rust/src/librustc/middle/traits/error_reporting.rs

659 lines
30 KiB
Rust
Raw Normal View History

2014-12-06 11:39:25 -05:00
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::{
FulfillmentError,
FulfillmentErrorCode,
MismatchedProjectionTypes,
Obligation,
ObligationCauseCode,
OutputTypeParameterMismatch,
TraitNotObjectSafe,
PredicateObligation,
SelectionError,
ObjectSafetyViolation,
MethodViolationCode,
object_safety_violations,
};
2014-12-06 11:39:25 -05:00
use fmt_macros::{Parser, Piece, Position};
2015-08-16 06:32:28 -04:00
use middle::def_id::DefId;
2014-12-06 11:39:25 -05:00
use middle::infer::InferCtxt;
use middle::ty::{self, ToPredicate, HasTypeFlags, ToPolyTraitRef, TraitRef, Ty};
use middle::ty::fold::TypeFoldable;
use util::nodemap::{FnvHashMap, FnvHashSet};
use std::cmp;
2015-06-18 20:25:05 +03:00
use std::fmt;
use syntax::attr::{AttributeMethods, AttrMetaMethods};
2015-12-21 10:00:43 +13:00
use syntax::codemap::Span;
use syntax::errors::DiagnosticBuilder;
2014-12-06 11:39:25 -05:00
#[derive(Debug, PartialEq, Eq, Hash)]
pub struct TraitErrorKey<'tcx> {
span: Span,
predicate: ty::Predicate<'tcx>
}
impl<'tcx> TraitErrorKey<'tcx> {
fn from_error<'a>(infcx: &InferCtxt<'a, 'tcx>,
e: &FulfillmentError<'tcx>) -> Self {
let predicate =
infcx.resolve_type_vars_if_possible(&e.obligation.predicate);
TraitErrorKey {
span: e.obligation.cause.span,
predicate: infcx.tcx.erase_regions(&predicate)
}
}
}
2014-12-06 11:39:25 -05:00
pub fn report_fulfillment_errors<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
errors: &Vec<FulfillmentError<'tcx>>) {
2015-01-31 12:20:46 -05:00
for error in errors {
2014-12-06 11:39:25 -05:00
report_fulfillment_error(infcx, error);
}
}
fn report_fulfillment_error<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
error: &FulfillmentError<'tcx>) {
let error_key = TraitErrorKey::from_error(infcx, error);
debug!("report_fulfillment_errors({:?}) - key={:?}",
error, error_key);
if !infcx.reported_trait_errors.borrow_mut().insert(error_key) {
debug!("report_fulfillment_errors: skipping duplicate");
return;
}
2014-12-06 11:39:25 -05:00
match error.code {
FulfillmentErrorCode::CodeSelectionError(ref e) => {
report_selection_error(infcx, &error.obligation, e);
}
FulfillmentErrorCode::CodeProjectionError(ref e) => {
report_projection_error(infcx, &error.obligation, e);
}
2014-12-06 11:39:25 -05:00
FulfillmentErrorCode::CodeAmbiguity => {
maybe_report_ambiguity(infcx, &error.obligation);
}
}
}
pub fn report_projection_error<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
obligation: &PredicateObligation<'tcx>,
error: &MismatchedProjectionTypes<'tcx>)
{
let predicate =
infcx.resolve_type_vars_if_possible(&obligation.predicate);
// The TyError created by normalize_to_error can end up being unified
2015-05-06 22:24:13 +03:00
// into all obligations: for example, if our obligation is something
// like `$X = <() as Foo<$X>>::Out` and () does not implement Foo<_>,
// then $X will be unified with TyError, but the error still needs to be
2015-05-06 22:24:13 +03:00
// reported.
