rust/src/librustc/middle/trans/cabi_x86_64.rs

412 lines
12 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The classification code for the x86_64 ABI is taken from the clay language
// https://github.com/jckarter/clay/blob/master/compiler/src/externals.cpp
use lib::llvm::{llvm, TypeRef, ValueRef, Integer, Pointer, Float, Double};
use lib::llvm::{Struct, Array, Attribute};
use lib::llvm::{StructRetAttribute, ByValAttribute};
use lib::llvm::struct_tys;
use middle::trans::common::*;
use middle::trans::cabi::*;
use core::cmp;
use core::libc::c_uint;
use core::option;
use core::option::Option;
use core::uint;
use core::vec;
enum x86_64_reg_class {
no_class,
integer_class,
sse_fs_class,
sse_fv_class,
sse_ds_class,
sse_dv_class,
sse_int_class,
sseup_class,
x87_class,
x87up_class,
complex_x87_class,
memory_class
}
impl cmp::Eq for x86_64_reg_class {
pure fn eq(&self, other: &x86_64_reg_class) -> bool {
((*self) as uint) == ((*other) as uint)
}
pure fn ne(&self, other: &x86_64_reg_class) -> bool { !(*self).eq(other) }
}
fn is_sse(++c: x86_64_reg_class) -> bool {
return match c {
sse_fs_class | sse_fv_class |
sse_ds_class | sse_dv_class => true,
_ => false
};
}
fn is_ymm(cls: &[x86_64_reg_class]) -> bool {
let len = vec::len(cls);
return (len > 2u &&
is_sse(cls[0]) &&
cls[1] == sseup_class &&
cls[2] == sseup_class) ||
(len > 3u &&
is_sse(cls[1]) &&
cls[2] == sseup_class &&
cls[3] == sseup_class);
}
fn classify_ty(ty: TypeRef) -> ~[x86_64_reg_class] {
fn align(off: uint, ty: TypeRef) -> uint {
let a = ty_align(ty);
return (off + a - 1u) / a * a;
}
fn ty_align(ty: TypeRef) -> uint {
unsafe {
return match llvm::LLVMGetTypeKind(ty) {
Integer => {
((llvm::LLVMGetIntTypeWidth(ty) as uint) + 7) / 8
}
Pointer => 8,
Float => 4,
Double => 8,
Struct => {
do vec::foldl(1, struct_tys(ty)) |a, t| {
uint::max(a, ty_align(*t))
}
}
Array => {
let elt = llvm::LLVMGetElementType(ty);
ty_align(elt)
}
_ => fail!(~"ty_size: unhandled type")
};
}
}
fn ty_size(ty: TypeRef) -> uint {
unsafe {
return match llvm::LLVMGetTypeKind(ty) {
Integer => {
((llvm::LLVMGetIntTypeWidth(ty) as uint) + 7) / 8
}
Pointer => 8,
Float => 4,
Double => 8,
Struct => {
let size = do vec::foldl(0, struct_tys(ty)) |s, t| {
align(s, *t) + ty_size(*t)
};
align(size, ty)
}
Array => {
let len = llvm::LLVMGetArrayLength(ty) as uint;
let elt = llvm::LLVMGetElementType(ty);
let eltsz = ty_size(elt);
len * eltsz
}
_ => fail!(~"ty_size: unhandled type")
};
}
}
2013-02-07 22:23:43 -06:00
fn all_mem(cls: &mut [x86_64_reg_class]) {
for uint::range(0, cls.len()) |i| {
cls[i] = memory_class;
}
}
2013-02-07 22:23:43 -06:00
fn unify(cls: &mut [x86_64_reg_class],
i: uint,
newv: x86_64_reg_class) {
if cls[i] == newv {
return;
} else if cls[i] == no_class {
cls[i] = newv;
} else if newv == no_class {
return;
} else if cls[i] == memory_class || newv == memory_class {
cls[i] = memory_class;
} else if cls[i] == integer_class || newv == integer_class {
cls[i] = integer_class;
} else if cls[i] == x87_class ||
cls[i] == x87up_class ||
cls[i] == complex_x87_class ||
newv == x87_class ||
newv == x87up_class ||
newv == complex_x87_class {
cls[i] = memory_class;
} else {
cls[i] = newv;
}
}
fn classify_struct(tys: &[TypeRef],
2013-02-07 22:23:43 -06:00
cls: &mut [x86_64_reg_class], i: uint,
off: uint) {
let mut field_off = off;
for vec::each(tys) |ty| {
field_off = align(field_off, *ty);
classify(*ty, cls, i, field_off);
field_off += ty_size(*ty);
}
}
fn classify(ty: TypeRef,
2013-02-07 22:23:43 -06:00
cls: &mut [x86_64_reg_class], ix: uint,
off: uint) {
unsafe {
let t_align = ty_align(ty);
let t_size = ty_size(ty);
let misalign = off % t_align;
if misalign != 0u {
let mut i = off / 8u;
let e = (off + t_size + 7u) / 8u;
while i < e {
unify(cls, ix + i, memory_class);
i += 1u;
}
return;
}
match llvm::LLVMGetTypeKind(ty) as int {
8 /* integer */ |
12 /* pointer */ => {
unify(cls, ix + off / 8u, integer_class);
}
2 /* float */ => {
if off % 8u == 4u {
unify(cls, ix + off / 8u, sse_fv_class);
