rust/src/rt/rust_shape.cpp

803 lines
22 KiB
C++
Raw Normal View History

// Functions that interpret the shape of a type to perform various low-level
// actions, such as copying, freeing, comparing, and so on.
#include <algorithm>
#include <utility>
#include <cassert>
#include <cstdio>
#include <cstdlib>
#include "rust_internal.h"
#define ARENA_SIZE 256
#define DPRINT(fmt,...) fprintf(stderr, fmt, ##__VA_ARGS__)
#define DPRINTCX(cx) print::print_cx(cx)
//#define DPRINT(fmt,...)
//#define DPRINTCX(cx)
#ifdef _MSC_VER
#define ALIGNOF __alignof
#else
#define ALIGNOF __alignof__
#endif
namespace shape {
using namespace shape;
// Forward declarations
struct rust_obj;
struct size_align;
struct type_param;
// Constants
const uint8_t SHAPE_U8 = 0u;
const uint8_t SHAPE_U16 = 1u;
const uint8_t SHAPE_U32 = 2u;
const uint8_t SHAPE_U64 = 3u;
const uint8_t SHAPE_I8 = 4u;
const uint8_t SHAPE_I16 = 5u;
const uint8_t SHAPE_I32 = 6u;
const uint8_t SHAPE_I64 = 7u;
const uint8_t SHAPE_F32 = 8u;
const uint8_t SHAPE_F64 = 9u;
const uint8_t SHAPE_EVEC = 10u;
const uint8_t SHAPE_IVEC = 11u;
const uint8_t SHAPE_TAG = 12u;
const uint8_t SHAPE_BOX = 13u;
const uint8_t SHAPE_PORT = 14u;
const uint8_t SHAPE_CHAN = 15u;
const uint8_t SHAPE_TASK = 16u;
const uint8_t SHAPE_STRUCT = 17u;
const uint8_t SHAPE_FN = 18u;
const uint8_t SHAPE_OBJ = 19u;
const uint8_t SHAPE_RES = 20u;
const uint8_t SHAPE_VAR = 21u;
const uint8_t CMP_EQ = 0u;
const uint8_t CMP_LT = 1u;
const uint8_t CMP_LE = 2u;
// Utility functions
// Rounds |size| to the nearest |alignment|. Invariant: |alignment| is a power
// of two.
template<typename T>
static inline T
round_up(T size, size_t alignment) {
assert(alignment);
T x = (T)(((uintptr_t)size + alignment - 1) & ~(alignment - 1));
return x;
}
// Utility classes
struct size_align {
size_t size;
size_t alignment;
size_align(size_t in_size = 0, size_t in_align = 1) :
size(in_size), alignment(in_align) {}
bool is_set() const { return alignment != 0; }
inline void set(size_t in_size, size_t in_align) {
size = in_size;
alignment = in_align;
}
inline void add(const size_align &other) {
add(other.size, other.alignment);
}
inline void add(size_t extra_size, size_t extra_align) {
size += extra_size;
alignment = max(alignment, extra_align);
}
static inline size_align make(size_t in_size) {
size_align sa;
sa.size = sa.alignment = in_size;
return sa;
}
static inline size_align make(size_t in_size, size_t in_align) {
size_align sa;
sa.size = in_size;
sa.alignment = in_align;
return sa;
}
};
struct tag_info {
uint16_t tag_id; // The tag ID.
const uint8_t *info_ptr; // Pointer to the info table.
uint16_t variant_count; // Number of variants in the tag.
const uint8_t *largest_variants_ptr; // Ptr to largest variants table.
size_align tag_sa; // Size and align of this tag.
uint16_t n_params; // Number of type parameters.
const type_param *params; // Array of type parameters.
