rust/src/librustc_trans/trans/mir/block.rs

333 lines
15 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm::{BasicBlockRef, ValueRef};
2016-01-12 07:20:18 -06:00
use rustc::middle::ty;
use rustc::mir::repr as mir;
2016-01-12 07:20:18 -06:00
use syntax::abi::Abi;
use trans::adt;
2016-01-12 07:20:18 -06:00
use trans::attributes;
use trans::base;
use trans::build;
use trans::common::{self, Block, BlockAndBuilder};
use trans::debuginfo::DebugLoc;
use trans::Disr;
2016-01-12 07:20:18 -06:00
use trans::foreign;
use trans::glue;
use trans::type_of;
use trans::type_::Type;
use super::MirContext;
use super::operand::OperandValue::{FatPtr, Immediate, Ref};
impl<'bcx, 'tcx> MirContext<'bcx, 'tcx> {
pub fn trans_block(&mut self, bb: mir::BasicBlock) {
debug!("trans_block({:?})", bb);
let mut bcx = self.bcx(bb);
let data = self.mir.basic_block_data(bb);
for statement in &data.statements {
bcx = self.trans_statement(bcx, statement);
}
debug!("trans_block: terminator: {:?}", data.terminator());
match *data.terminator() {
mir::Terminator::Goto { target } => {
bcx.br(self.llblock(target));
}
mir::Terminator::If { ref cond, targets: (true_bb, false_bb) } => {
let cond = self.trans_operand(&bcx, cond);
let lltrue = self.llblock(true_bb);
let llfalse = self.llblock(false_bb);
bcx.cond_br(cond.immediate(), lltrue, llfalse);
}
mir::Terminator::Switch { ref discr, ref adt_def, ref targets } => {
let discr_lvalue = self.trans_lvalue(&bcx, discr);
let ty = discr_lvalue.ty.to_ty(bcx.tcx());
let repr = adt::represent_type(bcx.ccx(), ty);
let discr = bcx.with_block(|bcx|
adt::trans_get_discr(bcx, &repr, discr_lvalue.llval, None, true)
);
// The else branch of the Switch can't be hit, so branch to an unreachable
// instruction so LLVM knows that
let unreachable_blk = self.unreachable_block();
let switch = bcx.switch(discr, unreachable_blk.llbb, targets.len());
assert_eq!(adt_def.variants.len(), targets.len());
for (adt_variant, target) in adt_def.variants.iter().zip(targets) {
let llval = bcx.with_block(|bcx|
adt::trans_case(bcx, &*repr, Disr::from(adt_variant.disr_val))
);
let llbb = self.llblock(*target);
build::AddCase(switch, llval, llbb)
}
}
2015-11-08 12:11:11 -06:00
mir::Terminator::SwitchInt { ref discr, switch_ty, ref values, ref targets } => {
let (otherwise, targets) = targets.split_last().unwrap();
let discr = bcx.load(self.trans_lvalue(&bcx, discr).llval);
let switch = bcx.switch(discr, self.llblock(*otherwise), values.len());
2015-11-08 12:11:11 -06:00
for (value, target) in values.iter().zip(targets) {
let llval = self.trans_constval(&bcx, value, switch_ty).immediate();
2015-11-08 12:11:11 -06:00
let llbb = self.llblock(*target);
build::AddCase(switch, llval, llbb)
}
}
mir::Terminator::Resume => {
let ps = self.get_personality_slot(&bcx);
let lp = bcx.load(ps);
bcx.with_block(|bcx| {
base::call_lifetime_end(bcx, ps);
base::trans_unwind_resume(bcx, lp);
});
}
mir::Terminator::Return => {
let return_ty = bcx.monomorphize(&self.mir.return_ty);
bcx.with_block(|bcx| {
base::build_return_block(bcx.fcx, bcx, return_ty, DebugLoc::None);
})
}
mir::Terminator::Drop { ref value, target, unwind } => {
let lvalue = self.trans_lvalue(&bcx, value);
let ty = lvalue.ty.to_ty(bcx.tcx());
// Double check for necessity to drop
if !glue::type_needs_drop(bcx.tcx(), ty) {
bcx.br(self.llblock(target));
return;
}
let drop_fn = glue::get_drop_glue(bcx.ccx(), ty);
let drop_ty = glue::get_drop_glue_type(bcx.ccx(), ty);
let llvalue = if drop_ty != ty {
bcx.pointercast(lvalue.llval, type_of::type_of(bcx.ccx(), drop_ty).ptr_to())
} else {
lvalue.llval
};
if let Some(unwind) = unwind {
let uwbcx = self.bcx(unwind);
let unwind = self.make_landing_pad(uwbcx);
bcx.invoke(drop_fn,
&[llvalue],
self.llblock(target),
unwind.llbb(),
None,
None);
} else {
bcx.call(drop_fn, &[llvalue], None, None);
bcx.br(self.llblock(target));
}
}
mir::Terminator::Call { ref func, ref args, ref destination, ref cleanup } => {
// Create the callee. This will always be a fn ptr and hence a kind of scalar.