} else {
unify(cls, ix + off / 8u, sse_fs_class);
}
}
3 /* double */ => {
unify(cls, ix + off / 8u, sse_ds_class);
}
10 /* struct */ => {
classify_struct(struct_tys(ty), cls, ix, off);
}
11 /* array */ => {
let elt = llvm::LLVMGetElementType(ty);
let eltsz = ty_size(elt);
let len = llvm::LLVMGetArrayLength(ty) as uint;
let mut i = 0u;
while i < len {
classify(elt, cls, ix, off + i * eltsz);
i += 1u;
}
}
_ => fail!(~"classify: unhandled type")
}
}
}
2013-02-07 22:23:43 -06:00
fn fixup(ty: TypeRef, cls: &mut [x86_64_reg_class]) {
unsafe {
let mut i = 0u;
let llty = llvm::LLVMGetTypeKind(ty) as int;
let e = vec::len(cls);
if vec::len(cls) > 2u &&
(llty == 10 /* struct */ ||
llty == 11 /* array */) {
if is_sse(cls[i]) {
i += 1u;
while i < e {
if cls[i] != sseup_class {
all_mem(cls);
return;
}
i += 1u;
}
} else {
all_mem(cls);
return
}
} else {
while i < e {
if cls[i] == memory_class {
all_mem(cls);
return;
}
if cls[i] == x87up_class {
// for darwin
// cls[i] = sse_ds_class;
all_mem(cls);
return;
}
if cls[i] == sseup_class {
cls[i] = sse_int_class;
} else if is_sse(cls[i]) {
i += 1;
while cls[i] == sseup_class { i += 1u; }
} else if cls[i] == x87_class {
i += 1;
while cls[i] == x87up_class { i += 1u; }
} else {
i += 1;
}
}
}
}
}
let words = (ty_size(ty) + 7) / 8;
let mut cls = vec::from_elem(words, no_class);
if words > 4 {
all_mem(cls);
let cls = cls;
2013-02-15 03:14:34 -06:00
return cls;
}
classify(ty, cls, 0, 0);
fixup(ty, cls);
2013-02-15 03:14:34 -06:00
return cls;
}
fn llreg_ty(cls: &[x86_64_reg_class]) -> TypeRef {
fn llvec_len(cls: &[x86_64_reg_class]) -> uint {
let mut len = 1u;
for vec::each(cls) |c| {
if *c != sseup_class {
break;
}
len += 1u;
}
return len;
}
unsafe {
let mut tys = ~[];
let mut i = 0u;
let e = vec::len(cls);
while i < e {
match cls[i] {
integer_class => {
tys.push(T_i64());
}
sse_fv_class => {
let vec_len = llvec_len(vec::tailn(cls, i + 1u)) * 2u;
let vec_ty = llvm::LLVMVectorType(T_f32(),
vec_len as c_uint);
tys.push(vec_ty);
i += vec_len;
loop;
}
sse_fs_class => {
tys.push(T_f32());
}
sse_ds_class => {
tys.push(T_f64());
}
_ => fail!(~"llregtype: unhandled class")
}
i += 1u;
}
return T_struct(tys);
}
}
fn x86_64_tys(atys: &[TypeRef],
rty: TypeRef,
ret_def: bool) -> FnType {
fn is_reg_ty(ty: TypeRef) -> bool {
unsafe {
return match llvm::LLVMGetTypeKind(ty) as int {
8 /* integer */ |
12 /* pointer */ |
2 /* float */ |
3 /* double */ => true,
_ => false
};
}
}
fn is_pass_byval(cls: &[x86_64_reg_class]) -> bool {
return cls.len() > 0 &&
(cls[0] == memory_class ||
cls[0] == x87_class ||
cls[0] == complex_x87_class);
}
fn is_ret_bysret(cls: &[x86_64_reg_class]) -> bool {
return cls.len() > 0 && cls[0] == memory_class;
}
fn x86_64_ty(ty: TypeRef,
is_mem_cls: fn(cls: &[x86_64_reg_class]) -> bool,
attr: Attribute) -> (LLVMType, Option<Attribute>) {
let mut cast = false;
let mut ty_attr = option::None;
let mut llty = ty;
if !is_reg_ty(ty) {
let cls = classify_ty(ty);
if is_mem_cls(cls) {
llty = T_ptr(ty);
ty_attr = option::Some(attr);
} else {
cast = true;
llty = llreg_ty(cls);
}
}
return (LLVMType { cast: cast, ty: llty }, ty_attr);
}
let mut arg_tys = ~[];
let mut attrs = ~[];
for vec::each(atys) |t| {
let (ty, attr) = x86_64_ty(*t, is_pass_byval, ByValAttribute);
arg_tys.push(ty);
attrs.push(attr);
}
let mut (ret_ty, ret_attr) = x86_64_ty(rty, is_ret_bysret,
StructRetAttribute);
let sret = ret_attr.is_some();
if sret {
arg_tys = vec::append(~[ret_ty], arg_tys);
ret_ty = LLVMType {
cast: false,
ty: T_void()
};
attrs = vec::append(~[ret_attr], attrs);
} else if !ret_def {
ret_ty = LLVMType {
cast: false,
ty: T_void()
};
}
return FnType {
arg_tys: arg_tys,
ret_ty: ret_ty,
attrs: attrs,
sret: sret
};
}
enum X86_64_ABIInfo { X86_64_ABIInfo }
impl ABIInfo for X86_64_ABIInfo {
fn compute_info(&self,
atys: &[TypeRef],
rty: TypeRef,
ret_def: bool) -> FnType {
return x86_64_tys(atys, rty, ret_def);
}
}
pub fn x86_64_abi_info() -> ABIInfo {
return @X86_64_ABIInfo as @ABIInfo;
}