};
// Contexts
// The base context, an abstract class. We use the curiously recurring
// template pattern here to avoid virtual dispatch.
template<typename T>
class ctxt {
public:
const uint8_t *sp; // shape pointer
const type_param *params; // shapes of type parameters
const rust_shape_tables *tables;
rust_task *task;
template<typename U>
ctxt(const ctxt<U> &other,
const uint8_t *in_sp = NULL,
const type_param *in_params = NULL,
const rust_shape_tables *in_tables = NULL)
: sp(in_sp ? in_sp : other.sp),
params(in_params ? in_params : other.params),
tables(in_tables ? in_tables : other.tables),
task(other.task) {}
void walk(bool align);
protected:
static inline uint16_t get_u16(const uint8_t *addr);
static inline uint16_t get_u16_bump(const uint8_t *&addr);
inline size_align get_size_align(const uint8_t *&addr);
private:
void walk_evec(bool align);
void walk_ivec(bool align);
void walk_tag(bool align);
void walk_box(bool align);
void walk_struct(bool align);
void walk_res(bool align);
void walk_var(bool align);
};
struct rust_fn {
void (*code)(uint8_t *rv, rust_task *task, void *env, ...);
void *env;
};
struct rust_closure {
type_desc *tydesc;
uint32_t target_0;
uint32_t target_1;
uint32_t bindings[0];
uint8_t *get_bindings() const { return (uint8_t *)bindings; }
};
struct rust_obj_box {
type_desc *tydesc;
uint8_t *get_bindings() const { return (uint8_t *)this; }
};
struct rust_vtable {
CDECL void (*dtor)(void *rv, rust_task *task, rust_obj obj);
};
struct rust_obj {
rust_vtable *vtable;
void *box;
};
// Arenas; these functions must execute very quickly, so we use an arena
// instead of malloc or new.
class arena {
uint8_t *ptr;
uint8_t data[ARENA_SIZE];
public:
arena() : ptr(data) {}
template<typename T>
inline T *alloc(size_t count = 1) {
// FIXME: align
size_t sz = count * sizeof(T);
//DPRINT("size is %lu\n", sz);
T *rv = (T *)ptr;
ptr += sz;
if (ptr > &data[ARENA_SIZE]) {
fprintf(stderr, "Arena space exhausted, sorry\n");
abort();
}
return rv;
}
};
// Type parameters
struct type_param {
const uint8_t *shape;
const rust_shape_tables *tables;
const struct type_param *params; // subparameters
template<typename T>
inline void set(ctxt<T> *cx) {
shape = cx->sp;
tables = cx->tables;
params = cx->params;
}
static type_param *make(const type_desc *tydesc, arena &arena) {
uint32_t n_params = tydesc->n_params;
if (!n_params)
return NULL;
type_param *ptrs = arena.alloc<type_param>(n_params);
for (uint32_t i = 0; i < n_params; i++) {
const type_desc *subtydesc = tydesc->first_param[i];
ptrs[i].shape = subtydesc->shape;
ptrs[i].tables = subtydesc->shape_tables;
ptrs[i].params = make(subtydesc, arena);
}
return ptrs;
}
};
// Traversals
#define WALK_NUMBER(c_type) \
static_cast<T *>(this)->template walk_number<c_type>(align)
#define WALK_SIMPLE(method) static_cast<T *>(this)->method(align)
template<typename T>
void
ctxt<T>::walk(bool align) {
switch (*sp++) {
case SHAPE_U8: WALK_NUMBER(uint8_t); break;
