rust/compiler/rustc_mir_transform/src/const_prop_lint.rs

1296 lines
55 KiB
Rust
Raw Normal View History

//! Propagates constants for early reporting of statically known
//! assertion failures
use std::cell::Cell;
use rustc_ast::Mutability;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::def::DefKind;
use rustc_hir::HirId;
use rustc_index::bit_set::BitSet;
use rustc_index::vec::IndexVec;
use rustc_middle::mir::visit::{
MutVisitor, MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor,
};
use rustc_middle::mir::{
AssertKind, BasicBlock, BinOp, Body, Constant, ConstantKind, Local, LocalDecl, LocalKind,
Location, Operand, Place, Rvalue, SourceInfo, SourceScope, SourceScopeData, Statement,
StatementKind, Terminator, TerminatorKind, UnOp, RETURN_PLACE,
};
use rustc_middle::ty::layout::{LayoutError, LayoutOf, LayoutOfHelpers, TyAndLayout};
use rustc_middle::ty::subst::{InternalSubsts, Subst};
use rustc_middle::ty::{
self, ConstInt, ConstKind, Instance, ParamEnv, ScalarInt, Ty, TyCtxt, TypeFoldable,
};
use rustc_session::lint;
use rustc_span::{def_id::DefId, Span};
use rustc_target::abi::{HasDataLayout, Size, TargetDataLayout};
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::traits;
use crate::MirPass;
use rustc_const_eval::const_eval::ConstEvalErr;
use rustc_const_eval::interpret::{
self, compile_time_machine, AllocId, ConstAllocation, ConstValue, CtfeValidationMode, Frame,
ImmTy, Immediate, InterpCx, InterpResult, LocalState, LocalValue, MemPlace, MemoryKind, OpTy,
Operand as InterpOperand, PlaceTy, Scalar, ScalarMaybeUninit, StackPopCleanup, StackPopUnwind,
};
/// The maximum number of bytes that we'll allocate space for a local or the return value.
/// Needed for #66397, because otherwise we eval into large places and that can cause OOM or just
/// Severely regress performance.
const MAX_ALLOC_LIMIT: u64 = 1024;
/// Macro for machine-specific `InterpError` without allocation.
/// (These will never be shown to the user, but they help diagnose ICEs.)
macro_rules! throw_machine_stop_str {
($($tt:tt)*) => {{
// We make a new local type for it. The type itself does not carry any information,
// but its vtable (for the `MachineStopType` trait) does.
struct Zst;
// Printing this type shows the desired string.
impl std::fmt::Display for Zst {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, $($tt)*)
}
}
impl rustc_middle::mir::interpret::MachineStopType for Zst {}
throw_machine_stop!(Zst)
}};
}
pub struct ConstProp;
impl<'tcx> MirPass<'tcx> for ConstProp {
fn is_enabled(&self, _sess: &rustc_session::Session) -> bool {
// FIXME(#70073): Unlike the other passes in "optimizations", this one emits errors, so it
// runs even when MIR optimizations are disabled. We should separate the lint out from the
// transform and move the lint as early in the pipeline as possible.
true
}
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
// will be evaluated by miri and produce its errors there
if body.source.promoted.is_some() {
return;
}
let def_id = body.source.def_id().expect_local();
let is_fn_like = tcx.hir().get_by_def_id(def_id).fn_kind().is_some();
let is_assoc_const = tcx.def_kind(def_id) == DefKind::AssocConst;
// Only run const prop on functions, methods, closures and associated constants
if !is_fn_like && !is_assoc_const {
// skip anon_const/statics/consts because they'll be evaluated by miri anyway
trace!("ConstProp skipped for {:?}", def_id);
return;
}
let is_generator = tcx.type_of(def_id.to_def_id()).is_generator();
// FIXME(welseywiser) const prop doesn't work on generators because of query cycles
// computing their layout.
if is_generator {
trace!("ConstProp skipped for generator {:?}", def_id);
return;
}
// Check if it's even possible to satisfy the 'where' clauses
// for this item.
// This branch will never be taken for any normal function.
// However, it's possible to `#!feature(trivial_bounds)]` to write
// a function with impossible to satisfy clauses, e.g.:
// `fn foo() where String: Copy {}`
//
// We don't usually need to worry about this kind of case,
// since we would get a compilation error if the user tried
// to call it. However, since we can do const propagation
// even without any calls to the function, we need to make
// sure that it even makes sense to try to evaluate the body.
// If there are unsatisfiable where clauses, then all bets are
// off, and we just give up.
//
// We manually filter the predicates, skipping anything that's not
// "global". We are in a potentially generic context
// (e.g. we are evaluating a function without substituting generic
// parameters, so this filtering serves two purposes:
//
// 1. We skip evaluating any predicates that we would
// never be able prove are unsatisfiable (e.g. `<T as Foo>`
// 2. We avoid trying to normalize predicates involving generic
// parameters (e.g. `<T as Foo>::MyItem`). This can confuse
// the normalization code (leading to cycle errors), since
// it's usually never invoked in this way.
let predicates = tcx
.predicates_of(def_id.to_def_id())
.predicates
.iter()
.filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None });
if traits::impossible_predicates(
tcx,
traits::elaborate_predicates(tcx, predicates).map(|o| o.predicate).collect(),
) {
trace!("ConstProp skipped for {:?}: found unsatisfiable predicates", def_id);
return;
}
trace!("ConstProp starting for {:?}", def_id);
let dummy_body = &Body::new(
body.source,
body.basic_blocks().clone(),
body.source_scopes.clone(),
body.local_decls.clone(),
Default::default(),
body.arg_count,
Default::default(),
body.span,
body.generator_kind(),
body.tainted_by_errors,
);
// FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold
// constants, instead of just checking for const-folding succeeding.