2015-05-05 22:09:17 +03:00
if !infcx.tcx.sess.has_errors() || !predicate.references_error() {
2015-12-21 10:00:43 +13:00
let mut err = struct_span_err!(infcx.tcx.sess, obligation.cause.span, E0271,
"type mismatch resolving `{}`: {}",
predicate,
error.err);
2015-12-21 10:00:43 +13:00
note_obligation_cause(infcx, &mut err, obligation);
err.emit();
}
}
fn report_on_unimplemented<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
trait_ref: &TraitRef<'tcx>,
span: Span) -> Option<String> {
let def_id = trait_ref.def_id;
let mut report = None;
for item in infcx.tcx.get_attrs(def_id).iter() {
if item.check_name("rustc_on_unimplemented") {
let err_sp = item.meta().span.substitute_dummy(span);
let def = infcx.tcx.lookup_trait_def(def_id);
2015-06-18 20:25:05 +03:00
let trait_str = def.trait_ref.to_string();
if let Some(ref istring) = item.value_str() {
let mut generic_map = def.generics.types.iter_enumerated()
.map(|(param, i, gen)| {
(gen.name.as_str().to_string(),
trait_ref.substs.types.get(param, i)
2015-06-18 20:25:05 +03:00
.to_string())
}).collect::<FnvHashMap<String, String>>();
generic_map.insert("Self".to_string(),
2015-06-18 20:25:05 +03:00
trait_ref.self_ty().to_string());
let parser = Parser::new(&istring);
let mut errored = false;
let err: String = parser.filter_map(|p| {
match p {
Piece::String(s) => Some(s),
Piece::NextArgument(a) => match a.position {
Position::ArgumentNamed(s) => match generic_map.get(s) {
Some(val) => Some(val),
None => {
2015-01-18 16:58:25 -08:00
span_err!(infcx.tcx.sess, err_sp, E0272,
"the #[rustc_on_unimplemented] \
attribute on \
trait definition for {} refers to \
non-existent type parameter {}",
2015-01-18 16:58:25 -08:00
trait_str, s);
errored = true;
None
}
},
_ => {
2015-01-18 16:58:25 -08:00
span_err!(infcx.tcx.sess, err_sp, E0273,
"the #[rustc_on_unimplemented] \
attribute on \
trait definition for {} must have named \
format arguments, \
eg `#[rustc_on_unimplemented = \
\"foo {{T}}\"]`",
2015-01-18 16:58:25 -08:00
trait_str);
errored = true;
None
}
}
}
}).collect();
// Report only if the format string checks out
if !errored {
report = Some(err);
}
} else {
2015-01-18 16:58:25 -08:00
span_err!(infcx.tcx.sess, err_sp, E0274,
"the #[rustc_on_unimplemented] attribute on \
trait definition for {} must have a value, \
eg `#[rustc_on_unimplemented = \"foo\"]`",
2015-01-18 16:58:25 -08:00
trait_str);
}
2015-01-11 20:03:20 +01:00
break;
}
2015-01-11 20:03:20 +01:00
}
report
}
/// Reports that an overflow has occurred and halts compilation. We
/// halt compilation unconditionally because it is important that
/// overflows never be masked -- they basically represent computations
/// whose result could not be truly determined and thus we can't say
/// if the program type checks or not -- and they are unusual
/// occurrences in any case.
pub fn report_overflow_error<'a, 'tcx, T>(infcx: &InferCtxt<'a, 'tcx>,
obligation: &Obligation<'tcx, T>)
-> !
