rust/src/libsyntax/tokenstream.rs

1299 lines
49 KiB
Rust
Raw Normal View History

// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! # Token Streams
//!
//! TokenStreams represent syntactic objects before they are converted into ASTs.
//! A `TokenStream` is, roughly speaking, a sequence (eg stream) of `TokenTree`s,
//! which are themselves either a single Token, a Delimited subsequence of tokens,
//! or a SequenceRepetition specifier (for the purpose of sequence generation during macro
//! expansion).
//!
//! A TokenStream also has a slice view, `TokenSlice`, that is analogous to `str` for
//! `String`: it allows the programmer to divvy up, explore, and otherwise partition a
//! TokenStream as borrowed subsequences.
use ast::{self, AttrStyle, LitKind};
use syntax_pos::{Span, DUMMY_SP, NO_EXPANSION};
use codemap::Spanned;
use ext::base;
use ext::tt::macro_parser;
use parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration};
use parse::lexer;
use parse;
use parse::token::{self, Token, Lit, InternedString, Nonterminal};
use parse::token::Lit as TokLit;
use std::fmt;
use std::mem;
use std::ops::Index;
use std::ops;
use std::iter::*;
use std::rc::Rc;
/// A delimited sequence of token trees
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Delimited {
/// The type of delimiter
pub delim: token::DelimToken,
/// The span covering the opening delimiter
pub open_span: Span,
/// The delimited sequence of token trees
pub tts: Vec<TokenTree>,
/// The span covering the closing delimiter
pub close_span: Span,
}
impl Delimited {
/// Returns the opening delimiter as a token.
pub fn open_token(&self) -> token::Token {
token::OpenDelim(self.delim)
}
/// Returns the closing delimiter as a token.
pub fn close_token(&self) -> token::Token {
token::CloseDelim(self.delim)
}
/// Returns the opening delimiter as a token tree.
pub fn open_tt(&self) -> TokenTree {
TokenTree::Token(self.open_span, self.open_token())
}
/// Returns the closing delimiter as a token tree.
pub fn close_tt(&self) -> TokenTree {
TokenTree::Token(self.close_span, self.close_token())
}
/// Returns the token trees inside the delimiters.
pub fn subtrees(&self) -> &[TokenTree] {
&self.tts
}
}
/// A sequence of token trees
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct SequenceRepetition {
/// The sequence of token trees
pub tts: Vec<TokenTree>,
/// The optional separator
pub separator: Option<token::Token>,
/// Whether the sequence can be repeated zero (*), or one or more times (+)
pub op: KleeneOp,
/// The number of `MatchNt`s that appear in the sequence (and subsequences)
pub num_captures: usize,
}
/// A Kleene-style [repetition operator](http://en.wikipedia.org/wiki/Kleene_star)
/// for token sequences.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum KleeneOp {
ZeroOrMore,
OneOrMore,
}
/// When the main rust parser encounters a syntax-extension invocation, it
/// parses the arguments to the invocation as a token-tree. This is a very
/// loose structure, such that all sorts of different AST-fragments can
/// be passed to syntax extensions using a uniform type.
///
/// If the syntax extension is an MBE macro, it will attempt to match its
/// LHS token tree against the provided token tree, and if it finds a
/// match, will transcribe the RHS token tree, splicing in any captured
/// macro_parser::matched_nonterminals into the `SubstNt`s it finds.
///
/// The RHS of an MBE macro is the only place `SubstNt`s are substituted.
/// Nothing special happens to misnamed or misplaced `SubstNt`s.
#[derive(Debug, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub enum TokenTree {
/// A single token
Token(Span, token::Token),
/// A delimited sequence of token trees
Delimited(Span, Rc<Delimited>),
// This only makes sense in MBE macros.
/// A kleene-style repetition sequence with a span
Sequence(Span, Rc<SequenceRepetition>),
}
impl TokenTree {
pub fn len(&self) -> usize {
match *self {
TokenTree::Token(_, token::DocComment(name)) => {
match doc_comment_style(&name.as_str()) {
AttrStyle::Outer => 2,
AttrStyle::Inner => 3,
}
}
TokenTree::Token(_, token::SpecialVarNt(..)) => 2,
TokenTree::Token(_, token::MatchNt(..)) => 3,
2016-07-17 12:22:25 -05:00
TokenTree::Token(_, token::Interpolated(Nonterminal::NtTT(..))) => 1,
TokenTree::Delimited(_, ref delimed) => delimed.tts.len() + 2,
TokenTree::Sequence(_, ref seq) => seq.tts.len(),
TokenTree::Token(..) => 0,
}
}
pub fn get_tt(&self, index: usize) -> TokenTree {
match (self, index) {
(&TokenTree::Token(sp, token::DocComment(_)), 0) => TokenTree::Token(sp, token::Pound),
(&TokenTree::Token(sp, token::DocComment(name)), 1)
if doc_comment_style(&name.as_str()) == AttrStyle::Inner => {
TokenTree::Token(sp, token::Not)
}
(&TokenTree::Token(sp, token::DocComment(name)), _) => {
let stripped = strip_doc_comment_decoration(&name.as_str());
// Searches for the occurrences of `"#*` and returns the minimum number of `#`s
// required to wrap the text.