// That would require a uniform one-def no-mutation analysis
// and RPO (or recursing when needing the value of a local).
let mut optimization_finder = ConstPropagator::new(body, dummy_body, tcx);
optimization_finder.visit_body(body);
trace!("ConstProp done for {:?}", def_id);
}
}
struct ConstPropMachine<'mir, 'tcx> {
/// The virtual call stack.
stack: Vec<Frame<'mir, 'tcx>>,
/// `OnlyInsideOwnBlock` locals that were written in the current block get erased at the end.
written_only_inside_own_block_locals: FxHashSet<Local>,
/// Locals that need to be cleared after every block terminates.
only_propagate_inside_block_locals: BitSet<Local>,
can_const_prop: IndexVec<Local, ConstPropMode>,
}
impl ConstPropMachine<'_, '_> {
fn new(
only_propagate_inside_block_locals: BitSet<Local>,
can_const_prop: IndexVec<Local, ConstPropMode>,
) -> Self {
Self {
stack: Vec::new(),
written_only_inside_own_block_locals: Default::default(),
only_propagate_inside_block_locals,
can_const_prop,
}
}
}
impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for ConstPropMachine<'mir, 'tcx> {
compile_time_machine!(<'mir, 'tcx>);
const PANIC_ON_ALLOC_FAIL: bool = true; // all allocations are small (see `MAX_ALLOC_LIMIT`)
type MemoryKind = !;
type MemoryExtra = ();
fn load_mir(
_ecx: &InterpCx<'mir, 'tcx, Self>,
_instance: ty::InstanceDef<'tcx>,
) -> InterpResult<'tcx, &'tcx Body<'tcx>> {
throw_machine_stop_str!("calling functions isn't supported in ConstProp")
}
fn find_mir_or_eval_fn(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_instance: ty::Instance<'tcx>,
_abi: Abi,
_args: &[OpTy<'tcx>],
_ret: Option<(&PlaceTy<'tcx>, BasicBlock)>,
_unwind: StackPopUnwind,
) -> InterpResult<'tcx, Option<(&'mir Body<'tcx>, ty::Instance<'tcx>)>> {
Ok(None)
}
fn call_intrinsic(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_instance: ty::Instance<'tcx>,
_args: &[OpTy<'tcx>],
_ret: Option<(&PlaceTy<'tcx>, BasicBlock)>,
_unwind: StackPopUnwind,
) -> InterpResult<'tcx> {
throw_machine_stop_str!("calling intrinsics isn't supported in ConstProp")
}
fn assert_panic(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_msg: &rustc_middle::mir::AssertMessage<'tcx>,
_unwind: Option<rustc_middle::mir::BasicBlock>,
) -> InterpResult<'tcx> {
bug!("panics terminators are not evaluated in ConstProp")
}
fn binary_ptr_op(
_ecx: &InterpCx<'mir, 'tcx, Self>,
_bin_op: BinOp,
_left: &ImmTy<'tcx>,
_right: &ImmTy<'tcx>,
) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> {
// We can't do this because aliasing of memory can differ between const eval and llvm
throw_machine_stop_str!("pointer arithmetic or comparisons aren't supported in ConstProp")
}
fn access_local(
_ecx: &InterpCx<'mir, 'tcx, Self>,
frame: &Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>,
local: Local,
) -> InterpResult<'tcx, InterpOperand<Self::PointerTag>> {
let l = &frame.locals[local];
if l.value == LocalValue::Uninitialized {
throw_machine_stop_str!("tried to access an uninitialized local")
}
l.access()
}
fn access_local_mut<'a>(
ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
frame: usize,
local: Local,
) -> InterpResult<'tcx, Result<&'a mut LocalValue<Self::PointerTag>, MemPlace<Self::PointerTag>>>
{
if ecx.machine.can_const_prop[local] == ConstPropMode::NoPropagation {
throw_machine_stop_str!("tried to write to a local that is marked as not propagatable")
}
if frame == 0 && ecx.machine.only_propagate_inside_block_locals.contains(local) {
trace!(
"mutating local {:?} which is restricted to its block. \
Will remove it from const-prop after block is finished.",
local
);
ecx.machine.written_only_inside_own_block_locals.insert(local);
}
ecx.machine.stack[frame].locals[local].access_mut()
}
fn before_access_global(
_memory_extra: &(),
_alloc_id: AllocId,
alloc: ConstAllocation<'tcx, Self::PointerTag, Self::AllocExtra>,
_static_def_id: Option<DefId>,
is_write: bool,
) -> InterpResult<'tcx> {
if is_write {
throw_machine_stop_str!("can't write to global");
}
// If the static allocation is mutable, then we can't const prop it as its content
// might be different at runtime.
if alloc.inner().mutability == Mutability::Mut {
throw_machine_stop_str!("can't access mutable globals in ConstProp");
}
Ok(())
}
#[inline(always)]
fn init_frame_extra(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
frame: Frame<'mir, 'tcx>,
) -> InterpResult<'tcx, Frame<'mir, 'tcx>> {
Ok(frame)
}
#[inline(always)]
fn stack<'a>(
ecx: &'a InterpCx<'mir, 'tcx, Self>,
) -> &'a [Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>] {
&ecx.machine.stack
}
#[inline(always)]
fn stack_mut<'a>(
ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
) -> &'a mut Vec<Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>> {
&mut ecx.machine.stack
}
}
/// Finds optimization opportunities on the MIR.