where T: fmt::Display + TypeFoldable<'tcx> + HasTypeFlags
{
let predicate =
infcx.resolve_type_vars_if_possible(&obligation.predicate);
2015-12-21 10:00:43 +13:00
let mut err = struct_span_err!(infcx.tcx.sess, obligation.cause.span, E0275,
"overflow evaluating the requirement `{}`",
predicate);
2015-12-21 10:00:43 +13:00
suggest_new_overflow_limit(infcx.tcx, &mut err, obligation.cause.span);
2015-12-21 10:00:43 +13:00
note_obligation_cause(infcx, &mut err, obligation);
2015-12-21 10:00:43 +13:00
err.emit();
infcx.tcx.sess.abort_if_errors();
unreachable!();
}
2014-12-06 11:39:25 -05:00
pub fn report_selection_error<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
obligation: &PredicateObligation<'tcx>,
error: &SelectionError<'tcx>)
{
match *error {
SelectionError::Unimplemented => {
if let ObligationCauseCode::CompareImplMethodObligation = obligation.cause.code {
span_err!(
infcx.tcx.sess, obligation.cause.span, E0276,
"the requirement `{}` appears on the impl \
method but not on the corresponding trait method",
2015-09-27 20:26:12 -06:00
obligation.predicate);
} else {
match obligation.predicate {
ty::Predicate::Trait(ref trait_predicate) => {
let trait_predicate =
infcx.resolve_type_vars_if_possible(trait_predicate);
if !infcx.tcx.sess.has_errors() || !trait_predicate.references_error() {
let trait_ref = trait_predicate.to_poly_trait_ref();
2015-12-21 10:00:43 +13:00
let mut err = struct_span_err!(
infcx.tcx.sess, obligation.cause.span, E0277,
"the trait `{}` is not implemented for the type `{}`",
trait_ref, trait_ref.self_ty());
// Check if it has a custom "#[rustc_on_unimplemented]"
// error message, report with that message if it does
let custom_note = report_on_unimplemented(infcx, &trait_ref.0,
obligation.cause.span);
if let Some(s) = custom_note {
2015-12-21 10:00:43 +13:00
err.fileline_note(obligation.cause.span, &s);
} else {
let mut impl_candidates = Vec::new();
infcx.tcx.lookup_trait_def(trait_ref.def_id())
.for_each_relevant_impl(
infcx.tcx,
trait_ref.self_ty(),
|impl_def_id| {
match infcx.tcx.impl_trait_ref(impl_def_id) {
Some(ref imp) => {
impl_candidates.push(format!(" {}", imp));
},
None => (),
}
}
);
if impl_candidates.len() > 0 {
err.fileline_help(
obligation.cause.span,
&format!("the following implementations were found:"));
let end = cmp::min(4, impl_candidates.len());
for candidate in &impl_candidates[0..end] {
err.fileline_help(obligation.cause.span,
candidate);
}
if impl_candidates.len() > 4 {
err.fileline_help(obligation.cause.span,
&format!("and {} others",
impl_candidates.len()-4));
}
}
}
2015-12-21 10:00:43 +13:00
note_obligation_cause(infcx, &mut err, obligation);
err.emit();
}
},
ty::Predicate::Equate(ref predicate) => {
let predicate = infcx.resolve_type_vars_if_possible(predicate);
let err = infcx.equality_predicate(obligation.cause.span,
&predicate).err().unwrap();
2015-12-21 10:00:43 +13:00
let mut err = struct_span_err!(
infcx.tcx.sess, obligation.cause.span, E0278,
"the requirement `{}` is not satisfied (`{}`)",
predicate,
err);
2015-12-21 10:00:43 +13:00
note_obligation_cause(infcx, &mut err, obligation);
err.emit();
}
ty::Predicate::RegionOutlives(ref predicate) => {
let predicate = infcx.resolve_type_vars_if_possible(predicate);
let err = infcx.region_outlives_predicate(obligation.cause.span,
&predicate).err().unwrap();
2015-12-21 10:00:43 +13:00
let mut err = struct_span_err!(
infcx.tcx.sess, obligation.cause.span, E0279,
"the requirement `{}` is not satisfied (`{}`)",
predicate,
err);
2015-12-21 10:00:43 +13:00
note_obligation_cause(infcx, &mut err, obligation);
err.emit();
}
ty::Predicate::Projection(..) | ty::Predicate::TypeOutlives(..) => {
let predicate =
infcx.resolve_type_vars_if_possible(&obligation.predicate);
2015-12-21 10:00:43 +13:00
let mut err = struct_span_err!(
infcx.tcx.sess, obligation.cause.span, E0280,
"the requirement `{}` is not satisfied",
predicate);
2015-12-21 10:00:43 +13:00
note_obligation_cause(infcx, &mut err, obligation);
err.emit();
}
ty::Predicate::ObjectSafe(trait_def_id) => {
let violations = object_safety_violations(
infcx.tcx, trait_def_id);
2015-12-21 10:00:43 +13:00
let mut err = report_object_safety_error(infcx.tcx,
obligation.cause.span,
trait_def_id,
violations);
note_obligation_cause(infcx, &mut err, obligation);
err.emit();
}
ty::Predicate::WellFormed(ty) => {
// WF predicates cannot themselves make
// errors. They can only block due to
// ambiguity; otherwise, they always
// degenerate into other obligations
// (which may fail).