let num_of_hashes = stripped.chars()
.scan(0, |cnt, x| {
*cnt = if x == '"' {
1
} else if *cnt != 0 && x == '#' {
*cnt + 1
} else {
0
};
Some(*cnt)
})
.max()
.unwrap_or(0);
TokenTree::Delimited(sp, Rc::new(Delimited {
delim: token::Bracket,
open_span: sp,
tts: vec![TokenTree::Token(sp, token::Ident(token::str_to_ident("doc"))),
TokenTree::Token(sp, token::Eq),
TokenTree::Token(sp, token::Literal(
token::StrRaw(token::intern(&stripped), num_of_hashes), None))],
close_span: sp,
}))
}
(&TokenTree::Delimited(_, ref delimed), _) => {
if index == 0 {
return delimed.open_tt();
}
if index == delimed.tts.len() + 1 {
return delimed.close_tt();
}
delimed.tts[index - 1].clone()
}
(&TokenTree::Token(sp, token::SpecialVarNt(var)), _) => {
let v = [TokenTree::Token(sp, token::Dollar),
TokenTree::Token(sp, token::Ident(token::str_to_ident(var.as_str())))];
v[index].clone()
}
(&TokenTree::Token(sp, token::MatchNt(name, kind)), _) => {
let v = [TokenTree::Token(sp, token::SubstNt(name)),
TokenTree::Token(sp, token::Colon),
TokenTree::Token(sp, token::Ident(kind))];
v[index].clone()
}
2016-07-17 12:22:25 -05:00
(&TokenTree::Token(_, token::Interpolated(Nonterminal::NtTT(ref tt))), _) => {
tt.clone().unwrap()
}
(&TokenTree::Sequence(_, ref seq), _) => seq.tts[index].clone(),
_ => panic!("Cannot expand a token tree"),
}
}
/// Returns the `Span` corresponding to this token tree.
pub fn get_span(&self) -> Span {
match *self {
TokenTree::Token(span, _) => span,
TokenTree::Delimited(span, _) => span,
TokenTree::Sequence(span, _) => span,
}
}
/// Use this token tree as a matcher to parse given tts.
pub fn parse(cx: &base::ExtCtxt,
mtch: &[TokenTree],
tts: &[TokenTree])
-> macro_parser::NamedParseResult {
// `None` is because we're not interpolating
let arg_rdr = lexer::new_tt_reader_with_doc_flag(&cx.parse_sess().span_diagnostic,
None,
None,
tts.iter().cloned().collect(),
true);
macro_parser::parse(cx.parse_sess(), cx.cfg(), arg_rdr, mtch)
}
/// Check if this TokenTree is equal to the other, regardless of span information.
pub fn eq_unspanned(&self, other: &TokenTree) -> bool {
match (self, other) {
(&TokenTree::Token(_, ref tk), &TokenTree::Token(_, ref tk2)) => tk == tk2,
(&TokenTree::Delimited(_, ref dl), &TokenTree::Delimited(_, ref dl2)) => {
(*dl).delim == (*dl2).delim && dl.tts.len() == dl2.tts.len() &&
{
for (tt1, tt2) in dl.tts.iter().zip(dl2.tts.iter()) {
if !tt1.eq_unspanned(tt2) {
return false;
}
}
true
}
}
(_, _) => false,
}
}
/// Retrieve the TokenTree's span.
pub fn span(&self) -> Span {
match *self {
TokenTree::Token(sp, _) |
TokenTree::Delimited(sp, _) |
TokenTree::Sequence(sp, _) => sp,
}
}
/// Indicates if the stream is a token that is equal to the provided token.
pub fn eq_token(&self, t: Token) -> bool {
match *self {
TokenTree::Token(_, ref tk) => *tk == t,
_ => false,
}
}
/// Indicates if the token is an identifier.
pub fn is_ident(&self) -> bool {
self.maybe_ident().is_some()
}
/// Returns an identifier.
pub fn maybe_ident(&self) -> Option<ast::Ident> {
match *self {
TokenTree::Token(_, Token::Ident(t)) => Some(t.clone()),
TokenTree::Delimited(_, ref dl) => {
let tts = dl.subtrees();
if tts.len() != 1 {
return None;
}
tts[0].maybe_ident()
}
_ => None,
}
}
/// Returns a Token literal.
pub fn maybe_lit(&self) -> Option<token::Lit> {
match *self {
TokenTree::Token(_, Token::Literal(l, _)) => Some(l.clone()),
TokenTree::Delimited(_, ref dl) => {
let tts = dl.subtrees();
if tts.len() != 1 {
return None;
}
tts[0].maybe_lit()
}
_ => None,
}
}
/// Returns an AST string literal.
pub fn maybe_str(&self) -> Option<ast::Lit> {
match *self {
TokenTree::Token(sp, Token::Literal(Lit::Str_(s), _)) => {
let l = LitKind::Str(token::intern_and_get_ident(&parse::str_lit(&s.as_str())),
ast::StrStyle::Cooked);
Some(Spanned {
node: l,
span: sp,
})
}
TokenTree::Token(sp, Token::Literal(Lit::StrRaw(s, n), _)) => {
let l = LitKind::Str(token::intern_and_get_ident(&parse::raw_str_lit(&s.as_str())),
ast::StrStyle::Raw(n));
Some(Spanned {
node: l,
span: sp,
})
}
_ => None,
}
}
}
/// #Token Streams
///
/// TokenStreams are a syntactic abstraction over TokenTrees. The goal is for procedural
/// macros to work over TokenStreams instead of arbitrary syntax. For now, however, we
/// are going to cut a few corners (i.e., use some of the AST structure) when we need to
/// for backwards compatibility.
/// TokenStreams are collections of TokenTrees that represent a syntactic structure. The
/// struct itself shouldn't be directly manipulated; the internal structure is not stable,
/// and may be changed at any time in the future. The operators will not, however (except
/// for signatures, later on).