struct ConstPropagator<'mir, 'tcx> {
ecx: InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>,
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
// FIXME(eddyb) avoid cloning these two fields more than once,
// by accessing them through `ecx` instead.
source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
local_decls: IndexVec<Local, LocalDecl<'tcx>>,
// Because we have `MutVisitor` we can't obtain the `SourceInfo` from a `Location`. So we store
// the last known `SourceInfo` here and just keep revisiting it.
source_info: Option<SourceInfo>,
}
impl<'tcx> LayoutOfHelpers<'tcx> for ConstPropagator<'_, 'tcx> {
type LayoutOfResult = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>;
#[inline]
fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> {
err
}
}
impl HasDataLayout for ConstPropagator<'_, '_> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}
impl<'tcx> ty::layout::HasTyCtxt<'tcx> for ConstPropagator<'_, 'tcx> {
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
}
impl<'tcx> ty::layout::HasParamEnv<'tcx> for ConstPropagator<'_, 'tcx> {
#[inline]
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.param_env
}
}
impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> {
fn new(
body: &Body<'tcx>,
dummy_body: &'mir Body<'tcx>,
tcx: TyCtxt<'tcx>,
) -> ConstPropagator<'mir, 'tcx> {
let def_id = body.source.def_id();
let substs = &InternalSubsts::identity_for_item(tcx, def_id);
let param_env = tcx.param_env_reveal_all_normalized(def_id);
let span = tcx.def_span(def_id);
// FIXME: `CanConstProp::check` computes the layout of all locals, return those layouts
// so we can write them to `ecx.frame_mut().locals.layout, reducing the duplication in
// `layout_of` query invocations.
let can_const_prop = CanConstProp::check(tcx, param_env, body);
let mut only_propagate_inside_block_locals = BitSet::new_empty(can_const_prop.len());
for (l, mode) in can_const_prop.iter_enumerated() {
if *mode == ConstPropMode::OnlyInsideOwnBlock {
only_propagate_inside_block_locals.insert(l);
}
}
let mut ecx = InterpCx::new(
tcx,
span,
param_env,
ConstPropMachine::new(only_propagate_inside_block_locals, can_const_prop),
(),
);
let ret = ecx
.layout_of(body.return_ty().subst(tcx, substs))
.ok()
// Don't bother allocating memory for ZST types which have no values
// or for large values.
.filter(|ret_layout| {
!ret_layout.is_zst() && ret_layout.size < Size::from_bytes(MAX_ALLOC_LIMIT)
})
.map(|ret_layout| {
ecx.allocate(ret_layout, MemoryKind::Stack)
.expect("couldn't perform small allocation")
.into()
});
ecx.push_stack_frame(
Instance::new(def_id, substs),
dummy_body,
ret.as_ref(),
StackPopCleanup::Root { cleanup: false },
)
.expect("failed to push initial stack frame");
ConstPropagator {
ecx,
tcx,
param_env,
// FIXME(eddyb) avoid cloning these two fields more than once,
// by accessing them through `ecx` instead.
source_scopes: body.source_scopes.clone(),
//FIXME(wesleywiser) we can't steal this because `Visitor::super_visit_body()` needs it
local_decls: body.local_decls.clone(),
source_info: None,
}
}
fn get_const(&self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
let op = match self.ecx.eval_place_to_op(place, None) {
Ok(op) => op,
Err(e) => {
trace!("get_const failed: {}", e);
return None;
}
};
// Try to read the local as an immediate so that if it is representable as a scalar, we can
// handle it as such, but otherwise, just return the value as is.
Some(match self.ecx.try_read_immediate(&op) {
Ok(Ok(imm)) => imm.into(),
_ => op,
})
}
/// Remove `local` from the pool of `Locals`. Allows writing to them,
/// but not reading from them anymore.
fn remove_const(ecx: &mut InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>, local: Local) {
ecx.frame_mut().locals[local] =
LocalState { value: LocalValue::Uninitialized, layout: Cell::new(None) };
}
fn lint_root(&self, source_info: SourceInfo) -> Option<HirId> {
source_info.scope.lint_root(&self.source_scopes)
}
fn use_ecx<F, T>(&mut self, f: F) -> Option<T>
where
F: FnOnce(&mut Self) -> InterpResult<'tcx, T>,
{
match f(self) {
Ok(val) => Some(val),
Err(error) => {
trace!("InterpCx operation failed: {:?}", error);
// Some errors shouldn't come up because creating them causes
// an allocation, which we should avoid. When that happens,
// dedicated error variants should be introduced instead.
assert!(
!error.kind().formatted_string(),
"const-prop encountered formatting error: {}",
error
);
None
}
}
}
/// Returns the value, if any, of evaluating `c`.
fn eval_constant(&mut self, c: &Constant<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
// FIXME we need to revisit this for #67176
if c.needs_subst() {
return None;
}
match self.ecx.mir_const_to_op(&c.literal, None) {
Ok(op) => Some(op),
Err(error) => {
let tcx = self.ecx.tcx.at(c.span);
let err = ConstEvalErr::new(&self.ecx, error, Some(c.span));
if let Some(lint_root) = self.lint_root(source_info) {
let lint_only = match c.literal {
ConstantKind::Ty(ct) => match ct.val() {
// Promoteds must lint and not error as the user didn't ask for them
ConstKind::Unevaluated(ty::Unevaluated {
def: _,
substs: _,
promoted: Some(_),
}) => true,
// Out of backwards compatibility we cannot report hard errors in unused
// generic functions using associated constants of the generic parameters.