let callee = self.trans_operand(&bcx, func);
let attrs = attributes::from_fn_type(bcx.ccx(), callee.ty);
let debugloc = DebugLoc::None;
// The arguments we'll be passing. Plus one to account for outptr, if used.
let mut llargs = Vec::with_capacity(args.len() + 1);
2016-01-12 07:20:18 -06:00
// Types of the arguments. We do not preallocate, because this vector is only
// filled when `is_foreign` is `true` and foreign calls are minority of the cases.
let mut arg_tys = Vec::new();
// Foreign-ABI functions are translated differently
let is_foreign = if let ty::TyBareFn(_, ref f) = callee.ty.sty {
// We do not translate intrinsics here (they shouldnt be functions)
assert!(f.abi != Abi::RustIntrinsic && f.abi != Abi::PlatformIntrinsic);
f.abi != Abi::Rust && f.abi != Abi::RustCall
} else {
false
};
// Prepare the return value destination
let (ret_dest_ty, must_copy_dest) = if let Some((ref d, _)) = *destination {
let dest = self.trans_lvalue(&bcx, d);
let ret_ty = dest.ty.to_ty(bcx.tcx());
2016-01-12 07:20:18 -06:00
if !is_foreign && type_of::return_uses_outptr(bcx.ccx(), ret_ty) {
llargs.push(dest.llval);
(Some((dest, ret_ty)), false)
} else {
(Some((dest, ret_ty)), !common::type_is_zero_size(bcx.ccx(), ret_ty))
}
} else {
(None, false)
};
// Process the rest of the args.
for arg in args {
let operand = self.trans_operand(&bcx, arg);
2016-01-12 07:20:18 -06:00
match operand.val {
Ref(llval) | Immediate(llval) => llargs.push(llval),
FatPtr(b, e) => {
llargs.push(b);
llargs.push(e);
}
}
2016-01-12 07:20:18 -06:00
if is_foreign {
arg_tys.push(operand.ty);
}
}
// Many different ways to call a function handled here
match (is_foreign, cleanup, destination) {
// The two cases below are the only ones to use LLVMs `invoke`.
(false, &Some(cleanup), &None) => {
let cleanup = self.bcx(cleanup);
let landingpad = self.make_landing_pad(cleanup);
2016-01-12 07:20:18 -06:00
let unreachable_blk = self.unreachable_block();
bcx.invoke(callee.immediate(),
&llargs[..],
unreachable_blk.llbb,
landingpad.llbb(),
None,
Some(attrs));
},
(false, &Some(cleanup), &Some((_, success))) => {
let cleanup = self.bcx(cleanup);
let landingpad = self.make_landing_pad(cleanup);
let (target, postinvoke) = if must_copy_dest {
(bcx.fcx().new_block("", None).build(), Some(self.bcx(success)))
} else {
(self.bcx(success), None)
};
let invokeret = bcx.invoke(callee.immediate(),
&llargs[..],
target.llbb(),
landingpad.llbb(),
None,
Some(attrs));
if let Some(postinvoketarget) = postinvoke {
// We translate the copy into a temporary block. The temporary block is
// necessary because the current block has already been terminated (by
// `invoke`) and we cannot really translate into the target block
// because:
// * The target block may have more than a single precedesor;
// * Some LLVM insns cannot have a preceeding store insn (phi,
// cleanuppad), and adding/prepending the store now may render
// those other instructions invalid.