#[derive(Eq,Clone,Hash,RustcEncodable,RustcDecodable)]
pub struct TokenStream {
pub span: Span,
pub tts: Vec<TokenTree>,
}
impl fmt::Debug for TokenStream {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.tts.len() == 0 {
write!(f, "([empty")?;
} else {
write!(f, "([")?;
write!(f, "{:?}", self.tts[0])?;
for tt in self.tts.iter().skip(1) {
write!(f, ",{:?}", tt)?;
}
}
write!(f, "|")?;
self.span.fmt(f)?;
write!(f, "])")
}
}
/// Checks if two TokenStreams are equivalent (including spans). For unspanned
/// equality, see `eq_unspanned`.
impl PartialEq<TokenStream> for TokenStream {
fn eq(&self, other: &TokenStream) -> bool {
self.tts == other.tts
}
}
// NB this will disregard gaps. if we have [a|{2,5} , b|{11,13}], the resultant span
// will be at {2,13}. Without finer-grained span structures, however, this seems to be
// our only recourse.
// FIXME Do something smarter to compute the expansion id.
fn covering_span(trees: &[TokenTree]) -> Span {
// disregard any dummy spans we have
let trees = trees.iter().filter(|t| t.span() != DUMMY_SP).collect::<Vec<&TokenTree>>();
// if we're out of spans, stop
if trees.len() < 1 {
return DUMMY_SP;
}
// set up the initial values
let fst_span = trees[0].span();
let mut lo_span = fst_span.lo;
let mut hi_span = fst_span.hi;
let mut expn_id = fst_span.expn_id;
// compute the spans iteratively
for t in trees.iter().skip(1) {
let sp = t.span();
if sp.lo < lo_span {
lo_span = sp.lo;
}
if hi_span < sp.hi {
hi_span = sp.hi;
}
if expn_id != sp.expn_id {
expn_id = NO_EXPANSION;
}
}
Span {
lo: lo_span,
hi: hi_span,
expn_id: expn_id,
}
}
/// TokenStream operators include basic destructuring, boolean operations, `maybe_...`
/// operations, and `maybe_..._prefix` operations. Boolean operations are straightforward,
/// indicating information about the structure of the stream. The `maybe_...` operations
/// return `Some<...>` if the tokenstream contains the appropriate item.
///
/// Similarly, the `maybe_..._prefix` operations potentially return a
/// partially-destructured stream as a pair where the first element is the expected item
/// and the second is the remainder of the stream. As anb example,
///
/// `maybe_path_prefix("a::b::c(a,b,c).foo()") -> (a::b::c, "(a,b,c).foo()")`
impl TokenStream {
/// Convert a vector of `TokenTree`s into a `TokenStream`.
pub fn from_tts(trees: Vec<TokenTree>) -> TokenStream {
let span = covering_span(&trees);
TokenStream {
tts: trees,
span: span,
}
}
/// Copies all of the TokenTrees from the TokenSlice, appending them to the stream.
pub fn append_stream(mut self, ts2: &TokenSlice) {
for tt in ts2.iter() {
self.tts.push(tt.clone());
}
self.span = covering_span(&self.tts[..]);
}
/// Manually change a TokenStream's span.
pub fn respan(self, span: Span) -> TokenStream {
TokenStream {
tts: self.tts,
span: span,
}
}
/// Construct a TokenStream from an ast literal.
pub fn from_ast_lit_str(lit: ast::Lit) -> Option<TokenStream> {
match lit.node {
LitKind::Str(val, _) => {
let val = TokLit::Str_(token::intern(&val));
Some(TokenStream::from_tts(vec![TokenTree::Token(lit.span,
Token::Literal(val, None))]))
}
_ => None,
}
}
/// Convert a vector of TokenTrees into a parentheses-delimited TokenStream.
pub fn as_paren_delimited_stream(tts: Vec<TokenTree>) -> TokenStream {
let new_sp = covering_span(&tts);
let new_delim = Rc::new(Delimited {
delim: token::DelimToken::Paren,
open_span: DUMMY_SP,
tts: tts,
close_span: DUMMY_SP,
});
TokenStream::from_tts(vec![TokenTree::Delimited(new_sp, new_delim)])
}
/// Convert an interned string into a one-element TokenStream.
pub fn from_interned_string_as_ident(s: InternedString) -> TokenStream {
TokenStream::from_tts(vec![TokenTree::Token(DUMMY_SP,
Token::Ident(token::str_to_ident(&s[..])))])
}
}
/// TokenSlices are 'views' of `TokenStream's; they fit the same role as `str`s do for
/// `String`s. In general, most TokenStream manipulations will be refocusing their internal
/// contents by taking a TokenSlice and then using indexing and the provided operators.
#[derive(PartialEq, Eq, Debug)]
pub struct TokenSlice([TokenTree]);
impl ops::Deref for TokenStream {
type Target = TokenSlice;
fn deref(&self) -> &TokenSlice {
let tts: &[TokenTree] = &*self.tts;
unsafe { mem::transmute(tts) }
}
}
impl TokenSlice {
/// Convert a borrowed TokenTree slice into a borrowed TokenSlice.
fn from_tts(tts: &[TokenTree]) -> &TokenSlice {
unsafe { mem::transmute(tts) }
}
/// Indicates whether the `TokenStream` is empty.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Return the `TokenSlice`'s length.
pub fn len(&self) -> usize {
self.0.len()
}
/// Check equality versus another TokenStream, ignoring span information.
pub fn eq_unspanned(&self, other: &TokenSlice) -> bool {
if self.len() != other.len() {
return false;
}
for (tt1, tt2) in self.iter().zip(other.iter()) {
if !tt1.eq_unspanned(tt2) {
return false;
}
}
true
}
/// Compute a span that covers the entire TokenSlice (eg, one wide enough to include
/// the entire slice). If the inputs share expansion identification, it is preserved.