_ => c.literal.needs_subst(),
},
ConstantKind::Val(_, ty) => ty.needs_subst(),
};
if lint_only {
// Out of backwards compatibility we cannot report hard errors in unused
// generic functions using associated constants of the generic parameters.
err.report_as_lint(tcx, "erroneous constant used", lint_root, Some(c.span));
} else {
err.report_as_error(tcx, "erroneous constant used");
}
} else {
err.report_as_error(tcx, "erroneous constant used");
}
None
}
}
}
/// Returns the value, if any, of evaluating `place`.
fn eval_place(&mut self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
trace!("eval_place(place={:?})", place);
self.use_ecx(|this| this.ecx.eval_place_to_op(place, None))
}
/// Returns the value, if any, of evaluating `op`. Calls upon `eval_constant`
/// or `eval_place`, depending on the variant of `Operand` used.
fn eval_operand(&mut self, op: &Operand<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
match *op {
Operand::Constant(ref c) => self.eval_constant(c, source_info),
Operand::Move(place) | Operand::Copy(place) => self.eval_place(place),
}
}
fn report_assert_as_lint(
&self,
lint: &'static lint::Lint,
source_info: SourceInfo,
message: &'static str,
panic: AssertKind<impl std::fmt::Debug>,
) {
if let Some(lint_root) = self.lint_root(source_info) {
self.tcx.struct_span_lint_hir(lint, lint_root, source_info.span, |lint| {
let mut err = lint.build(message);
err.span_label(source_info.span, format!("{:?}", panic));
err.emit();
});
}
}
fn check_unary_op(
&mut self,
op: UnOp,
arg: &Operand<'tcx>,
source_info: SourceInfo,
) -> Option<()> {
if let (val, true) = self.use_ecx(|this| {
let val = this.ecx.read_immediate(&this.ecx.eval_operand(arg, None)?)?;
let (_res, overflow, _ty) = this.ecx.overflowing_unary_op(op, &val)?;
Ok((val, overflow))
})? {
// `AssertKind` only has an `OverflowNeg` variant, so make sure that is
// appropriate to use.
assert_eq!(op, UnOp::Neg, "Neg is the only UnOp that can overflow");
self.report_assert_as_lint(
lint::builtin::ARITHMETIC_OVERFLOW,
source_info,
"this arithmetic operation will overflow",
AssertKind::OverflowNeg(val.to_const_int()),
);
return None;
}
Some(())
}
fn check_binary_op(
&mut self,
op: BinOp,
left: &Operand<'tcx>,
right: &Operand<'tcx>,
source_info: SourceInfo,
) -> Option<()> {
let r = self.use_ecx(|this| this.ecx.read_immediate(&this.ecx.eval_operand(right, None)?));
let l = self.use_ecx(|this| this.ecx.read_immediate(&this.ecx.eval_operand(left, None)?));
// Check for exceeding shifts *even if* we cannot evaluate the LHS.
if op == BinOp::Shr || op == BinOp::Shl {
let r = r?;
// We need the type of the LHS. We cannot use `place_layout` as that is the type
// of the result, which for checked binops is not the same!
let left_ty = left.ty(&self.local_decls, self.tcx);
let left_size = self.ecx.layout_of(left_ty).ok()?.size;
let right_size = r.layout.size;
let r_bits = r.to_scalar().ok();
let r_bits = r_bits.and_then(|r| r.to_bits(right_size).ok());
if r_bits.map_or(false, |b| b >= left_size.bits() as u128) {
debug!("check_binary_op: reporting assert for {:?}", source_info);
self.report_assert_as_lint(
lint::builtin::ARITHMETIC_OVERFLOW,
source_info,
"this arithmetic operation will overflow",
AssertKind::Overflow(
op,
match l {
Some(l) => l.to_const_int(),
// Invent a dummy value, the diagnostic ignores it anyway
None => ConstInt::new(
ScalarInt::try_from_uint(1_u8, left_size).unwrap(),
left_ty.is_signed(),
left_ty.is_ptr_sized_integral(),
),
},
r.to_const_int(),
),
);
return None;
}
}
if let (Some(l), Some(r)) = (&l, &r) {
// The remaining operators are handled through `overflowing_binary_op`.
if self.use_ecx(|this| {
let (_res, overflow, _ty) = this.ecx.overflowing_binary_op(op, l, r)?;
Ok(overflow)
})? {
self.report_assert_as_lint(
lint::builtin::ARITHMETIC_OVERFLOW,
source_info,
"this arithmetic operation will overflow",
AssertKind::Overflow(op, l.to_const_int(), r.to_const_int()),
);
return None;
}
}
Some(())
}
fn propagate_operand(&mut self, operand: &mut Operand<'tcx>) {
match *operand {
Operand::Copy(l) | Operand::Move(l) => {
if let Some(value) = self.get_const(l) && self.should_const_prop(&value) {
// FIXME(felix91gr): this code only handles `Scalar` cases.
// For now, we're not handling `ScalarPair` cases because
// doing so here would require a lot of code duplication.