case SHAPE_U16: WALK_NUMBER(uint16_t); break;
case SHAPE_U32: WALK_NUMBER(uint32_t); break;
case SHAPE_U64: WALK_NUMBER(uint64_t); break;
case SHAPE_I8: WALK_NUMBER(int8_t); break;
case SHAPE_I16: WALK_NUMBER(int16_t); break;
case SHAPE_I32: WALK_NUMBER(int32_t); break;
case SHAPE_I64: WALK_NUMBER(int64_t); break;
case SHAPE_F32: WALK_NUMBER(float); break;
case SHAPE_F64: WALK_NUMBER(double); break;
case SHAPE_EVEC: walk_evec(align); break;
case SHAPE_IVEC: walk_ivec(align); break;
case SHAPE_TAG: walk_tag(align); break;
case SHAPE_BOX: walk_box(align); break;
case SHAPE_PORT: WALK_SIMPLE(walk_port); break;
case SHAPE_CHAN: WALK_SIMPLE(walk_chan); break;
case SHAPE_TASK: WALK_SIMPLE(walk_task); break;
case SHAPE_STRUCT: walk_struct(align); break;
case SHAPE_FN: WALK_SIMPLE(walk_fn); break;
case SHAPE_OBJ: WALK_SIMPLE(walk_obj); break;
case SHAPE_RES: walk_res(align); break;
case SHAPE_VAR: walk_var(align); break;
default: abort();
}
}
template<typename T>
uint16_t
ctxt<T>::get_u16(const uint8_t *addr) {
return *reinterpret_cast<const uint16_t *>(addr);
}
template<typename T>
uint16_t
ctxt<T>::get_u16_bump(const uint8_t *&addr) {
uint16_t result = get_u16(addr);
addr += sizeof(uint16_t);
return result;
}
template<typename T>
size_align
ctxt<T>::get_size_align(const uint8_t *&addr) {
size_align result;
result.size = get_u16_bump(addr);
result.alignment = *addr++;
return result;
}
template<typename T>
void
ctxt<T>::walk_evec(bool align) {
bool is_pod = *sp++;
uint16_t sp_size = get_u16_bump(sp);
const uint8_t *end_sp = sp + sp_size;
static_cast<T *>(this)->walk_evec(align, is_pod, sp_size);
sp = end_sp;
}
template<typename T>
void
ctxt<T>::walk_ivec(bool align) {
bool is_pod = *sp++;
size_align elem_sa = get_size_align(sp);
uint16_t sp_size = get_u16_bump(sp);
const uint8_t *end_sp = sp + sp_size;
// FIXME: Hack to work around our incorrect alignment in some cases.
if (elem_sa.alignment == 8)
elem_sa.alignment = 4;
static_cast<T *>(this)->walk_ivec(align, is_pod, elem_sa);
sp = end_sp;
}
template<typename T>
void
ctxt<T>::walk_tag(bool align) {
tag_info tinfo;
tinfo.tag_id = get_u16_bump(sp);
// Determine the info pointer.
uint16_t info_offset = get_u16(tables->tags +
tinfo.tag_id * sizeof(uint16_t));
tinfo.info_ptr = tables->tags + info_offset;
tinfo.variant_count = get_u16_bump(tinfo.info_ptr);
// Determine the largest-variants pointer.
uint16_t largest_variants_offset = get_u16_bump(tinfo.info_ptr);
tinfo.largest_variants_ptr = tables->tags + largest_variants_offset;
// Determine the size and alignment.
tinfo.tag_sa = get_size_align(tinfo.info_ptr);
// Determine the number of parameters.
tinfo.n_params = get_u16_bump(sp);
// Read in the tag type parameters.
type_param params[tinfo.n_params];
for (uint16_t i = 0; i < tinfo.n_params; i++) {
uint16_t len = get_u16_bump(sp);
params[i].set(this);
sp += len;
}
tinfo.params = params;
// Call to the implementation.