//
// NB: This approach still may break some LLVM code. For example if the
// target block starts with a `phi` (which may only match on immediate
// precedesors), it cannot know about this temporary block thus
// resulting in an invalid code:
//
// this:
// …
// %0 = …
// %1 = invoke to label %temp …
// temp:
// store ty %1, ty* %dest
// br label %actualtargetblock
// actualtargetblock: ; preds: %temp, …
// phi … [%this, …], [%0, …] ; ERROR: phi requires to match only on
// ; immediate precedesors
let (ret_dest, ret_ty) = ret_dest_ty
.expect("return destination and type not set");
target.with_block(|target| {
base::store_ty(target, invokeret, ret_dest.llval, ret_ty);
});
target.br(postinvoketarget.llbb());
}
},
(false, _, &None) => {
bcx.call(callee.immediate(), &llargs[..], None, Some(attrs));
bcx.unreachable();
}
(false, _, &Some((_, target))) => {
let llret = bcx.call(callee.immediate(),
&llargs[..],
None,
Some(attrs));
if must_copy_dest {
let (ret_dest, ret_ty) = ret_dest_ty
.expect("return destination and type not set");
bcx.with_block(|bcx| {
base::store_ty(bcx, llret, ret_dest.llval, ret_ty);
});
}
bcx.br(self.llblock(target));
}
2016-01-12 07:20:18 -06:00
// Foreign functions
(true, _, destination) => {
2016-01-12 07:20:18 -06:00
let (dest, _) = ret_dest_ty
.expect("return destination is not set");
bcx = bcx.map_block(|bcx| {
foreign::trans_native_call(bcx,
callee.ty,
callee.immediate(),
dest.llval,
&llargs[..],
arg_tys,
debugloc)
});
if let Some((_, target)) = *destination {
bcx.br(self.llblock(target));
}
2016-01-12 07:20:18 -06:00
},
}
}
}
}
fn get_personality_slot(&mut self, bcx: &BlockAndBuilder<'bcx, 'tcx>) -> ValueRef {
let ccx = bcx.ccx();
if let Some(slot) = self.llpersonalityslot {
slot
} else {
let llretty = Type::struct_(ccx, &[Type::i8p(ccx), Type::i32(ccx)], false);
bcx.with_block(|bcx| {
let slot = base::alloca(bcx, llretty, "personalityslot");
self.llpersonalityslot = Some(slot);
base::call_lifetime_start(bcx, slot);
slot
})
}
}
fn make_landing_pad(&mut self,
cleanup: BlockAndBuilder<'bcx, 'tcx>)
-> BlockAndBuilder<'bcx, 'tcx>
{
// FIXME(#30941) this doesn't handle msvc-style exceptions
let bcx = self.fcx.new_block("cleanup", None).build();
let ccx = bcx.ccx();
let llpersonality = self.fcx.eh_personality();
let llretty = Type::struct_(ccx, &[Type::i8p(ccx), Type::i32(ccx)], false);
let llretval = bcx.landing_pad(llretty, llpersonality, 1, self.fcx.llfn);
bcx.set_cleanup(llretval);
let slot = self.get_personality_slot(&bcx);
bcx.store(llretval, slot);
bcx.br(cleanup.llbb());
bcx
}
fn unreachable_block(&mut self) -> Block<'bcx, 'tcx> {
self.unreachable_block.unwrap_or_else(|| {
let bl = self.fcx.new_block("unreachable", None);
bl.build().unreachable();
self.unreachable_block = Some(bl);
bl
})
}
fn bcx(&self, bb: mir::BasicBlock) -> BlockAndBuilder<'bcx, 'tcx> {
self.blocks[bb.index()].build()
}
fn llblock(&self, bb: mir::BasicBlock) -> BasicBlockRef {
self.blocks[bb.index()].llbb
}
}