// We should hopefully generalize `Operand` handling into a fn,
// and use it to do const-prop here and everywhere else
// where it makes sense.
if let interpret::Operand::Immediate(interpret::Immediate::Scalar(
ScalarMaybeUninit::Scalar(scalar),
)) = *value
{
*operand = self.operand_from_scalar(
scalar,
value.layout.ty,
self.source_info.unwrap().span,
);
}
}
}
Operand::Constant(_) => (),
}
}
fn const_prop(
&mut self,
rvalue: &Rvalue<'tcx>,
source_info: SourceInfo,
place: Place<'tcx>,
) -> Option<()> {
// Perform any special handling for specific Rvalue types.
// Generally, checks here fall into one of two categories:
// 1. Additional checking to provide useful lints to the user
// - In this case, we will do some validation and then fall through to the
// end of the function which evals the assignment.
// 2. Working around bugs in other parts of the compiler
// - In this case, we'll return `None` from this function to stop evaluation.
match rvalue {
// Additional checking: give lints to the user if an overflow would occur.
// We do this here and not in the `Assert` terminator as that terminator is
// only sometimes emitted (overflow checks can be disabled), but we want to always
// lint.
Rvalue::UnaryOp(op, arg) => {
trace!("checking UnaryOp(op = {:?}, arg = {:?})", op, arg);
self.check_unary_op(*op, arg, source_info)?;
}
Rvalue::BinaryOp(op, box (left, right)) => {
trace!("checking BinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right);
self.check_binary_op(*op, left, right, source_info)?;
}
Rvalue::CheckedBinaryOp(op, box (left, right)) => {
trace!(
"checking CheckedBinaryOp(op = {:?}, left = {:?}, right = {:?})",
op,
left,
right
);
self.check_binary_op(*op, left, right, source_info)?;
}
// Do not try creating references (#67862)
Rvalue::AddressOf(_, place) | Rvalue::Ref(_, _, place) => {
trace!("skipping AddressOf | Ref for {:?}", place);
// This may be creating mutable references or immutable references to cells.
// If that happens, the pointed to value could be mutated via that reference.
// Since we aren't tracking references, the const propagator loses track of what
// value the local has right now.
// Thus, all locals that have their reference taken
// must not take part in propagation.
Self::remove_const(&mut self.ecx, place.local);
return None;
}
Rvalue::ThreadLocalRef(def_id) => {
trace!("skipping ThreadLocalRef({:?})", def_id);
return None;
}
// There's no other checking to do at this time.
Rvalue::Aggregate(..)
| Rvalue::Use(..)
| Rvalue::Repeat(..)
| Rvalue::Len(..)
| Rvalue::Cast(..)
| Rvalue::ShallowInitBox(..)
| Rvalue::Discriminant(..)
| Rvalue::NullaryOp(..) => {}
}
// FIXME we need to revisit this for #67176
if rvalue.needs_subst() {
return None;
}
if self.tcx.sess.mir_opt_level() >= 4 {
self.eval_rvalue_with_identities(rvalue, place)
} else {
self.use_ecx(|this| this.ecx.eval_rvalue_into_place(rvalue, place))
}
}
// Attempt to use albegraic identities to eliminate constant expressions
fn eval_rvalue_with_identities(
&mut self,
rvalue: &Rvalue<'tcx>,
place: Place<'tcx>,
) -> Option<()> {
self.use_ecx(|this| match rvalue {
Rvalue::BinaryOp(op, box (left, right))
| Rvalue::CheckedBinaryOp(op, box (left, right)) => {
let l = this.ecx.eval_operand(left, None);
let r = this.ecx.eval_operand(right, None);
let const_arg = match (l, r) {
(Ok(ref x), Err(_)) | (Err(_), Ok(ref x)) => this.ecx.read_immediate(x)?,
(Err(e), Err(_)) => return Err(e),
(Ok(_), Ok(_)) => return this.ecx.eval_rvalue_into_place(rvalue, place),
};
let arg_value = const_arg.to_scalar()?.to_bits(const_arg.layout.size)?;
let dest = this.ecx.eval_place(place)?;
match op {
BinOp::BitAnd if arg_value == 0 => this.ecx.write_immediate(*const_arg, &dest),
BinOp::BitOr
if arg_value == const_arg.layout.size.truncate(u128::MAX)
|| (const_arg.layout.ty.is_bool() && arg_value == 1) =>
{
this.ecx.write_immediate(*const_arg, &dest)
}
BinOp::Mul if const_arg.layout.ty.is_integral() && arg_value == 0 => {
if let Rvalue::CheckedBinaryOp(_, _) = rvalue {
let val = Immediate::ScalarPair(
const_arg.to_scalar()?.into(),
Scalar::from_bool(false).into(),
);
this.ecx.write_immediate(val, &dest)
} else {
this.ecx.write_immediate(*const_arg, &dest)
}
}
_ => this.ecx.eval_rvalue_into_place(rvalue, place),
}
}
_ => this.ecx.eval_rvalue_into_place(rvalue, place),
})
}
/// Creates a new `Operand::Constant` from a `Scalar` value
fn operand_from_scalar(&self, scalar: Scalar, ty: Ty<'tcx>, span: Span) -> Operand<'tcx> {
Operand::Constant(Box::new(Constant {
span,
user_ty: None,
literal: ty::Const::from_scalar(self.tcx, scalar, ty).into(),
}))
}
fn replace_with_const(
&mut self,
rval: &mut Rvalue<'tcx>,
value: &OpTy<'tcx>,
source_info: SourceInfo,
) {
if let Rvalue::Use(Operand::Constant(c)) = rval {
match c.literal {
ConstantKind::Ty(c) if matches!(c.val(), ConstKind::Unevaluated(..)) => {}
_ => {
trace!("skipping replace of Rvalue::Use({:?} because it is already a const", c);
return;
}
}
}
trace!("attempting to replace {:?} with {:?}", rval, value);
if let Err(e) = self.ecx.const_validate_operand(
value,
vec![],
// FIXME: is ref tracking too expensive?