/// If they do not, it is discarded.
pub fn covering_span(&self) -> Span {
covering_span(&self.0)
}
/// Indicates where the stream is of the form `= <ts>`, where `<ts>` is a continued
/// `TokenStream`.
pub fn is_assignment(&self) -> bool {
self.maybe_assignment().is_some()
}
/// Returns the RHS of an assigment.
pub fn maybe_assignment(&self) -> Option<&TokenSlice> {
if !(self.len() > 1) {
return None;
}
Some(&self[1..])
}
/// Indicates where the stream is a single, delimited expression (e.g., `(a,b,c)` or
/// `{a,b,c}`).
pub fn is_delimited(&self) -> bool {
self.maybe_delimited().is_some()
}
/// Returns the inside of the delimited term as a new TokenStream.
pub fn maybe_delimited(&self) -> Option<&TokenSlice> {
if !(self.len() == 1) {
return None;
}
match self[0] {
TokenTree::Delimited(_, ref rc) => Some(TokenSlice::from_tts(&*rc.tts)),
_ => None,
}
}
/// Returns a list of `TokenSlice`s if the stream is a delimited list, breaking the
/// stream on commas.
pub fn maybe_comma_list(&self) -> Option<Vec<&TokenSlice>> {
let maybe_tts = self.maybe_delimited();
let ts: &TokenSlice;
match maybe_tts {
Some(t) => {
ts = t;
}
None => {
return None;
}
}
let splits: Vec<&TokenSlice> = ts.split(|x| match *x {
TokenTree::Token(_, Token::Comma) => true,
_ => false,
})
.filter(|x| x.len() > 0)
.collect();
Some(splits)
}
/// Returns a Nonterminal if it is Interpolated.
pub fn maybe_interpolated_nonterminal(&self) -> Option<Nonterminal> {
if !(self.len() == 1) {
return None;
}
match self[0] {
TokenTree::Token(_, Token::Interpolated(ref nt)) => Some(nt.clone()),
_ => None,
}
}
/// Indicates if the stream is exactly one identifier.
pub fn is_ident(&self) -> bool {
self.maybe_ident().is_some()
}
/// Returns an identifier
pub fn maybe_ident(&self) -> Option<ast::Ident> {
if !(self.len() == 1) {
return None;
}
let tok = if let Some(tts) = self.maybe_delimited() {
if tts.len() != 1 {
return None;
}
&tts[0]
} else {
&self[0]
};
match *tok {
TokenTree::Token(_, Token::Ident(t)) => Some(t),
_ => None,
}
}
/// Indicates if the stream is exactly one literal
pub fn is_lit(&self) -> bool {
self.maybe_lit().is_some()
}
/// Returns a literal
pub fn maybe_lit(&self) -> Option<token::Lit> {
if !(self.len() == 1) {
return None;
}
let tok = if let Some(tts) = self.maybe_delimited() {
if tts.len() != 1 {
return None;
}
&tts[0]
} else {
&self[0]
};
match *tok {
TokenTree::Token(_, Token::Literal(l, _)) => Some(l),
_ => None,
}
}
/// Returns an AST string literal if the TokenStream is either a normal ('cooked') or
/// raw string literal.
pub fn maybe_str(&self) -> Option<ast::Lit> {
if !(self.len() == 1) {
return None;
}
match self[0] {
TokenTree::Token(sp, Token::Literal(Lit::Str_(s), _)) => {
let l = LitKind::Str(token::intern_and_get_ident(&parse::str_lit(&s.as_str())),
ast::StrStyle::Cooked);
Some(Spanned {
node: l,
span: sp,
})
}
TokenTree::Token(sp, Token::Literal(Lit::StrRaw(s, n), _)) => {
let l = LitKind::Str(token::intern_and_get_ident(&parse::raw_str_lit(&s.as_str())),
ast::StrStyle::Raw(n));
Some(Spanned {
node: l,
span: sp,
})
}
_ => None,
}
}
/// This operation extracts the path prefix , returning an AST path struct and the remainder
/// of the stream (if it finds one). To be more specific, a tokenstream that has a valid,
/// non-global path as a prefix (eg `foo(bar, baz)`, `foo::bar(bar)`, but *not*
/// `::foo::bar(baz)`) will yield the path and the remaining tokens (as a slice). The previous
/// examples will yield
/// `Some((Path { segments = vec![foo], ... }, [(bar, baz)]))`,
/// `Some((Path { segments = vec![foo, bar] }, [(baz)]))`,
/// and `None`, respectively.
pub fn maybe_path_prefix(&self) -> Option<(ast::Path, &TokenSlice)> {
let mut segments: Vec<ast::PathSegment> = Vec::new();
let path: Vec<&TokenTree> = self.iter()
.take_while(|x| x.is_ident() || x.eq_token(Token::ModSep))
.collect::<Vec<&TokenTree>>();
let path_size = path.len();
if path_size == 0 {
return None;
}
let cov_span = self[..path_size].covering_span();
let rst = &self[path_size..];
let fst_id = path[0];
if let Some(id) = fst_id.maybe_ident() {
segments.push(ast::PathSegment {
identifier: id,
parameters: ast::PathParameters::none(),
});
} else {
return None;
}
// Let's use a state machine to parse out the rest.
enum State {
Mod, // Expect a `::`, or return None otherwise.
Ident, // Expect an ident, or return None otherwise.
