cranelift treats loads as volatile by default
// FIXME correctly handle unaligned_volatile_load
let inner_layout = fx.layout_of(ptr.layout().ty.builtin_deref(true).unwrap().ty);
let val = CValue::by_ref(Pointer::new(ptr.load_scalar(fx)), inner_layout);
2019-06-23 16:33:34 +02:00
ret.write_cvalue(fx, val);
}
sym::volatile_store | sym::unaligned_volatile_store => {
intrinsic_args!(fx, args => (ptr, val); intrinsic);
let ptr = ptr.load_scalar(fx);
2019-06-23 16:33:34 +02:00
// Cranelift treats stores as volatile by default
// FIXME correctly handle unaligned_volatile_store
let dest = CPlace::for_ptr(Pointer::new(ptr), val.layout());
2019-06-23 16:33:34 +02:00
dest.write_cvalue(fx, val);
}
sym::pref_align_of
| sym::needs_drop
| sym::type_id
| sym::type_name
| sym::variant_count => {
intrinsic_args!(fx, args => (); intrinsic);
2019-06-23 16:33:34 +02:00
let const_val =
fx.tcx.const_eval_instance(ParamEnv::reveal_all(), instance, None).unwrap();
let val = crate::constant::codegen_const_value(fx, const_val, ret.layout().ty);
ret.write_cvalue(fx, val);
}
sym::ptr_offset_from | sym::ptr_offset_from_unsigned => {
intrinsic_args!(fx, args => (ptr, base); intrinsic);
let ptr = ptr.load_scalar(fx);
let base = base.load_scalar(fx);
let ty = substs.type_at(0);
let pointee_size: u64 = fx.layout_of(ty).size.bytes();
let diff_bytes = fx.bcx.ins().isub(ptr, base);
// FIXME this can be an exact division.
let val = if intrinsic == sym::ptr_offset_from_unsigned {
let usize_layout = fx.layout_of(fx.tcx.types.usize);
// Because diff_bytes ULE isize::MAX, this would be fine as signed,
// but unsigned is slightly easier to codegen, so might as well.
CValue::by_val(fx.bcx.ins().udiv_imm(diff_bytes, pointee_size as i64), usize_layout)
} else {
let isize_layout = fx.layout_of(fx.tcx.types.isize);
CValue::by_val(fx.bcx.ins().sdiv_imm(diff_bytes, pointee_size as i64), isize_layout)
};
ret.write_cvalue(fx, val);
}
sym::ptr_guaranteed_eq => {
intrinsic_args!(fx, args => (a, b); intrinsic);
let val = crate::num::codegen_ptr_binop(fx, BinOp::Eq, a, b);
ret.write_cvalue(fx, val);
}
sym::ptr_guaranteed_ne => {
intrinsic_args!(fx, args => (a, b); intrinsic);
let val = crate::num::codegen_ptr_binop(fx, BinOp::Ne, a, b);
ret.write_cvalue(fx, val);
}
sym::caller_location => {
intrinsic_args!(fx, args => (); intrinsic);
let caller_location = fx.get_caller_location(source_info);
ret.write_cvalue(fx, caller_location);
}
_ if intrinsic.as_str().starts_with("atomic_fence") => {
intrinsic_args!(fx, args => (); intrinsic);
fx.bcx.ins().fence();
}
_ if intrinsic.as_str().starts_with("atomic_singlethreadfence") => {
intrinsic_args!(fx, args => (); intrinsic);
// FIXME use a compiler fence once Cranelift supports it
fx.bcx.ins().fence();
}
_ if intrinsic.as_str().starts_with("atomic_load") => {
intrinsic_args!(fx, args => (ptr); intrinsic);
let ptr = ptr.load_scalar(fx);
let ty = substs.type_at(0);
match ty.kind() {
ty::Uint(UintTy::U128) | ty::Int(IntTy::I128) => {
// FIXME implement 128bit atomics
if fx.tcx.is_compiler_builtins(LOCAL_CRATE) {
// special case for compiler-builtins to avoid having to patch it
crate::trap::trap_unimplemented(fx, "128bit atomics not yet supported");
let ret_block = fx.get_block(destination.unwrap());
fx.bcx.ins().jump(ret_block, &[]);
return;
} else {
fx.tcx
.sess
.span_fatal(source_info.span, "128bit atomics not yet supported");
}
}
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, ty);
return;
}
}
let clif_ty = fx.clif_type(ty).unwrap();
let val = fx.bcx.ins().atomic_load(clif_ty, MemFlags::trusted(), ptr);
let val = CValue::by_val(val, fx.layout_of(ty));
ret.write_cvalue(fx, val);
}
_ if intrinsic.as_str().starts_with("atomic_store") => {
intrinsic_args!(fx, args => (ptr, val); intrinsic);
let ptr = ptr.load_scalar(fx);
let ty = substs.type_at(0);
match ty.kind() {
ty::Uint(UintTy::U128) | ty::Int(IntTy::I128) => {
// FIXME implement 128bit atomics
if fx.tcx.is_compiler_builtins(LOCAL_CRATE) {
// special case for compiler-builtins to avoid having to patch it
crate::trap::trap_unimplemented(fx, "128bit atomics not yet supported");
let ret_block = fx.get_block(destination.unwrap());
fx.bcx.ins().jump(ret_block, &[]);
return;
} else {
fx.tcx
.sess
.span_fatal(source_info.span, "128bit atomics not yet supported");