// FIXME: what is the point of ref tracking if we do not even check the tracked refs?
&mut interpret::RefTracking::empty(),
CtfeValidationMode::Regular,
) {
trace!("validation error, attempt failed: {:?}", e);
return;
}
// FIXME> figure out what to do when try_read_immediate fails
let imm = self.use_ecx(|this| this.ecx.try_read_immediate(value));
if let Some(Ok(imm)) = imm {
match *imm {
interpret::Immediate::Scalar(ScalarMaybeUninit::Scalar(scalar)) => {
*rval = Rvalue::Use(self.operand_from_scalar(
scalar,
value.layout.ty,
source_info.span,
));
}
Immediate::ScalarPair(
ScalarMaybeUninit::Scalar(_),
ScalarMaybeUninit::Scalar(_),
) => {
// Found a value represented as a pair. For now only do const-prop if the type
// of `rvalue` is also a tuple with two scalars.
// FIXME: enable the general case stated above ^.
let ty = value.layout.ty;
// Only do it for tuples
if let ty::Tuple(types) = ty.kind() {
// Only do it if tuple is also a pair with two scalars
if let [ty1, ty2] = types[..] {
let alloc = self.use_ecx(|this| {
let ty_is_scalar = |ty| {
this.ecx.layout_of(ty).ok().map(|layout| layout.abi.is_scalar())
== Some(true)
};
if ty_is_scalar(ty1) && ty_is_scalar(ty2) {
let alloc = this
.ecx
.intern_with_temp_alloc(value.layout, |ecx, dest| {
ecx.write_immediate(*imm, dest)
})
.unwrap();
Ok(Some(alloc))
} else {
Ok(None)
}
});
if let Some(Some(alloc)) = alloc {
// Assign entire constant in a single statement.
// We can't use aggregates, as we run after the aggregate-lowering `MirPhase`.
*rval = Rvalue::Use(Operand::Constant(Box::new(Constant {
span: source_info.span,
user_ty: None,
literal: self
.ecx
.tcx
.mk_const(ty::ConstS {
ty,
val: ty::ConstKind::Value(ConstValue::ByRef {
alloc,
offset: Size::ZERO,
}),
})
.into(),
})));
}
}
}
}
// Scalars or scalar pairs that contain undef values are assumed to not have
// successfully evaluated and are thus not propagated.
_ => {}
}
}
}
/// Returns `true` if and only if this `op` should be const-propagated into.
fn should_const_prop(&mut self, op: &OpTy<'tcx>) -> bool {
let mir_opt_level = self.tcx.sess.mir_opt_level();
if mir_opt_level == 0 {
return false;
}
if !self.tcx.consider_optimizing(|| format!("ConstantPropagation - OpTy: {:?}", op)) {
return false;
}
match **op {
interpret::Operand::Immediate(Immediate::Scalar(ScalarMaybeUninit::Scalar(s))) => {
s.try_to_int().is_ok()
}
interpret::Operand::Immediate(Immediate::ScalarPair(
ScalarMaybeUninit::Scalar(l),
ScalarMaybeUninit::Scalar(r),
)) => l.try_to_int().is_ok() && r.try_to_int().is_ok(),
_ => false,
}
}
}
/// The mode that `ConstProp` is allowed to run in for a given `Local`.
#[derive(Clone, Copy, Debug, PartialEq)]
enum ConstPropMode {
/// The `Local` can be propagated into and reads of this `Local` can also be propagated.
FullConstProp,
/// The `Local` can only be propagated into and from its own block.
OnlyInsideOwnBlock,
/// The `Local` can be propagated into but reads cannot be propagated.
OnlyPropagateInto,
/// The `Local` cannot be part of propagation at all. Any statement
/// referencing it either for reading or writing will not get propagated.
NoPropagation,
}
struct CanConstProp {
can_const_prop: IndexVec<Local, ConstPropMode>,
// False at the beginning. Once set, no more assignments are allowed to that local.
found_assignment: BitSet<Local>,
// Cache of locals' information
local_kinds: IndexVec<Local, LocalKind>,
}
impl CanConstProp {
/// Returns true if `local` can be propagated
fn check<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
body: &Body<'tcx>,
) -> IndexVec<Local, ConstPropMode> {
let mut cpv = CanConstProp {
can_const_prop: IndexVec::from_elem(ConstPropMode::FullConstProp, &body.local_decls),
found_assignment: BitSet::new_empty(body.local_decls.len()),
local_kinds: IndexVec::from_fn_n(
|local| body.local_kind(local),
body.local_decls.len(),
),
};
for (local, val) in cpv.can_const_prop.iter_enumerated_mut() {
let ty = body.local_decls[local].ty;
match tcx.layout_of(param_env.and(ty)) {
Ok(layout) if layout.size < Size::from_bytes(MAX_ALLOC_LIMIT) => {}
// Either the layout fails to compute, then we can't use this local anyway
// or the local is too large, then we don't want to.