}
let mut state = State::Mod;
for p in &path[1..] {
match state {
State::Mod => {
// State 0: ['::' -> state 1, else return None]
if p.eq_token(Token::ModSep) {
state = State::Ident;
} else {
return None;
}
}
State::Ident => {
// State 1: [ident -> state 0, else return None]
if let Some(id) = p.maybe_ident() {
segments.push(ast::PathSegment {
identifier: id,
parameters: ast::PathParameters::none(),
});
state = State::Mod;
} else {
return None;
}
}
}
}
let path = ast::Path {
span: cov_span,
global: false,
segments: segments,
};
Some((path, rst))
}
/// Returns an iterator over a TokenSlice (as a sequence of TokenStreams).
fn iter(&self) -> Iter {
Iter { vs: self }
}
/// Splits a TokenSlice based on the provided `&TokenTree -> bool` predicate.
fn split<P>(&self, pred: P) -> Split<P>
where P: FnMut(&TokenTree) -> bool
{
Split {
vs: self,
pred: pred,
finished: false,
}
}
}
pub struct Iter<'a> {
vs: &'a TokenSlice,
}
impl<'a> Iterator for Iter<'a> {
type Item = &'a TokenTree;
fn next(&mut self) -> Option<&'a TokenTree> {
if self.vs.is_empty() {
return None;
}
let ret = Some(&self.vs[0]);
self.vs = &self.vs[1..];
ret
}
}
pub struct Split<'a, P>
where P: FnMut(&TokenTree) -> bool
{
vs: &'a TokenSlice,
pred: P,
finished: bool,
}
impl<'a, P> Iterator for Split<'a, P>
where P: FnMut(&TokenTree) -> bool
{
type Item = &'a TokenSlice;
fn next(&mut self) -> Option<&'a TokenSlice> {
if self.finished {
return None;
}
match self.vs.iter().position(|x| (self.pred)(x)) {
None => {
self.finished = true;
Some(&self.vs[..])
}
Some(idx) => {
let ret = Some(&self.vs[..idx]);
self.vs = &self.vs[idx + 1..];
ret
}
}
}
}
impl Index<usize> for TokenStream {
type Output = TokenTree;
fn index(&self, index: usize) -> &TokenTree {
Index::index(&**self, index)
}
}
impl ops::Index<ops::Range<usize>> for TokenStream {
type Output = TokenSlice;
fn index(&self, index: ops::Range<usize>) -> &TokenSlice {
Index::index(&**self, index)
}
}
impl ops::Index<ops::RangeTo<usize>> for TokenStream {
type Output = TokenSlice;
fn index(&self, index: ops::RangeTo<usize>) -> &TokenSlice {
Index::index(&**self, index)
}
}
impl ops::Index<ops::RangeFrom<usize>> for TokenStream {
type Output = TokenSlice;
fn index(&self, index: ops::RangeFrom<usize>) -> &TokenSlice {
Index::index(&**self, index)
}
}
impl ops::Index<ops::RangeFull> for TokenStream {
type Output = TokenSlice;
fn index(&self, _index: ops::RangeFull) -> &TokenSlice {
Index::index(&**self, _index)
}
}
impl Index<usize> for TokenSlice {
type Output = TokenTree;
fn index(&self, index: usize) -> &TokenTree {
&self.0[index]
}
}
impl ops::Index<ops::Range<usize>> for TokenSlice {
type Output = TokenSlice;
fn index(&self, index: ops::Range<usize>) -> &TokenSlice {
TokenSlice::from_tts(&self.0[index])
}
}
impl ops::Index<ops::RangeTo<usize>> for TokenSlice {
type Output = TokenSlice;
fn index(&self, index: ops::RangeTo<usize>) -> &TokenSlice {
TokenSlice::from_tts(&self.0[index])
}
}
impl ops::Index<ops::RangeFrom<usize>> for TokenSlice {
type Output = TokenSlice;
fn index(&self, index: ops::RangeFrom<usize>) -> &TokenSlice {
TokenSlice::from_tts(&self.0[index])
}
}
impl ops::Index<ops::RangeFull> for TokenSlice {
type Output = TokenSlice;
fn index(&self, _index: ops::RangeFull) -> &TokenSlice {
TokenSlice::from_tts(&self.0[_index])
}
}
#[cfg(test)]
mod tests {
use super::*;
use ast;
use syntax_pos::{Span, BytePos, NO_EXPANSION, DUMMY_SP};
use parse::token::{self, str_to_ident, Token, Lit};
use util::parser_testing::string_to_tts;
use std::rc::Rc;
fn sp(a: u32, b: u32) -> Span {
Span {
lo: BytePos(a),
hi: BytePos(b),
expn_id: NO_EXPANSION,
}
}
#[test]
fn test_is_empty() {
let test0 = TokenStream::from_tts(Vec::new());
let test1 = TokenStream::from_tts(vec![TokenTree::Token(sp(0, 1),
Token::Ident(str_to_ident("a")))]);
let test2 = TokenStream::from_tts(string_to_tts("foo(bar::baz)".to_string()));
assert_eq!(test0.is_empty(), true);
assert_eq!(test1.is_empty(), false);
assert_eq!(test2.is_empty(), false);
}
#[test]
fn test_is_delimited() {
let test0 = TokenStream::from_tts(string_to_tts("foo(bar::baz)".to_string()));
let test1 = TokenStream::from_tts(string_to_tts("(bar::baz)".to_string()));
let test2 = TokenStream::from_tts(string_to_tts("(foo,bar,baz)".to_string()));
let test3 = TokenStream::from_tts(string_to_tts("(foo,bar,baz)(zab,rab,oof)".to_string()));
