rust/src/librustc/back/lto.rs

102 lines
3.8 KiB
Rust
Raw Normal View History

Implement LTO This commit implements LTO for rust leveraging LLVM's passes. What this means is: * When compiling an rlib, in addition to insdering foo.o into the archive, also insert foo.bc (the LLVM bytecode) of the optimized module. * When the compiler detects the -Z lto option, it will attempt to perform LTO on a staticlib or binary output. The compiler will emit an error if a dylib or rlib output is being generated. * The actual act of performing LTO is as follows: 1. Force all upstream libraries to have an rlib version available. 2. Load the bytecode of each upstream library from the rlib. 3. Link all this bytecode into the current LLVM module (just using llvm apis) 4. Run an internalization pass which internalizes all symbols except those found reachable for the local crate of compilation. 5. Run the LLVM LTO pass manager over this entire module 6a. If assembling an archive, then add all upstream rlibs into the output archive. This ignores all of the object/bitcode/metadata files rust generated and placed inside the rlibs. 6b. If linking a binary, create copies of all upstream rlibs, remove the rust-generated object-file, and then link everything as usual. As I have explained in #10741, this process is excruciatingly slow, so this is *not* turned on by default, and it is also why I have decided to hide it behind a -Z flag for now. The good news is that the binary sizes are about as small as they can be as a result of LTO, so it's definitely working. Closes #10741 Closes #10740
2013-12-03 01:19:29 -06:00
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::archive::Archive;
use back::link;
use driver::session;
use lib::llvm::{ModuleRef, TargetMachineRef, llvm, True, False};
use metadata::cstore;
use util::common::time;
use std::libc;
pub fn run(sess: session::Session, llmod: ModuleRef,
tm: TargetMachineRef, reachable: &[~str]) {
// Make sure we actually can run LTO
for output in sess.outputs.iter() {
match *output {
session::OutputExecutable | session::OutputStaticlib => {}
_ => {
sess.fatal("lto can only be run for executables and \
static library outputs");
}
}
}
// For each of our upstream dependencies, find the corresponding rlib and
// load the bitcode from the archive. Then merge it into the current LLVM
// module that we've got.
let crates = cstore::get_used_crates(sess.cstore, cstore::RequireStatic);
for (cnum, path) in crates.move_iter() {
let name = cstore::get_crate_data(sess.cstore, cnum).name;
let path = match path {
Some(p) => p,
None => {
sess.fatal(format!("could not find rlib for: `{}`", name));
}
};
let archive = Archive::open(sess, path);
debug!("reading {}", name);
let bc = time(sess.time_passes(), format!("read {}.bc", name), (), |_|
archive.read(format!("{}.bc", name)));
let ptr = bc.as_ptr();
Implement LTO This commit implements LTO for rust leveraging LLVM's passes. What this means is: * When compiling an rlib, in addition to insdering foo.o into the archive, also insert foo.bc (the LLVM bytecode) of the optimized module. * When the compiler detects the -Z lto option, it will attempt to perform LTO on a staticlib or binary output. The compiler will emit an error if a dylib or rlib output is being generated. * The actual act of performing LTO is as follows: 1. Force all upstream libraries to have an rlib version available. 2. Load the bytecode of each upstream library from the rlib. 3. Link all this bytecode into the current LLVM module (just using llvm apis) 4. Run an internalization pass which internalizes all symbols except those found reachable for the local crate of compilation. 5. Run the LLVM LTO pass manager over this entire module 6a. If assembling an archive, then add all upstream rlibs into the output archive. This ignores all of the object/bitcode/metadata files rust generated and placed inside the rlibs. 6b. If linking a binary, create copies of all upstream rlibs, remove the rust-generated object-file, and then link everything as usual. As I have explained in #10741, this process is excruciatingly slow, so this is *not* turned on by default, and it is also why I have decided to hide it behind a -Z flag for now. The good news is that the binary sizes are about as small as they can be as a result of LTO, so it's definitely working. Closes #10741 Closes #10740
2013-12-03 01:19:29 -06:00
debug!("linking {}", name);
time(sess.time_passes(), format!("ll link {}", name), (), |()| unsafe {