static_cast<T *>(this)->walk_tag(align, tinfo);
}
template<typename T>
void
ctxt<T>::walk_box(bool align) {
uint16_t sp_size = get_u16_bump(sp);
const uint8_t *end_sp = sp + sp_size;
static_cast<T *>(this)->walk_box(align);
sp = end_sp;
}
template<typename T>
void
ctxt<T>::walk_struct(bool align) {
uint16_t sp_size = get_u16_bump(sp);
const uint8_t *end_sp = sp + sp_size;
static_cast<T *>(this)->walk_struct(align, end_sp);
sp = end_sp;
}
template<typename T>
void
ctxt<T>::walk_res(bool align) {
uint16_t dtor_offset = get_u16_bump(sp);
const rust_fn **resources =
reinterpret_cast<const rust_fn **>(tables->resources);
const rust_fn *dtor = resources[dtor_offset];
uint16_t n_ty_params = get_u16_bump(sp);
uint16_t ty_params_size = get_u16_bump(sp);
const uint8_t *ty_params_sp = sp;
sp += ty_params_size;
uint16_t sp_size = get_u16_bump(sp);
const uint8_t *end_sp = sp + sp_size;
static_cast<T *>(this)->walk_res(align, dtor, n_ty_params, ty_params_sp);
sp = end_sp;
}
template<typename T>
void
ctxt<T>::walk_var(bool align) {
uint8_t param = *sp++;
static_cast<T *>(this)->walk_var(align, param);
}
// A shape printer, useful for debugging
class print : public ctxt<print> {
public:
template<typename T>
print(const ctxt<T> &other,
const uint8_t *in_sp = NULL,
const type_param *in_params = NULL,
const rust_shape_tables *in_tables = NULL)
: ctxt<print>(other, in_sp, in_params, in_tables) {}
void walk_tag(bool align, tag_info &tinfo);
void walk_struct(bool align, const uint8_t *end_sp);
void walk_res(bool align, const rust_fn *dtor, uint16_t n_ty_params,
const uint8_t *ty_params_sp);
void walk_var(bool align, uint8_t param);
void walk_evec(bool align, bool is_pod, uint16_t sp_size) {
DPRINT("evec<"); walk(align); DPRINT(">");
}
void walk_ivec(bool align, bool is_pod, size_align &elem_sa) {
DPRINT("ivec<"); walk(align); DPRINT(">");
}
void walk_box(bool align) {
DPRINT("box<"); walk(align); DPRINT(">");
}
void walk_port(bool align) { DPRINT("port"); }
void walk_chan(bool align) { DPRINT("chan"); }
void walk_task(bool align) { DPRINT("task"); }
void walk_fn(bool align) { DPRINT("fn"); }
void walk_obj(bool align) { DPRINT("obj"); }
template<typename T>
void walk_number(bool align) {}
template<typename T>
static void print_cx(const T *cx) {
print self(*cx);
self.walk(false);
}
};
void
print::walk_tag(bool align, tag_info &tinfo) {
DPRINT("tag%u", tinfo.tag_id);
if (!tinfo.n_params)
return;
DPRINT("<");
bool first = true;
for (uint16_t i = 0; i < tinfo.n_params; i++) {
if (!first)
DPRINT(",");
first = false;
ctxt<print> sub(*this, tinfo.params[i].shape);
sub.walk(align);
}
DPRINT(">");
}
void
print::walk_struct(bool align, const uint8_t *end_sp) {
DPRINT("(");
bool first = true;
while (sp != end_sp) {
if (!first)
DPRINT(",");
first = false;
walk(align);
}
DPRINT(")");
}
void
print::walk_res(bool align, const rust_fn *dtor, uint16_t n_ty_params,
const uint8_t *ty_params_sp) {
DPRINT("res@%p", dtor);
if (!n_ty_params)
return;
DPRINT("<");
bool first = true;
for (uint16_t i = 0; i < n_ty_params; i++) {
if (!first)
DPRINT(",");
first = false;
get_u16_bump(sp); // Skip over the size.
walk(align);
}
DPRINT(">");
}
void
print::walk_var(bool align, uint8_t param_index) {
DPRINT("%c=", 'T' + param_index);
const type_param *param = &params[param_index];
print sub(*this, param->shape, param->params, param->tables);
sub.walk(align);
}
template<>
void print::walk_number<uint8_t>(bool align) { DPRINT("u8"); }
template<>
void print::walk_number<uint16_t>(bool align) { DPRINT("u16"); }
template<>
void print::walk_number<uint32_t>(bool align) { DPRINT("u32"); }
template<>
void print::walk_number<uint64_t>(bool align) { DPRINT("u64"); }
template<>
void print::walk_number<int8_t>(bool align) { DPRINT("i8"); }
template<>
void print::walk_number<int16_t>(bool align) { DPRINT("i16"); }
template<>
void print::walk_number<int32_t>(bool align) { DPRINT("i32"); }
template<>
void print::walk_number<int64_t>(bool align) { DPRINT("i64"); }
template<>
void print::walk_number<float>(bool align) { DPRINT("f32"); }
template<>
void print::walk_number<double>(bool align) { DPRINT("f64"); }
//
// Size-of (which also computes alignment). Be warned: this is an expensive
// operation.
