2019-12-13 21:28:32 -06:00
|
|
|
// build-fail
|
rustc: Implement custom panic runtimes
This commit is an implementation of [RFC 1513] which allows applications to
alter the behavior of panics at compile time. A new compiler flag, `-C panic`,
is added and accepts the values `unwind` or `panic`, with the default being
`unwind`. This model affects how code is generated for the local crate, skipping
generation of landing pads with `-C panic=abort`.
[RFC 1513]: https://github.com/rust-lang/rfcs/blob/master/text/1513-less-unwinding.md
Panic implementations are then provided by crates tagged with
`#![panic_runtime]` and lazily required by crates with
`#![needs_panic_runtime]`. The panic strategy (`-C panic` value) of the panic
runtime must match the final product, and if the panic strategy is not `abort`
then the entire DAG must have the same panic strategy.
With the `-C panic=abort` strategy, users can expect a stable method to disable
generation of landing pads, improving optimization in niche scenarios,
decreasing compile time, and decreasing output binary size. With the `-C
panic=unwind` strategy users can expect the existing ability to isolate failure
in Rust code from the outside world.
Organizationally, this commit dismantles the `sys_common::unwind` module in
favor of some bits moving part of it to `libpanic_unwind` and the rest into the
`panicking` module in libstd. The custom panic runtime support is pretty similar
to the custom allocator support with the only major difference being how the
panic runtime is injected (takes the `-C panic` flag into account).
2016-04-08 18:18:40 -05:00
|
|
|
// error-pattern:is incompatible with this crate's strategy of `unwind`
|
|
|
|
// aux-build:panic-runtime-abort.rs
|
|
|
|
// aux-build:panic-runtime-lang-items.rs
|
2019-10-18 16:47:54 -05:00
|
|
|
// ignore-wasm32-bare compiled with panic=abort by default
|
rustc: Implement custom panic runtimes
This commit is an implementation of [RFC 1513] which allows applications to
alter the behavior of panics at compile time. A new compiler flag, `-C panic`,
is added and accepts the values `unwind` or `panic`, with the default being
`unwind`. This model affects how code is generated for the local crate, skipping
generation of landing pads with `-C panic=abort`.
[RFC 1513]: https://github.com/rust-lang/rfcs/blob/master/text/1513-less-unwinding.md
Panic implementations are then provided by crates tagged with
`#![panic_runtime]` and lazily required by crates with
`#![needs_panic_runtime]`. The panic strategy (`-C panic` value) of the panic
runtime must match the final product, and if the panic strategy is not `abort`
then the entire DAG must have the same panic strategy.
With the `-C panic=abort` strategy, users can expect a stable method to disable
generation of landing pads, improving optimization in niche scenarios,
decreasing compile time, and decreasing output binary size. With the `-C
panic=unwind` strategy users can expect the existing ability to isolate failure
in Rust code from the outside world.
Organizationally, this commit dismantles the `sys_common::unwind` module in
favor of some bits moving part of it to `libpanic_unwind` and the rest into the
`panicking` module in libstd. The custom panic runtime support is pretty similar
to the custom allocator support with the only major difference being how the
panic runtime is injected (takes the `-C panic` flag into account).
2016-04-08 18:18:40 -05:00
|
|
|
|
|
|
|
#![no_std]
|
rustc: Fix mixing crates with different `share_generics`
This commit addresses #64319 by removing the `dylib` crate type from the
list of crate type that exports generic symbols. The bug in #64319
arises because a `dylib` crate type was trying to export a symbol in an
uptream crate but it miscalculated the symbol name of the uptream
symbol. This isn't really necessary, though, since `dylib` crates aren't
that heavily used, so we can just conservatively say that the `dylib`
crate type never exports generic symbols, forcibly removing them from
the exported symbol lists if were to otherwise find them.
The fix here happens in two places:
* First is in the `local_crate_exports_generics` method, indicating that
it's now `false` for the `Dylib` crate type. Only rlibs actually
export generics at this point.
* Next is when we load exported symbols from upstream crate. If, for our
compilation session, the crate may be included from a dynamic library,
then its generic symbols are removed. When the crate was linked into a
dynamic library its symbols weren't exported, so we can't consider
them a candidate to link against.
Overally this should avoid situations where we incorrectly calculate the
upstream symbol names in the face of differnet `share_generics` options,
ultimately...
Closes #64319
2019-09-11 10:08:04 -05:00
|
|
|
#![no_main]
|
rustc: Implement custom panic runtimes
This commit is an implementation of [RFC 1513] which allows applications to
alter the behavior of panics at compile time. A new compiler flag, `-C panic`,
is added and accepts the values `unwind` or `panic`, with the default being
`unwind`. This model affects how code is generated for the local crate, skipping
generation of landing pads with `-C panic=abort`.
[RFC 1513]: https://github.com/rust-lang/rfcs/blob/master/text/1513-less-unwinding.md
Panic implementations are then provided by crates tagged with
`#![panic_runtime]` and lazily required by crates with
`#![needs_panic_runtime]`. The panic strategy (`-C panic` value) of the panic
runtime must match the final product, and if the panic strategy is not `abort`
then the entire DAG must have the same panic strategy.
With the `-C panic=abort` strategy, users can expect a stable method to disable
generation of landing pads, improving optimization in niche scenarios,
decreasing compile time, and decreasing output binary size. With the `-C
panic=unwind` strategy users can expect the existing ability to isolate failure
in Rust code from the outside world.
Organizationally, this commit dismantles the `sys_common::unwind` module in
favor of some bits moving part of it to `libpanic_unwind` and the rest into the
`panicking` module in libstd. The custom panic runtime support is pretty similar
to the custom allocator support with the only major difference being how the
panic runtime is injected (takes the `-C panic` flag into account).
2016-04-08 18:18:40 -05:00
|
|
|
|
|
|
|
extern crate panic_runtime_abort;
|
|
|
|
extern crate panic_runtime_lang_items;
|