}
}
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, ty);
return;
}
}
let val = val.load_scalar(fx);
fx.bcx.ins().atomic_store(MemFlags::trusted(), val, ptr);
}
_ if intrinsic.as_str().starts_with("atomic_xchg") => {
intrinsic_args!(fx, args => (ptr, new); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = new.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return;
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let new = new.load_scalar(fx);
2018-10-06 10:24:09 +02:00
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Xchg, ptr, new);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_cxchg") => {
// both atomic_cxchg_* and atomic_cxchgweak_*
intrinsic_args!(fx, args => (ptr, test_old, new); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = new.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return;
}
}
let test_old = test_old.load_scalar(fx);
let new = new.load_scalar(fx);
let old = fx.bcx.ins().atomic_cas(MemFlags::trusted(), ptr, test_old, new);
let is_eq = fx.bcx.ins().icmp(IntCC::Equal, old, test_old);
2018-10-06 10:24:09 +02:00
let ret_val =
CValue::by_val_pair(old, fx.bcx.ins().bint(types::I8, is_eq), ret.layout());
ret.write_cvalue(fx, ret_val)
}
_ if intrinsic.as_str().starts_with("atomic_xadd") => {
intrinsic_args!(fx, args => (ptr, amount); intrinsic);
let ptr = ptr.load_scalar(fx);
2018-10-06 10:24:09 +02:00
let layout = amount.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return;
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let amount = amount.load_scalar(fx);
let old =
fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Add, ptr, amount);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_xsub") => {
intrinsic_args!(fx, args => (ptr, amount); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = amount.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return;
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let amount = amount.load_scalar(fx);
let old =
fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Sub, ptr, amount);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_and") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return;
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::And, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_or") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return;
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Or, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_xor") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return;
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Xor, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_nand") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return;
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Nand, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_max") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return;
}
}
let ty = fx.clif_type(layout.ty).unwrap();
2018-10-06 10:24:09 +02:00
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Smax, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_umax") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return;
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Umax, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_min") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return;
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Smin, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_umin") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return;
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Umin, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
sym::minnumf32 => {
intrinsic_args!(fx, args => (a, b); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
2019-07-27 17:48:24 +02:00
let val = crate::num::codegen_float_min(fx, a, b);
let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32));
2019-07-27 17:48:24 +02:00
ret.write_cvalue(fx, val);
}
sym::minnumf64 => {
intrinsic_args!(fx, args => (a, b); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
let val = crate::num::codegen_float_min(fx, a, b);
let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64));
2019-07-27 17:48:24 +02:00
ret.write_cvalue(fx, val);
}
sym::maxnumf32 => {
