rust/src/libstd/ops.rs

491 lines
9.5 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// So we don't have to document the actual methods on the traits.
#[allow(missing_doc)];
/*!
*
* Traits representing built-in operators, useful for overloading
*
* Implementing these traits allows you to get an effect similar to
* overloading operators.
*
* The values for the right hand side of an operator are automatically
* borrowed, so `a + b` is sugar for `a.add(&b)`.
*
* All of these traits are imported by the prelude, so they are available in
* every Rust program.
*
* # Example
*
* This example creates a `Point` struct that implements `Add` and `Sub`, and then
* demonstrates adding and subtracting two `Point`s.
*
* ```rust
* struct Point {
* x: int,
* y: int
* }
*
* impl Add<Point, Point> for Point {
* fn add(&self, other: &Point) -> Point {
* Point {x: self.x + other.x, y: self.y + other.y}
* }
* }
*
* impl Sub<Point, Point> for Point {
* fn sub(&self, other: &Point) -> Point {
* Point {x: self.x - other.x, y: self.y - other.y}
* }
* }
* fn main() {
* println!("{:?}", Point {x: 1, y: 0} + Point {x: 2, y: 3});
* println!("{:?}", Point {x: 1, y: 0} - Point {x: 2, y: 3});
* }
* ```
*
* See the documentation for each trait for a minimum implementation that prints
* something to the screen.
*
*/
/**
*
* The `Drop` trait is used to run some code when a value goes out of scope. This
* is sometimes called a 'destructor'.
*
* # Example
*
* A trivial implementation of `Drop`. The `drop` method is called when `_x` goes
* out of scope, and therefore `main` prints `Dropping!`.
*
* ```rust
* struct HasDrop;
*
* impl Drop for HasDrop {
* fn drop(&mut self) {
* println!("Dropping!");
* }
* }
*
* fn main() {
* let _x = HasDrop;
* }
* ```
*/
#[lang="drop"]
pub trait Drop {
2013-09-16 21:18:07 -04:00
fn drop(&mut self);
}
/**
*
* The `Add` trait is used to specify the functionality of `+`.
*
* # Example
*
* A trivial implementation of `Add`. When `Foo + Foo` happens, it ends up
* calling `add`, and therefore, `main` prints `Adding!`.
*
* ```rust
* struct Foo;
*
* impl Add<Foo, Foo> for Foo {
* fn add(&self, _rhs: &Foo) -> Foo {
* println!("Adding!");
* *self
* }
* }
*
* fn main() {
* Foo + Foo;
* }
* ```
*/
#[lang="add"]
pub trait Add<RHS,Result> {
fn add(&self, rhs: &RHS) -> Result;
}
/**
*
* The `Sub` trait is used to specify the functionality of `-`.
*
* # Example
*
* A trivial implementation of `Sub`. When `Foo - Foo` happens, it ends up
* calling `sub`, and therefore, `main` prints `Subtracting!`.
*
* ```rust
* struct Foo;
*
* impl Sub<Foo, Foo> for Foo {
* fn sub(&self, _rhs: &Foo) -> Foo {
* println!("Subtracting!");
* *self
* }
* }
*
* fn main() {
* Foo - Foo;
* }
* ```
*/
#[lang="sub"]
pub trait Sub<RHS,Result> {
fn sub(&self, rhs: &RHS) -> Result;
}
/**
*
* The `Mul` trait is used to specify the functionality of `*`.
*
* # Example
*
* A trivial implementation of `Mul`. When `Foo * Foo` happens, it ends up
* calling `mul`, and therefore, `main` prints `Multiplying!`.
*
* ```rust
* struct Foo;
*
* impl Mul<Foo, Foo> for Foo {
* fn mul(&self, _rhs: &Foo) -> Foo {
* println!("Multiplying!");
* *self
* }
* }
*
* fn main() {
* Foo * Foo;
* }
* ```
*/
#[lang="mul"]
pub trait Mul<RHS,Result> {
fn mul(&self, rhs: &RHS) -> Result;
}
/**
*
* The `Div` trait is used to specify the functionality of `/`.
*
* # Example
*
* A trivial implementation of `Div`. When `Foo / Foo` happens, it ends up
* calling `div`, and therefore, `main` prints `Dividing!`.
*
* ```
* struct Foo;
*
* impl Div<Foo, Foo> for Foo {
* fn div(&self, _rhs: &Foo) -> Foo {
* println!("Dividing!");
* *self
* }
* }
*
* fn main() {
* Foo / Foo;
* }
* ```
*/
#[lang="div"]
pub trait Div<RHS,Result> {
fn div(&self, rhs: &RHS) -> Result;
}
/**
*
* The `Rem` trait is used to specify the functionality of `%`.
*
* # Example
*
* A trivial implementation of `Rem`. When `Foo % Foo` happens, it ends up
* calling `rem`, and therefore, `main` prints `Remainder-ing!`.
*
* ```
* struct Foo;
*
* impl Rem<Foo, Foo> for Foo {
* fn rem(&self, _rhs: &Foo) -> Foo {
* println!("Remainder-ing!");
* *self
* }
* }
*
* fn main() {
* Foo % Foo;
* }
* ```
*/
#[lang="rem"]
pub trait Rem<RHS,Result> {
fn rem(&self, rhs: &RHS) -> Result;
}
/**
*
* The `Neg` trait is used to specify the functionality of unary `-`.
*
* # Example
*
* A trivial implementation of `Neg`. When `-Foo` happens, it ends up calling
* `neg`, and therefore, `main` prints `Negating!`.