let test4 = TokenStream::from_tts(string_to_tts("(foo,bar,baz)foo".to_string()));
let test5 = TokenStream::from_tts(string_to_tts("".to_string()));
assert_eq!(test0.is_delimited(), false);
assert_eq!(test1.is_delimited(), true);
assert_eq!(test2.is_delimited(), true);
assert_eq!(test3.is_delimited(), false);
assert_eq!(test4.is_delimited(), false);
assert_eq!(test5.is_delimited(), false);
}
#[test]
fn test_is_assign() {
let test0 = TokenStream::from_tts(string_to_tts("= bar::baz".to_string()));
let test1 = TokenStream::from_tts(string_to_tts("= \"5\"".to_string()));
let test2 = TokenStream::from_tts(string_to_tts("= 5".to_string()));
let test3 = TokenStream::from_tts(string_to_tts("(foo = 10)".to_string()));
let test4 = TokenStream::from_tts(string_to_tts("= (foo,bar,baz)".to_string()));
let test5 = TokenStream::from_tts(string_to_tts("".to_string()));
assert_eq!(test0.is_assignment(), true);
assert_eq!(test1.is_assignment(), true);
assert_eq!(test2.is_assignment(), true);
assert_eq!(test3.is_assignment(), false);
assert_eq!(test4.is_assignment(), true);
assert_eq!(test5.is_assignment(), false);
}
#[test]
fn test_is_lit() {
let test0 = TokenStream::from_tts(string_to_tts("\"foo\"".to_string()));
let test1 = TokenStream::from_tts(string_to_tts("5".to_string()));
let test2 = TokenStream::from_tts(string_to_tts("foo".to_string()));
let test3 = TokenStream::from_tts(string_to_tts("foo::bar".to_string()));
let test4 = TokenStream::from_tts(string_to_tts("foo(bar)".to_string()));
assert_eq!(test0.is_lit(), true);
assert_eq!(test1.is_lit(), true);
assert_eq!(test2.is_lit(), false);
assert_eq!(test3.is_lit(), false);
assert_eq!(test4.is_lit(), false);
}
#[test]
fn test_is_ident() {
let test0 = TokenStream::from_tts(string_to_tts("\"foo\"".to_string()));
let test1 = TokenStream::from_tts(string_to_tts("5".to_string()));
let test2 = TokenStream::from_tts(string_to_tts("foo".to_string()));
let test3 = TokenStream::from_tts(string_to_tts("foo::bar".to_string()));
let test4 = TokenStream::from_tts(string_to_tts("foo(bar)".to_string()));
assert_eq!(test0.is_ident(), false);
assert_eq!(test1.is_ident(), false);
assert_eq!(test2.is_ident(), true);
assert_eq!(test3.is_ident(), false);
assert_eq!(test4.is_ident(), false);
}
#[test]
fn test_maybe_assignment() {
let test0_input = TokenStream::from_tts(string_to_tts("= bar::baz".to_string()));
let test1_input = TokenStream::from_tts(string_to_tts("= \"5\"".to_string()));
let test2_input = TokenStream::from_tts(string_to_tts("= 5".to_string()));
let test3_input = TokenStream::from_tts(string_to_tts("(foo = 10)".to_string()));
let test4_input = TokenStream::from_tts(string_to_tts("= (foo,bar,baz)".to_string()));
let test5_input = TokenStream::from_tts(string_to_tts("".to_string()));
let test0 = test0_input.maybe_assignment();
let test1 = test1_input.maybe_assignment();
let test2 = test2_input.maybe_assignment();
let test3 = test3_input.maybe_assignment();
let test4 = test4_input.maybe_assignment();
let test5 = test5_input.maybe_assignment();
let test0_expected = TokenStream::from_tts(vec![TokenTree::Token(sp(2, 5),
token::Ident(str_to_ident("bar"))),
TokenTree::Token(sp(5, 7), token::ModSep),
TokenTree::Token(sp(7, 10),
token::Ident(str_to_ident("baz")))]);
assert_eq!(test0, Some(&test0_expected[..]));
let test1_expected = TokenStream::from_tts(vec![TokenTree::Token(sp(2, 5),
token::Literal(Lit::Str_(token::intern("5")), None))]);
assert_eq!(test1, Some(&test1_expected[..]));
let test2_expected = TokenStream::from_tts(vec![TokenTree::Token( sp(2,3)
, token::Literal(
Lit::Integer(
token::intern(&(5.to_string()))),
None))]);
assert_eq!(test2, Some(&test2_expected[..]));
assert_eq!(test3, None);
let test4_tts = vec![TokenTree::Token(sp(3, 6), token::Ident(str_to_ident("foo"))),
TokenTree::Token(sp(6, 7), token::Comma),
TokenTree::Token(sp(7, 10), token::Ident(str_to_ident("bar"))),
TokenTree::Token(sp(10, 11), token::Comma),
TokenTree::Token(sp(11, 14), token::Ident(str_to_ident("baz")))];
let test4_expected = TokenStream::from_tts(vec![TokenTree::Delimited(sp(2, 15),
Rc::new(Delimited {
delim: token::DelimToken::Paren,
open_span: sp(2, 3),
tts: test4_tts,
close_span: sp(14, 15),
}))]);
assert_eq!(test4, Some(&test4_expected[..]));
assert_eq!(test5, None);
}
#[test]
fn test_maybe_delimited() {
let test0_input = TokenStream::from_tts(string_to_tts("foo(bar::baz)".to_string()));