infcx.tcx.sess.span_bug(
obligation.cause.span,
&format!("WF predicate not satisfied for {:?}", ty));
}
2014-12-06 11:39:25 -05:00
}
}
}
2014-12-06 11:39:25 -05:00
OutputTypeParameterMismatch(ref expected_trait_ref, ref actual_trait_ref, ref e) => {
let expected_trait_ref = infcx.resolve_type_vars_if_possible(&*expected_trait_ref);
let actual_trait_ref = infcx.resolve_type_vars_if_possible(&*actual_trait_ref);
if !actual_trait_ref.self_ty().references_error() {
2015-12-21 10:00:43 +13:00
let mut err = struct_span_err!(
infcx.tcx.sess, obligation.cause.span, E0281,
"type mismatch: the type `{}` implements the trait `{}`, \
but the trait `{}` is required ({})",
expected_trait_ref.self_ty(),
expected_trait_ref,
actual_trait_ref,
e);
2015-12-21 10:00:43 +13:00
note_obligation_cause(infcx, &mut err, obligation);
err.emit();
2014-12-06 11:39:25 -05:00
}
}
TraitNotObjectSafe(did) => {
let violations = object_safety_violations(infcx.tcx, did);
2015-12-21 10:00:43 +13:00
let mut err = report_object_safety_error(infcx.tcx, obligation.cause.span, did,
violations);
note_obligation_cause(infcx, &mut err, obligation);
err.emit();
}
}
}
pub fn report_object_safety_error<'tcx>(tcx: &ty::ctxt<'tcx>,
span: Span,
2015-08-16 06:32:28 -04:00
trait_def_id: DefId,
violations: Vec<ObjectSafetyViolation>)
2015-12-21 10:00:43 +13:00
-> DiagnosticBuilder<'tcx>
{
2015-12-21 10:00:43 +13:00
let mut err = struct_span_err!(
tcx.sess, span, E0038,
"the trait `{}` cannot be made into an object",
tcx.item_path_str(trait_def_id));
let mut reported_violations = FnvHashSet();
for violation in violations {
if !reported_violations.insert(violation.clone()) {
continue;
}
match violation {
ObjectSafetyViolation::SizedSelf => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
span,
"the trait cannot require that `Self : Sized`");
}
ObjectSafetyViolation::SupertraitSelf => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
span,
"the trait cannot use `Self` as a type parameter \
in the supertrait listing");
}
ObjectSafetyViolation::Method(method,
MethodViolationCode::StaticMethod) => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
span,
&format!("method `{}` has no receiver",
method.name));
}
ObjectSafetyViolation::Method(method,
MethodViolationCode::ReferencesSelf) => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
span,
&format!("method `{}` references the `Self` type \
in its arguments or return type",
method.name));
}
ObjectSafetyViolation::Method(method,
MethodViolationCode::Generic) => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
span,
&format!("method `{}` has generic type parameters",
method.name));
}
}
2014-12-06 11:39:25 -05:00
}
2015-12-21 10:00:43 +13:00
err
2014-12-06 11:39:25 -05:00
}
pub fn maybe_report_ambiguity<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
obligation: &PredicateObligation<'tcx>) {
2014-12-06 11:39:25 -05:00
// Unable to successfully determine, probably means
// insufficient type information, but could mean
// ambiguous impls. The latter *ought* to be a
// coherence violation, so we don't report it here.
let predicate = infcx.resolve_type_vars_if_possible(&obligation.predicate);
2014-12-06 11:39:25 -05:00
2015-06-18 20:25:05 +03:00
debug!("maybe_report_ambiguity(predicate={:?}, obligation={:?})",
predicate,
obligation);
match predicate {
ty::Predicate::Trait(ref data) => {
let trait_ref = data.to_poly_trait_ref();
let self_ty = trait_ref.self_ty();
let all_types = &trait_ref.substs().types;
if all_types.references_error() {
} else {
// Typically, this ambiguity should only happen if
// there are unresolved type inference variables
// (otherwise it would suggest a coherence
// failure). But given #21974 that is not necessarily
// the case -- we can have multiple where clauses that
// are only distinguished by a region, which results
// in an ambiguity even when all types are fully
// known, since we don't dispatch based on region
// relationships.