intrinsic_args!(fx, args => (a, b); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
let val = crate::num::codegen_float_max(fx, a, b);
let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32));
2019-07-27 17:48:24 +02:00
ret.write_cvalue(fx, val);
}
sym::maxnumf64 => {
intrinsic_args!(fx, args => (a, b); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
let val = crate::num::codegen_float_max(fx, a, b);
let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64));
2019-07-27 17:48:24 +02:00
ret.write_cvalue(fx, val);
}
kw::Try => {
intrinsic_args!(fx, args => (f, data, catch_fn); intrinsic);
let f = f.load_scalar(fx);
let data = data.load_scalar(fx);
let _catch_fn = catch_fn.load_scalar(fx);
2019-07-27 17:48:24 +02:00
2019-07-31 14:04:00 +02:00
// FIXME once unwinding is supported, change this to actually catch panics
let f_sig = fx.bcx.func.import_signature(Signature {
call_conv: fx.target_config.default_call_conv,
2019-07-31 14:04:00 +02:00
params: vec![AbiParam::new(fx.bcx.func.dfg.value_type(data))],
returns: vec![],
});
fx.bcx.ins().call_indirect(f_sig, f, &[data]);
2020-10-29 13:30:47 +00:00
let layout = ret.layout();
let ret_val = CValue::const_val(fx, layout, ty::ScalarInt::null(layout.size));
2019-07-31 14:04:00 +02:00
ret.write_cvalue(fx, ret_val);
}
2020-05-01 17:35:20 +02:00
sym::fadd_fast | sym::fsub_fast | sym::fmul_fast | sym::fdiv_fast | sym::frem_fast => {
intrinsic_args!(fx, args => (x, y); intrinsic);
let res = crate::num::codegen_float_binop(
fx,
match intrinsic {
sym::fadd_fast => BinOp::Add,
sym::fsub_fast => BinOp::Sub,
sym::fmul_fast => BinOp::Mul,
sym::fdiv_fast => BinOp::Div,
sym::frem_fast => BinOp::Rem,
_ => unreachable!(),
},
x,
y,
);
2020-05-01 17:35:20 +02:00
ret.write_cvalue(fx, res);
}
sym::float_to_int_unchecked => {
intrinsic_args!(fx, args => (f); intrinsic);
let f = f.load_scalar(fx);
let res = crate::cast::clif_int_or_float_cast(
fx,
f,
false,
fx.clif_type(ret.layout().ty).unwrap(),
type_sign(ret.layout().ty),
);
ret.write_cvalue(fx, CValue::by_val(res, ret.layout()));
}
sym::raw_eq => {
intrinsic_args!(fx, args => (lhs_ref, rhs_ref); intrinsic);
let lhs_ref = lhs_ref.load_scalar(fx);
let rhs_ref = rhs_ref.load_scalar(fx);
let size = fx.layout_of(substs.type_at(0)).layout.size();
// FIXME add and use emit_small_memcmp
let is_eq_value = if size == Size::ZERO {
// No bytes means they're trivially equal
fx.bcx.ins().iconst(types::I8, 1)
} else if let Some(clty) = size.bits().try_into().ok().and_then(Type::int) {
// Can't use `trusted` for these loads; they could be unaligned.
let mut flags = MemFlags::new();
flags.set_notrap();
let lhs_val = fx.bcx.ins().load(clty, flags, lhs_ref, 0);
let rhs_val = fx.bcx.ins().load(clty, flags, rhs_ref, 0);
let eq = fx.bcx.ins().icmp(IntCC::Equal, lhs_val, rhs_val);
fx.bcx.ins().bint(types::I8, eq)
} else {
// Just call `memcmp` (like slices do in core) when the
// size is too large or it's not a power-of-two.
let signed_bytes = i64::try_from(size.bytes()).unwrap();
let bytes_val = fx.bcx.ins().iconst(fx.pointer_type, signed_bytes);
let params = vec![AbiParam::new(fx.pointer_type); 3];
let returns = vec![AbiParam::new(types::I32)];
let args = &[lhs_ref, rhs_ref, bytes_val];
let cmp = fx.lib_call("memcmp", params, returns, args)[0];
let eq = fx.bcx.ins().icmp_imm(IntCC::Equal, cmp, 0);
fx.bcx.ins().bint(types::I8, eq)
};
ret.write_cvalue(fx, CValue::by_val(is_eq_value, ret.layout()));
}
sym::const_allocate => {
intrinsic_args!(fx, args => (_size, _align); intrinsic);
// returns a null pointer at runtime.
let null = fx.bcx.ins().iconst(fx.pointer_type, 0);
ret.write_cvalue(fx, CValue::by_val(null, ret.layout()));
}
sym::const_deallocate => {
intrinsic_args!(fx, args => (_ptr, _size, _align); intrinsic);
// nop at runtime.
}
sym::black_box => {
intrinsic_args!(fx, args => (a); intrinsic);
// FIXME implement black_box semantics
ret.write_cvalue(fx, a);
}
// FIXME implement variadics in cranelift
sym::va_copy | sym::va_arg | sym::va_end => {
fx.tcx.sess.span_fatal(
source_info.span,
"Defining variadic functions is not yet supported by Cranelift",
);
}
_ => {
fx.tcx
.sess
.span_fatal(source_info.span, &format!("unsupported intrinsic {}", intrinsic));
}
}
let ret_block = fx.get_block(destination.unwrap());
fx.bcx.ins().jump(ret_block, &[]);
}