//
// TODO: Maybe dynamic_size_of() should call into this somehow?
//
class size_of : public ctxt<size_of> {
private:
size_align sa;
public:
size_of(const size_of &other,
const uint8_t *in_sp,
const type_param *in_params,
const rust_shape_tables *in_tables)
: ctxt<size_of>(other, in_sp, in_params, in_tables) {}
void walk_tag(bool align, tag_info &tinfo);
void walk_struct(bool align, const uint8_t *end_sp);
void walk_ivec(bool align, bool is_pod, size_align &elem_sa);
void walk_box(bool align) { sa.set(sizeof(void *), sizeof(void *)); }
void walk_port(bool align) { sa.set(sizeof(void *), sizeof(void *)); }
void walk_chan(bool align) { sa.set(sizeof(void *), sizeof(void *)); }
void walk_task(bool align) { sa.set(sizeof(void *), sizeof(void *)); }
void walk_fn(bool align) { sa.set(sizeof(void *)*2, sizeof(void *)); }
void walk_obj(bool align) { sa.set(sizeof(void *)*2, sizeof(void *)); }
void walk_evec(bool align, bool is_pod, uint16_t sp_size) {
sa.set(sizeof(void *), sizeof(void *));
}
void walk_var(bool align, uint8_t param_index) {
const type_param *param = &params[param_index];
size_of sub(*this, param->shape, param->params, param->tables);
sub.walk(align);
sa = sub.sa;
}
void walk_res(bool align, const rust_fn *dtor, uint16_t n_ty_params,
const uint8_t *ty_params_sp) {
abort(); // TODO
}
template<typename T>
void walk_number(bool align) { sa.set(sizeof(T), ALIGNOF(T)); }
template<typename T>
static size_align get(const ctxt<T> &other_cx, unsigned back_up = 0) {
size_of cx(*other_cx, other_cx->sp - back_up);
cx.walk(false);
assert(cx.sa.alignment > 0);
return cx.sa;
}
};
void
size_of::walk_tag(bool align, tag_info &tinfo) {
// If the precalculated size and alignment are good, use them.
if (tinfo.tag_sa.is_set()) {
sa = tinfo.tag_sa;
return;
}
uint16_t n_largest_variants = get_u16_bump(tinfo.largest_variants_ptr);
sa.set(0, 0);
for (uint16_t i = 0; i < n_largest_variants; i++) {
uint16_t variant_id = get_u16_bump(tinfo.largest_variants_ptr);
uint16_t variant_offset = get_u16(tinfo.info_ptr +
variant_id * sizeof(uint16_t));
const uint8_t *variant_ptr = tables->tags + variant_offset;
uint16_t variant_len = get_u16_bump(variant_ptr);
const uint8_t *variant_end = variant_ptr + variant_len;
size_of sub(*this, variant_ptr, params, NULL);
// Compute the size of this variant.
size_align variant_sa;
bool first = true;
while (sub.sp != variant_end) {
if (!first)
variant_sa.size = round_up(variant_sa.size, sub.sa.alignment);
sub.walk(!first);
first = false;
variant_sa.add(sub.sa.size, sub.sa.alignment);
}
if (sa.size < variant_sa.size)
sa = variant_sa;
}
if (tinfo.variant_count == 1) {
if (!sa.size)
sa.set(1, 1);
} else {
// Add in space for the tag.