// This is kind of a hack: it frequently happens that some earlier
// error prevents types from being fully inferred, and then we get
// a bunch of uninteresting errors saying something like "<generic
// #0> doesn't implement Sized". It may even be true that we
// could just skip over all checks where the self-ty is an
// inference variable, but I was afraid that there might be an
// inference variable created, registered as an obligation, and
// then never forced by writeback, and hence by skipping here we'd
// be ignoring the fact that we don't KNOW the type works
// out. Though even that would probably be harmless, given that
// we're only talking about builtin traits, which are known to be
// inhabited. But in any case I just threw in this check for
// has_errors() to be sure that compilation isn't happening
// anyway. In that case, why inundate the user.
if !infcx.tcx.sess.has_errors() {
if
infcx.tcx.lang_items.sized_trait()
.map_or(false, |sized_id| sized_id == trait_ref.def_id())
{
need_type_info(infcx, obligation.cause.span, self_ty);
} else {
2015-12-21 10:00:43 +13:00
let mut err = struct_span_err!(infcx.tcx.sess, obligation.cause.span, E0283,
"type annotations required: \
cannot resolve `{}`",
predicate);
note_obligation_cause(infcx, &mut err, obligation);
err.emit();
}
}
}
}
ty::Predicate::WellFormed(ty) => {
// Same hacky approach as above to avoid deluging user
// with error messages.
if !ty.references_error() && !infcx.tcx.sess.has_errors() {
need_type_info(infcx, obligation.cause.span, ty);
}
}
_ => {
if !infcx.tcx.sess.has_errors() {
2015-12-21 10:00:43 +13:00
let mut err = struct_span_err!(infcx.tcx.sess, obligation.cause.span, E0284,
"type annotations required: cannot resolve `{}`",
predicate);
note_obligation_cause(infcx, &mut err, obligation);
err.emit();
2014-12-06 11:39:25 -05:00
}
}
}
}
fn need_type_info<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
span: Span,
ty: Ty<'tcx>)
{
span_err!(infcx.tcx.sess, span, E0282,
"unable to infer enough type information about `{}`; \
type annotations or generic parameter binding required",
ty);
}
fn note_obligation_cause<'a, 'tcx, T>(infcx: &InferCtxt<'a, 'tcx>,
2015-12-21 10:00:43 +13:00
err: &mut DiagnosticBuilder,
obligation: &Obligation<'tcx, T>)
2015-06-18 20:25:05 +03:00
where T: fmt::Display
2014-12-06 11:39:25 -05:00
{
note_obligation_cause_code(infcx,
2015-12-21 10:00:43 +13:00
err,
&obligation.predicate,
2014-12-06 11:39:25 -05:00
obligation.cause.span,
&obligation.cause.code);
2014-12-06 11:39:25 -05:00
}
fn note_obligation_cause_code<'a, 'tcx, T>(infcx: &InferCtxt<'a, 'tcx>,
2015-12-21 10:00:43 +13:00
err: &mut DiagnosticBuilder,
predicate: &T,
cause_span: Span,
cause_code: &ObligationCauseCode<'tcx>)
2015-06-18 20:25:05 +03:00
where T: fmt::Display
2014-12-06 11:39:25 -05:00
{
let tcx = infcx.tcx;
match *cause_code {
ObligationCauseCode::MiscObligation => { }
ObligationCauseCode::SliceOrArrayElem => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
cause_span,
"slice and array elements must have `Sized` type");
}
ObligationCauseCode::ProjectionWf(data) => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
cause_span,
&format!("required so that the projection `{}` is well-formed",
data));
}
ObligationCauseCode::ReferenceOutlivesReferent(ref_ty) => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
cause_span,
&format!("required so that reference `{}` does not outlive its referent",
ref_ty));
}
2014-12-06 11:39:25 -05:00
ObligationCauseCode::ItemObligation(item_def_id) => {
let item_name = tcx.item_path_str(item_def_id);
2015-12-21 10:00:43 +13:00
err.fileline_note(
2014-12-06 11:39:25 -05:00
cause_span,
&format!("required by `{}`", item_name));
2014-12-06 11:39:25 -05:00
}
ObligationCauseCode::ObjectCastObligation(object_ty) => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
2014-12-06 11:39:25 -05:00
cause_span,