let test1_input = TokenStream::from_tts(string_to_tts("(bar::baz)".to_string()));
let test2_input = TokenStream::from_tts(string_to_tts("(foo,bar,baz)".to_string()));
let test3_input = TokenStream::from_tts(string_to_tts("(foo,bar,baz)(zab,rab)"
.to_string()));
let test4_input = TokenStream::from_tts(string_to_tts("(foo,bar,baz)foo".to_string()));
let test5_input = TokenStream::from_tts(string_to_tts("".to_string()));
let test0 = test0_input.maybe_delimited();
let test1 = test1_input.maybe_delimited();
let test2 = test2_input.maybe_delimited();
let test3 = test3_input.maybe_delimited();
let test4 = test4_input.maybe_delimited();
let test5 = test5_input.maybe_delimited();
assert_eq!(test0, None);
let test1_expected = TokenStream::from_tts(vec![TokenTree::Token(sp(1, 4),
token::Ident(str_to_ident("bar"))),
TokenTree::Token(sp(4, 6), token::ModSep),
TokenTree::Token(sp(6, 9),
token::Ident(str_to_ident("baz")))]);
assert_eq!(test1, Some(&test1_expected[..]));
let test2_expected = TokenStream::from_tts(vec![TokenTree::Token(sp(1, 4),
token::Ident(str_to_ident("foo"))),
TokenTree::Token(sp(4, 5), token::Comma),
TokenTree::Token(sp(5, 8),
token::Ident(str_to_ident("bar"))),
TokenTree::Token(sp(8, 9), token::Comma),
TokenTree::Token(sp(9, 12),
token::Ident(str_to_ident("baz")))]);
assert_eq!(test2, Some(&test2_expected[..]));
assert_eq!(test3, None);
assert_eq!(test4, None);
assert_eq!(test5, None);
}
#[test]
fn test_maybe_comma_list() {
let test0_input = TokenStream::from_tts(string_to_tts("foo(bar::baz)".to_string()));
let test1_input = TokenStream::from_tts(string_to_tts("(bar::baz)".to_string()));
let test2_input = TokenStream::from_tts(string_to_tts("(foo,bar,baz)".to_string()));
let test3_input = TokenStream::from_tts(string_to_tts("(foo::bar,bar,baz)".to_string()));
let test4_input = TokenStream::from_tts(string_to_tts("(foo,bar,baz)(zab,rab)"
.to_string()));
let test5_input = TokenStream::from_tts(string_to_tts("(foo,bar,baz)foo".to_string()));
let test6_input = TokenStream::from_tts(string_to_tts("".to_string()));
// The following is supported behavior!
let test7_input = TokenStream::from_tts(string_to_tts("(foo,bar,)".to_string()));
let test0 = test0_input.maybe_comma_list();
let test1 = test1_input.maybe_comma_list();
let test2 = test2_input.maybe_comma_list();
let test3 = test3_input.maybe_comma_list();
let test4 = test4_input.maybe_comma_list();
let test5 = test5_input.maybe_comma_list();
let test6 = test6_input.maybe_comma_list();
let test7 = test7_input.maybe_comma_list();
assert_eq!(test0, None);
let test1_stream = TokenStream::from_tts(vec![TokenTree::Token(sp(1, 4),
token::Ident(str_to_ident("bar"))),
TokenTree::Token(sp(4, 6), token::ModSep),
TokenTree::Token(sp(6, 9),
token::Ident(str_to_ident("baz")))]);
let test1_expected: Vec<&TokenSlice> = vec![&test1_stream[..]];
assert_eq!(test1, Some(test1_expected));
let test2_foo = TokenStream::from_tts(vec![TokenTree::Token(sp(1, 4),
token::Ident(str_to_ident("foo")))]);
let test2_bar = TokenStream::from_tts(vec![TokenTree::Token(sp(5, 8),
token::Ident(str_to_ident("bar")))]);
let test2_baz = TokenStream::from_tts(vec![TokenTree::Token(sp(9, 12),
token::Ident(str_to_ident("baz")))]);
let test2_expected: Vec<&TokenSlice> = vec![&test2_foo[..], &test2_bar[..], &test2_baz[..]];
assert_eq!(test2, Some(test2_expected));
let test3_path = TokenStream::from_tts(vec![TokenTree::Token(sp(1, 4),
token::Ident(str_to_ident("foo"))),
TokenTree::Token(sp(4, 6), token::ModSep),
TokenTree::Token(sp(6, 9),
token::Ident(str_to_ident("bar")))]);
let test3_bar = TokenStream::from_tts(vec![TokenTree::Token(sp(10, 13),
token::Ident(str_to_ident("bar")))]);
let test3_baz = TokenStream::from_tts(vec![TokenTree::Token(sp(14, 17),
token::Ident(str_to_ident("baz")))]);
let test3_expected: Vec<&TokenSlice> =
vec![&test3_path[..], &test3_bar[..], &test3_baz[..]];
assert_eq!(test3, Some(test3_expected));
assert_eq!(test4, None);
assert_eq!(test5, None);
assert_eq!(test6, None);
let test7_expected: Vec<&TokenSlice> = vec![&test2_foo[..], &test2_bar[..]];
assert_eq!(test7, Some(test7_expected));
}
// pub fn maybe_ident(&self) -> Option<ast::Ident>
#[test]
fn test_maybe_ident() {
let test0 = TokenStream::from_tts(string_to_tts("\"foo\"".to_string())).maybe_ident();
let test1 = TokenStream::from_tts(string_to_tts("5".to_string())).maybe_ident();