_ => {
*val = ConstPropMode::NoPropagation;
continue;
}
}
// Cannot use args at all
// Cannot use locals because if x < y { y - x } else { x - y } would
// lint for x != y
// FIXME(oli-obk): lint variables until they are used in a condition
// FIXME(oli-obk): lint if return value is constant
if cpv.local_kinds[local] == LocalKind::Arg {
*val = ConstPropMode::OnlyPropagateInto;
trace!(
"local {:?} can't be const propagated because it's a function argument",
local
);
} else if cpv.local_kinds[local] == LocalKind::Var {
*val = ConstPropMode::OnlyInsideOwnBlock;
trace!(
"local {:?} will only be propagated inside its block, because it's a user variable",
local
);
}
}
cpv.visit_body(&body);
cpv.can_const_prop
}
}
impl Visitor<'_> for CanConstProp {
fn visit_local(&mut self, &local: &Local, context: PlaceContext, _: Location) {
use rustc_middle::mir::visit::PlaceContext::*;
match context {
// Projections are fine, because `&mut foo.x` will be caught by
// `MutatingUseContext::Borrow` elsewhere.
MutatingUse(MutatingUseContext::Projection)
// These are just stores, where the storing is not propagatable, but there may be later
// mutations of the same local via `Store`
| MutatingUse(MutatingUseContext::Call)
| MutatingUse(MutatingUseContext::AsmOutput)
// Actual store that can possibly even propagate a value
| MutatingUse(MutatingUseContext::Store) => {
if !self.found_assignment.insert(local) {
match &mut self.can_const_prop[local] {
// If the local can only get propagated in its own block, then we don't have
// to worry about multiple assignments, as we'll nuke the const state at the
// end of the block anyway, and inside the block we overwrite previous
// states as applicable.
ConstPropMode::OnlyInsideOwnBlock => {}
ConstPropMode::NoPropagation => {}
ConstPropMode::OnlyPropagateInto => {}
other @ ConstPropMode::FullConstProp => {
trace!(
"local {:?} can't be propagated because of multiple assignments. Previous state: {:?}",
local, other,
);
*other = ConstPropMode::OnlyInsideOwnBlock;
}
}
}
}
// Reading constants is allowed an arbitrary number of times
NonMutatingUse(NonMutatingUseContext::Copy)
| NonMutatingUse(NonMutatingUseContext::Move)
| NonMutatingUse(NonMutatingUseContext::Inspect)
| NonMutatingUse(NonMutatingUseContext::Projection)
| NonUse(_) => {}
// These could be propagated with a smarter analysis or just some careful thinking about
// whether they'd be fine right now.
MutatingUse(MutatingUseContext::Yield)
| MutatingUse(MutatingUseContext::Drop)
| MutatingUse(MutatingUseContext::Retag)
// These can't ever be propagated under any scheme, as we can't reason about indirect
// mutation.
| NonMutatingUse(NonMutatingUseContext::SharedBorrow)
| NonMutatingUse(NonMutatingUseContext::ShallowBorrow)
| NonMutatingUse(NonMutatingUseContext::UniqueBorrow)
| NonMutatingUse(NonMutatingUseContext::AddressOf)
| MutatingUse(MutatingUseContext::Borrow)
| MutatingUse(MutatingUseContext::AddressOf) => {
trace!("local {:?} can't be propagaged because it's used: {:?}", local, context);
self.can_const_prop[local] = ConstPropMode::NoPropagation;
}
}
}
}
impl<'tcx> MutVisitor<'tcx> for ConstPropagator<'_, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_body(&mut self, body: &mut Body<'tcx>) {
for (bb, data) in body.basic_blocks_mut().iter_enumerated_mut() {
self.visit_basic_block_data(bb, data);
}
}
fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
self.super_operand(operand, location);
// Only const prop copies and moves on `mir_opt_level=3` as doing so
// currently slightly increases compile time in some cases.
if self.tcx.sess.mir_opt_level() >= 3 {
self.propagate_operand(operand)
}
}
fn visit_constant(&mut self, constant: &mut Constant<'tcx>, location: Location) {
trace!("visit_constant: {:?}", constant);
self.super_constant(constant, location);
self.eval_constant(constant, self.source_info.unwrap());
}
fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
trace!("visit_statement: {:?}", statement);
let source_info = statement.source_info;
self.source_info = Some(source_info);
if let StatementKind::Assign(box (place, ref mut rval)) = statement.kind {
let can_const_prop = self.ecx.machine.can_const_prop[place.local];
if let Some(()) = self.const_prop(rval, source_info, place) {
// This will return None if the above `const_prop` invocation only "wrote" a
// type whose creation requires no write. E.g. a generator whose initial state
// consists solely of uninitialized memory (so it doesn't capture any locals).
if let Some(ref value) = self.get_const(place) && self.should_const_prop(value) {
trace!("replacing {:?} with {:?}", rval, value);
self.replace_with_const(rval, value, source_info);
if can_const_prop == ConstPropMode::FullConstProp
|| can_const_prop == ConstPropMode::OnlyInsideOwnBlock
{
trace!("propagated into {:?}", place);
}
}
match can_const_prop {
ConstPropMode::OnlyInsideOwnBlock => {
trace!(
"found local restricted to its block. \
Will remove it from const-prop after block is finished. Local: {:?}",
place.local
);
}
ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => {
trace!("can't propagate into {:?}", place);
if place.local != RETURN_PLACE {
Self::remove_const(&mut self.ecx, place.local);
}
}
ConstPropMode::FullConstProp => {}
}
} else {
// Const prop failed, so erase the destination, ensuring that whatever happens
// from here on, does not know about the previous value.
// This is important in case we have
// ```rust
// let mut x = 42;
// x = SOME_MUTABLE_STATIC;
// // x must now be uninit
// ```
// FIXME: we overzealously erase the entire local, because that's easier to
// implement.
trace!(
"propagation into {:?} failed.