&format!(
"required for the cast to the object type `{}`",
infcx.ty_to_string(object_ty)));
2014-12-06 11:39:25 -05:00
}
ObligationCauseCode::RepeatVec => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
2014-12-06 11:39:25 -05:00
cause_span,
"the `Copy` trait is required because the \
repeated element will be copied");
}
ObligationCauseCode::VariableType(_) => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
2014-12-06 11:39:25 -05:00
cause_span,
"all local variables must have a statically known size");
}
ObligationCauseCode::ReturnType => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
2014-12-06 11:39:25 -05:00
cause_span,
"the return type of a function must have a \
statically known size");
}
ObligationCauseCode::AssignmentLhsSized => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
2014-12-06 11:39:25 -05:00
cause_span,
"the left-hand-side of an assignment must have a statically known size");
}
ObligationCauseCode::StructInitializerSized => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
2014-12-06 11:39:25 -05:00
cause_span,
"structs must have a statically known size to be initialized");
}
2015-09-13 22:42:21 +03:00
ObligationCauseCode::ClosureCapture(var_id, _, builtin_bound) => {
2014-12-06 11:39:25 -05:00
let def_id = tcx.lang_items.from_builtin_kind(builtin_bound).unwrap();
let trait_name = tcx.item_path_str(def_id);
let name = tcx.local_var_name_str(var_id);
2015-12-21 10:00:43 +13:00
err.fileline_note(
2015-09-13 22:42:21 +03:00
cause_span,
&format!("the closure that captures `{}` requires that all captured variables \
implement the trait `{}`",
name,
trait_name));
2014-12-06 11:39:25 -05:00
}
ObligationCauseCode::FieldSized => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
2015-09-13 22:42:21 +03:00
cause_span,
"only the last field of a struct or enum variant \
may have a dynamically sized type");
2014-12-06 11:39:25 -05:00
}
ObligationCauseCode::SharedStatic => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
2015-09-13 22:42:21 +03:00
cause_span,
"shared static variables must have a type that implements `Sync`");
2014-12-06 11:39:25 -05:00
}
ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
let parent_trait_ref = infcx.resolve_type_vars_if_possible(&data.parent_trait_ref);
2015-12-21 10:00:43 +13:00
err.fileline_note(
2015-09-13 22:42:21 +03:00
cause_span,
&format!("required because it appears within the type `{}`",
parent_trait_ref.0.self_ty()));
let parent_predicate = parent_trait_ref.to_predicate();
2015-12-21 10:00:43 +13:00
note_obligation_cause_code(infcx,
err,
&parent_predicate,
cause_span,
&*data.parent_code);
2014-12-06 11:39:25 -05:00
}
ObligationCauseCode::ImplDerivedObligation(ref data) => {
let parent_trait_ref = infcx.resolve_type_vars_if_possible(&data.parent_trait_ref);
2015-12-21 10:00:43 +13:00
err.fileline_note(
2015-09-13 22:42:21 +03:00
cause_span,
&format!("required because of the requirements on the impl of `{}` for `{}`",
parent_trait_ref,
parent_trait_ref.0.self_ty()));
let parent_predicate = parent_trait_ref.to_predicate();
2015-12-21 10:00:43 +13:00
note_obligation_cause_code(infcx,
err,
&parent_predicate,
cause_span,
&*data.parent_code);
2014-12-06 11:39:25 -05:00
}
ObligationCauseCode::CompareImplMethodObligation => {
2015-12-21 10:00:43 +13:00
err.fileline_note(
2015-09-13 22:42:21 +03:00
cause_span,
&format!("the requirement `{}` appears on the impl method \
but not on the corresponding trait method",
predicate));
}
2014-12-06 11:39:25 -05:00
}
}
2015-12-21 10:00:43 +13:00
fn suggest_new_overflow_limit(tcx: &ty::ctxt, err:&mut DiagnosticBuilder, span: Span) {
let current_limit = tcx.sess.recursion_limit.get();
let suggested_limit = current_limit * 2;
2015-12-21 10:00:43 +13:00
err.fileline_note(
span,
2015-01-07 11:58:31 -05:00
&format!(
"consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate",
suggested_limit));
}