sa.add(sizeof(uint32_t), ALIGNOF(uint32_t));
}
}
void
size_of::walk_struct(bool align, const uint8_t *end_sp) {
size_align struct_sa(0, 1);
bool first = true;
while (sp != end_sp) {
if (!first)
struct_sa.size = round_up(struct_sa.size, sa.alignment);
walk(!first);
first = false;
struct_sa.add(sa);
}
sa = struct_sa;
}
void
size_of::walk_ivec(bool align, bool is_pod, size_align &elem_sa) {
if (!elem_sa.is_set())
walk(align); // Determine the size the slow way.
else
sa = elem_sa; // Use the size hint.
sa.set(sizeof(rust_ivec) - sizeof(uintptr_t) + sa.size * 4,
max(sa.alignment, sizeof(uintptr_t)));
}
#if 0
// An abstract class (again using the curiously recurring template pattern)
// for methods that actually manipulate the data involved.
#define DATA_SIMPLE(ty, call) \
if (align) dp.align(sizeof(ty)); \
static_cast<T *>(this)->call; \
dp += sizeof(ty);
template<typename T,typename U>
class data : public ctxt<data> {
private:
U dp;
public:
void walk_tag(bool align, uint16_t tag_id, const uint8_t *info_ptr,
uint16_t variant_count, const uint8_t *largest_variants_ptr,
size_align &tag_sa, uint16_t n_params,
const type_param *params);
void walk_ivec(bool align, bool is_pod, size_align &elem_sa);
void walk_struct(bool align, const uint8_t *end_sp) {
while (sp != end_sp) {
// TODO: Allow subclasses to optimize for POD if they want to.
walk(align);
align = true;
}
}
void walk_evec(bool align, bool is_pod, uint16_t sp_size) {
DATA_SIMPLE(void *, walk_evec(align, is_pod, sp_size));
}
void walk_box(bool align) { DATA_SIMPLE(void *, walk_box(align)); }
void walk_port(bool align) { DATA_SIMPLE(void *, walk_port(align)); }
void walk_chan(bool align) { DATA_SIMPLE(void *, walk_chan(align)); }
void walk_task(bool align) { DATA_SIMPLE(void *, walk_task(align)); }
void walk_fn(bool align) {
if (align) dp.align(sizeof(void *));
static_cast<T *>(this)->walk_fn(args);
dp += sizeof(void *) * 2;
}
void walk_obj(bool align) {
if (align) dp.align(sizeof(void *));
static_cast<T *>(this)->walk_obj(args);
dp += sizeof(void *) * 2;
}
void walk_var(bool align, uint8_t param_index) {
static_cast<T *>(this)->walk_var(align, param_index);
}
template<typename W>
void walk_number(bool align) {
DATA_SIMPLE(W, walk_number<W>(align));
}
};
template<typename T,typename U>
void
data<T,U>::walk_ivec(bool align, bool is_pod, size_align &elem_sa) {
if (!elem_sa.is_set())
elem_sa = size_of::get(*this);
else if (elem_sa.alignment == 8)
elem_sa.alignment = 4; // FIXME: This is an awful hack.
// Get a pointer to the interior vector, and skip over it.
if (align) dp.align(ALIGNOF(rust_ivec *));
U end_dp = dp + sizeof(rust_ivec) - sizeof(uintptr_t) + elem_sa.size * 4;
// Call to the implementation.
static_cast<T *>(this)->walk_ivec(align, is_pod, elem_sa);
dp = end_dp;
}
template<typename T,typename U>
void
data<T,U>::walk_tag(bool align, uint16_t tag_id, const uint8_t *info_ptr,
uint16_t variant_count,
const uint8_t *largest_variants_ptr, size_align &tag_sa,
uint16_t n_params, const type_param *params) {
uint32_t tag_variant;
U end_dp;
if (variant_count > 1) {
if (align) dp.align(ALIGNOF(uint32_t));
process_tag_variant_ids(
U::data<uint32_t> tag_variant =
}
#endif
// Copy constructors
class copy : public ctxt<copy> {
// TODO
};
} // end namespace shape