let test2 = TokenStream::from_tts(string_to_tts("foo".to_string())).maybe_ident();
let test3 = TokenStream::from_tts(string_to_tts("foo::bar".to_string())).maybe_ident();
let test4 = TokenStream::from_tts(string_to_tts("foo(bar)".to_string())).maybe_ident();
assert_eq!(test0, None);
assert_eq!(test1, None);
assert_eq!(test2, Some(str_to_ident("foo")));
assert_eq!(test3, None);
assert_eq!(test4, None);
}
// pub fn maybe_lit(&self) -> Option<token::Lit>
#[test]
fn test_maybe_lit() {
let test0 = TokenStream::from_tts(string_to_tts("\"foo\"".to_string())).maybe_lit();
let test1 = TokenStream::from_tts(string_to_tts("5".to_string())).maybe_lit();
let test2 = TokenStream::from_tts(string_to_tts("foo".to_string())).maybe_lit();
let test3 = TokenStream::from_tts(string_to_tts("foo::bar".to_string())).maybe_lit();
let test4 = TokenStream::from_tts(string_to_tts("foo(bar)".to_string())).maybe_lit();
assert_eq!(test0, Some(Lit::Str_(token::intern("foo"))));
assert_eq!(test1, Some(Lit::Integer(token::intern(&(5.to_string())))));
assert_eq!(test2, None);
assert_eq!(test3, None);
assert_eq!(test4, None);
}
#[test]
fn test_maybe_path_prefix() {
let test0_input = TokenStream::from_tts(string_to_tts("foo(bar::baz)".to_string()));
let test1_input = TokenStream::from_tts(string_to_tts("(bar::baz)".to_string()));
let test2_input = TokenStream::from_tts(string_to_tts("(foo,bar,baz)".to_string()));
let test3_input = TokenStream::from_tts(string_to_tts("foo::bar(bar,baz)".to_string()));
let test0 = test0_input.maybe_path_prefix();
let test1 = test1_input.maybe_path_prefix();
let test2 = test2_input.maybe_path_prefix();
let test3 = test3_input.maybe_path_prefix();
let test0_tts = vec![TokenTree::Token(sp(4, 7), token::Ident(str_to_ident("bar"))),
TokenTree::Token(sp(7, 9), token::ModSep),
TokenTree::Token(sp(9, 12), token::Ident(str_to_ident("baz")))];
let test0_stream = TokenStream::from_tts(vec![TokenTree::Delimited(sp(3, 13),
Rc::new(Delimited {
delim: token::DelimToken::Paren,
open_span: sp(3, 4),
tts: test0_tts,
close_span: sp(12, 13),
}))]);
let test0_expected = Some((ast::Path::from_ident(sp(0, 3), str_to_ident("foo")),
&test0_stream[..]));
assert_eq!(test0, test0_expected);
assert_eq!(test1, None);
assert_eq!(test2, None);
let test3_path = ast::Path {
span: sp(0, 8),
global: false,
segments: vec![ast::PathSegment {
identifier: str_to_ident("foo"),
parameters: ast::PathParameters::none(),
},
ast::PathSegment {
identifier: str_to_ident("bar"),
parameters: ast::PathParameters::none(),
}],
};
let test3_tts = vec![TokenTree::Token(sp(9, 12), token::Ident(str_to_ident("bar"))),
TokenTree::Token(sp(12, 13), token::Comma),
TokenTree::Token(sp(13, 16), token::Ident(str_to_ident("baz")))];
let test3_stream = TokenStream::from_tts(vec![TokenTree::Delimited(sp(8, 17),
Rc::new(Delimited {
delim: token::DelimToken::Paren,
open_span: sp(8, 9),
tts: test3_tts,
close_span: sp(16, 17),
}))]);
let test3_expected = Some((test3_path, &test3_stream[..]));
assert_eq!(test3, test3_expected);
}
#[test]
fn test_as_paren_delimited_stream() {
let test0 = TokenStream::as_paren_delimited_stream(string_to_tts("foo,bar,".to_string()));
let test1 = TokenStream::as_paren_delimited_stream(string_to_tts("baz(foo,bar)"
.to_string()));
let test0_tts = vec![TokenTree::Token(sp(0, 3), token::Ident(str_to_ident("foo"))),
TokenTree::Token(sp(3, 4), token::Comma),
TokenTree::Token(sp(4, 7), token::Ident(str_to_ident("bar"))),
TokenTree::Token(sp(7, 8), token::Comma)];
let test0_stream = TokenStream::from_tts(vec![TokenTree::Delimited(sp(0, 8),
Rc::new(Delimited {
delim: token::DelimToken::Paren,
open_span: DUMMY_SP,
tts: test0_tts,
close_span: DUMMY_SP,
}))]);
assert_eq!(test0, test0_stream);
let test1_tts = vec![TokenTree::Token(sp(4, 7), token::Ident(str_to_ident("foo"))),
TokenTree::Token(sp(7, 8), token::Comma),
TokenTree::Token(sp(8, 11), token::Ident(str_to_ident("bar")))];
let test1_parse = vec![TokenTree::Token(sp(0, 3), token::Ident(str_to_ident("baz"))),
TokenTree::Delimited(sp(3, 12),
Rc::new(Delimited {
delim: token::DelimToken::Paren,
open_span: sp(3, 4),
tts: test1_tts,
close_span: sp(11, 12),
}))];
let test1_stream = TokenStream::from_tts(vec![TokenTree::Delimited(sp(0, 12),
Rc::new(Delimited {
delim: token::DelimToken::Paren,
open_span: DUMMY_SP,
tts: test1_parse,
close_span: DUMMY_SP,
}))]);
assert_eq!(test1, test1_stream);
}
}