*
* ```
* struct Foo;
*
* impl Neg<Foo> for Foo {
* fn neg(&self) -> Foo {
* println!("Negating!");
* *self
* }
* }
*
* fn main() {
* -Foo;
* }
* ```
*/
2012-07-25 19:03:55 -07:00
#[lang="neg"]
pub trait Neg<Result> {
fn neg(&self) -> Result;
2012-07-25 19:03:55 -07:00
}
/**
*
* The `Not` trait is used to specify the functionality of unary `!`.
*
* # Example
*
* A trivial implementation of `Not`. When `!Foo` happens, it ends up calling
* `not`, and therefore, `main` prints `Not-ing!`.
*
* ```
* struct Foo;
*
* impl Not<Foo> for Foo {
* fn not(&self) -> Foo {
* println!("Not-ing!");
* *self
* }
* }
*
* fn main() {
* !Foo;
* }
* ```
*/
#[lang="not"]
pub trait Not<Result> {
fn not(&self) -> Result;
}
/**
*
* The `BitAnd` trait is used to specify the functionality of `&`.
*
* # Example
*
* A trivial implementation of `BitAnd`. When `Foo & Foo` happens, it ends up
* calling `bitand`, and therefore, `main` prints `Bitwise And-ing!`.
*
* ```
* struct Foo;
*
* impl BitAnd<Foo, Foo> for Foo {
* fn bitand(&self, _rhs: &Foo) -> Foo {
* println!("Bitwise And-ing!");
* *self
* }
* }
*
* fn main() {
* Foo & Foo;
* }
* ```
*/
#[lang="bitand"]
pub trait BitAnd<RHS,Result> {
fn bitand(&self, rhs: &RHS) -> Result;
}
/**
*
* The `BitOr` trait is used to specify the functionality of `|`.
*
* # Example
*
* A trivial implementation of `BitOr`. When `Foo | Foo` happens, it ends up
* calling `bitor`, and therefore, `main` prints `Bitwise Or-ing!`.
*
* ```
* struct Foo;
*
* impl BitOr<Foo, Foo> for Foo {
* fn bitor(&self, _rhs: &Foo) -> Foo {
* println!("Bitwise Or-ing!");
* *self
* }
* }
*
* fn main() {
* Foo | Foo;
* }
* ```
*/
#[lang="bitor"]
pub trait BitOr<RHS,Result> {
fn bitor(&self, rhs: &RHS) -> Result;
}
/**
*
* The `BitXor` trait is used to specify the functionality of `^`.
*
* # Example
*
* A trivial implementation of `BitXor`. When `Foo ^ Foo` happens, it ends up
2013-12-15 16:26:09 +11:00
* calling `bitxor`, and therefore, `main` prints `Bitwise Xor-ing!`.
*
* ```
* struct Foo;
*
* impl BitXor<Foo, Foo> for Foo {
* fn bitxor(&self, _rhs: &Foo) -> Foo {
* println!("Bitwise Xor-ing!");
* *self
* }
* }
*
* fn main() {
* Foo ^ Foo;
* }
* ```
*/
#[lang="bitxor"]
pub trait BitXor<RHS,Result> {
fn bitxor(&self, rhs: &RHS) -> Result;
}
/**
*
* The `Shl` trait is used to specify the functionality of `<<`.
*
* # Example
*
* A trivial implementation of `Shl`. When `Foo << Foo` happens, it ends up
* calling `shl`, and therefore, `main` prints `Shifting left!`.
*
* ```
* struct Foo;
*
* impl Shl<Foo, Foo> for Foo {
* fn shl(&self, _rhs: &Foo) -> Foo {
* println!("Shifting left!");
* *self
* }
* }
*
* fn main() {
* Foo << Foo;
* }
* ```
*/
#[lang="shl"]
pub trait Shl<RHS,Result> {
fn shl(&self, rhs: &RHS) -> Result;
}
/**
*
* The `Shr` trait is used to specify the functionality of `>>`.
*
* # Example
*
* A trivial implementation of `Shr`. When `Foo >> Foo` happens, it ends up
* calling `shr`, and therefore, `main` prints `Shifting right!`.
*
* ```
* struct Foo;
*
* impl Shr<Foo, Foo> for Foo {
* fn shr(&self, _rhs: &Foo) -> Foo {
* println!("Shifting right!");
* *self
* }
* }
*
* fn main() {
* Foo >> Foo;
* }
* ```
*/
#[lang="shr"]
pub trait Shr<RHS,Result> {
fn shr(&self, rhs: &RHS) -> Result;
}
/**
*
* The `Index` trait is used to specify the functionality of indexing operations
* like `arr[idx]`.
*
* # Example
*
* A trivial implementation of `Index`. When `Foo[Foo]` happens, it ends up
* calling `index`, and therefore, `main` prints `Indexing!`.
*
* ```
* struct Foo;
*
* impl Index<Foo, Foo> for Foo {
* fn index(&self, _rhs: &Foo) -> Foo {
* println!("Indexing!");
* *self
* }
* }
*
* fn main() {
* Foo[Foo];
* }
* ```
*/
#[lang="index"]
pub trait Index<Index,Result> {
fn index(&self, index: &Index) -> Result;
}
#[cfg(test)]
mod bench {
use extra::test::BenchHarness;
use ops::Drop;
// Overhead of dtors
struct HasDtor {
x: int
}
impl Drop for HasDtor {
2013-09-16 21:18:07 -04:00
fn drop(&mut self) {
}
}
#[bench]
fn alloc_obj_with_dtor(bh: &mut BenchHarness) {
2013-11-22 14:15:32 -08:00
bh.iter(|| {
HasDtor { x : 10 };
2013-11-22 14:15:32 -08:00
})
}
2013-09-16 21:18:07 -04:00
}