Nuking the entire site from orbit, it's the only way to be sure",
place,
);
Self::remove_const(&mut self.ecx, place.local);
}
} else {
match statement.kind {
StatementKind::SetDiscriminant { ref place, .. } => {
match self.ecx.machine.can_const_prop[place.local] {
ConstPropMode::FullConstProp | ConstPropMode::OnlyInsideOwnBlock => {
if self.use_ecx(|this| this.ecx.statement(statement)).is_some() {
trace!("propped discriminant into {:?}", place);
} else {
Self::remove_const(&mut self.ecx, place.local);
}
}
ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => {
Self::remove_const(&mut self.ecx, place.local);
}
}
}
StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
let frame = self.ecx.frame_mut();
frame.locals[local].value =
if let StatementKind::StorageLive(_) = statement.kind {
LocalValue::Uninitialized
} else {
LocalValue::Dead
};
}
_ => {}
}
}
self.super_statement(statement, location);
}
fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
let source_info = terminator.source_info;
self.source_info = Some(source_info);
self.super_terminator(terminator, location);
match &mut terminator.kind {
TerminatorKind::Assert { expected, ref msg, ref mut cond, .. } => {
if let Some(ref value) = self.eval_operand(&cond, source_info) {
trace!("assertion on {:?} should be {:?}", value, expected);
let expected = ScalarMaybeUninit::from(Scalar::from_bool(*expected));
let value_const = self.ecx.read_scalar(&value).unwrap();
if expected != value_const {
enum DbgVal<T> {
Val(T),
Underscore,
}
impl<T: std::fmt::Debug> std::fmt::Debug for DbgVal<T> {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Val(val) => val.fmt(fmt),
Self::Underscore => fmt.write_str("_"),
}
}
}
let mut eval_to_int = |op| {
// This can be `None` if the lhs wasn't const propagated and we just
// triggered the assert on the value of the rhs.
self.eval_operand(op, source_info).map_or(DbgVal::Underscore, |op| {
DbgVal::Val(self.ecx.read_immediate(&op).unwrap().to_const_int())
})
};
let msg = match msg {
AssertKind::DivisionByZero(op) => {
Some(AssertKind::DivisionByZero(eval_to_int(op)))
}
AssertKind::RemainderByZero(op) => {
Some(AssertKind::RemainderByZero(eval_to_int(op)))
}
AssertKind::Overflow(bin_op @ (BinOp::Div | BinOp::Rem), op1, op2) => {
// Division overflow is *UB* in the MIR, and different than the
// other overflow checks.
Some(AssertKind::Overflow(
*bin_op,
eval_to_int(op1),
eval_to_int(op2),
))
}
AssertKind::BoundsCheck { ref len, ref index } => {
let len = eval_to_int(len);
let index = eval_to_int(index);
Some(AssertKind::BoundsCheck { len, index })
}
// Remaining overflow errors are already covered by checks on the binary operators.
AssertKind::Overflow(..) | AssertKind::OverflowNeg(_) => None,
// Need proper const propagator for these.
_ => None,
};
// Poison all places this operand references so that further code
// doesn't use the invalid value
match cond {
Operand::Move(ref place) | Operand::Copy(ref place) => {
Self::remove_const(&mut self.ecx, place.local);
}
Operand::Constant(_) => {}
}
if let Some(msg) = msg {
self.report_assert_as_lint(
lint::builtin::UNCONDITIONAL_PANIC,
source_info,
"this operation will panic at runtime",
msg,
);
}
} else {
if self.should_const_prop(value) {
if let ScalarMaybeUninit::Scalar(scalar) = value_const {
*cond = self.operand_from_scalar(
scalar,
self.tcx.types.bool,
source_info.span,
);
}
}
}
}
}
TerminatorKind::SwitchInt { ref mut discr, .. } => {
// FIXME: This is currently redundant with `visit_operand`, but sadly
// always visiting operands currently causes a perf regression in LLVM codegen, so
// `visit_operand` currently only runs for propagates places for `mir_opt_level=4`.
self.propagate_operand(discr)
}
// None of these have Operands to const-propagate.
TerminatorKind::Goto { .. }
| TerminatorKind::Resume
| TerminatorKind::Abort
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::Drop { .. }
| TerminatorKind::DropAndReplace { .. }
| TerminatorKind::Yield { .. }
| TerminatorKind::GeneratorDrop
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. }
| TerminatorKind::InlineAsm { .. } => {}
// Every argument in our function calls have already been propagated in `visit_operand`.
//
// NOTE: because LLVM codegen gives slight performance regressions with it, so this is
// gated on `mir_opt_level=3`.
TerminatorKind::Call { .. } => {}
}
// We remove all Locals which are restricted in propagation to their containing blocks and
// which were modified in the current block.
// Take it out of the ecx so we can get a mutable reference to the ecx for `remove_const`.
let mut locals = std::mem::take(&mut self.ecx.machine.written_only_inside_own_block_locals);
for &local in locals.iter() {
Self::remove_const(&mut self.ecx, local);
}
locals.clear();
// Put it back so we reuse the heap of the storage
self.ecx.machine.written_only_inside_own_block_locals = locals;
if cfg!(debug_assertions) {
// Ensure we are correctly erasing locals with the non-debug-assert logic.
for local in self.ecx.machine.only_propagate_inside_block_locals.iter() {
assert!(
self.get_const(local.into()).is_none()
|| self
.layout_of(self.local_decls[local].ty)
.map_or(true, |layout| layout.is_zst())
)
}
}
}
}