if !llvm::LLVMRustLinkInExternalBitcode(llmod,
ptr as *libc::c_char,
bc.len() as libc::size_t) {
link::llvm_err(sess, format!("failed to load bc of `{}`", name));
}
});
}
// Internalize everything but the reachable symbols of the current module
let cstrs = reachable.map(|s| s.to_c_str());
let arr = cstrs.map(|c| c.with_ref(|p| p));
let ptr = arr.as_ptr();
Implement LTO This commit implements LTO for rust leveraging LLVM's passes. What this means is: * When compiling an rlib, in addition to insdering foo.o into the archive, also insert foo.bc (the LLVM bytecode) of the optimized module. * When the compiler detects the -Z lto option, it will attempt to perform LTO on a staticlib or binary output. The compiler will emit an error if a dylib or rlib output is being generated. * The actual act of performing LTO is as follows: 1. Force all upstream libraries to have an rlib version available. 2. Load the bytecode of each upstream library from the rlib. 3. Link all this bytecode into the current LLVM module (just using llvm apis) 4. Run an internalization pass which internalizes all symbols except those found reachable for the local crate of compilation. 5. Run the LLVM LTO pass manager over this entire module 6a. If assembling an archive, then add all upstream rlibs into the output archive. This ignores all of the object/bitcode/metadata files rust generated and placed inside the rlibs. 6b. If linking a binary, create copies of all upstream rlibs, remove the rust-generated object-file, and then link everything as usual. As I have explained in #10741, this process is excruciatingly slow, so this is *not* turned on by default, and it is also why I have decided to hide it behind a -Z flag for now. The good news is that the binary sizes are about as small as they can be as a result of LTO, so it's definitely working. Closes #10741 Closes #10740
2013-12-03 01:19:29 -06:00
unsafe {
llvm::LLVMRustRunRestrictionPass(llmod, ptr as **libc::c_char,
arr.len() as libc::size_t);
}
if sess.no_landing_pads() {
unsafe {
llvm::LLVMRustMarkAllFunctionsNounwind(llmod);
}
}
Implement LTO This commit implements LTO for rust leveraging LLVM's passes. What this means is: * When compiling an rlib, in addition to insdering foo.o into the archive, also insert foo.bc (the LLVM bytecode) of the optimized module. * When the compiler detects the -Z lto option, it will attempt to perform LTO on a staticlib or binary output. The compiler will emit an error if a dylib or rlib output is being generated. * The actual act of performing LTO is as follows: 1. Force all upstream libraries to have an rlib version available. 2. Load the bytecode of each upstream library from the rlib. 3. Link all this bytecode into the current LLVM module (just using llvm apis) 4. Run an internalization pass which internalizes all symbols except those found reachable for the local crate of compilation. 5. Run the LLVM LTO pass manager over this entire module 6a. If assembling an archive, then add all upstream rlibs into the output archive. This ignores all of the object/bitcode/metadata files rust generated and placed inside the rlibs. 6b. If linking a binary, create copies of all upstream rlibs, remove the rust-generated object-file, and then link everything as usual. As I have explained in #10741, this process is excruciatingly slow, so this is *not* turned on by default, and it is also why I have decided to hide it behind a -Z flag for now. The good news is that the binary sizes are about as small as they can be as a result of LTO, so it's definitely working. Closes #10741 Closes #10740
2013-12-03 01:19:29 -06:00
// Now we have one massive module inside of llmod. Time to run the
// LTO-specific optimization passes that LLVM provides.
//
// This code is based off the code found in llvm's LTO code generator:
// tools/lto/LTOCodeGenerator.cpp
debug!("running the pass manager");
unsafe {
let pm = llvm::LLVMCreatePassManager();
llvm::LLVMRustAddAnalysisPasses(tm, pm, llmod);
"verify".with_c_str(|s| llvm::LLVMRustAddPass(pm, s));
let builder = llvm::LLVMPassManagerBuilderCreate();
llvm::LLVMPassManagerBuilderPopulateLTOPassManager(builder, pm,
/* Internalize = */ False,
/* RunInliner = */ True);
llvm::LLVMPassManagerBuilderDispose(builder);
"verify".with_c_str(|s| llvm::LLVMRustAddPass(pm, s));
time(sess.time_passes(), "LTO pases", (), |()|
llvm::LLVMRunPassManager(pm, llmod));
llvm::LLVMDisposePassManager(pm);
}
debug!("lto done");
}