rust/src/bootstrap/lib.rs

1143 lines
43 KiB
Rust
Raw Normal View History

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Implementation of rustbuild, the Rust build system.
//!
//! This module, and its descendants, are the implementation of the Rust build
//! system. Most of this build system is backed by Cargo but the outer layer
//! here serves as the ability to orchestrate calling Cargo, sequencing Cargo
//! builds, building artifacts like LLVM, etc. The goals of rustbuild are:
//!
//! * To be an easily understandable, easily extensible, and maintainable build
//! system.
//! * Leverage standard tools in the Rust ecosystem to build the compiler, aka
//! crates.io and Cargo.
//! * A standard interface to build across all platforms, including MSVC
//!
//! ## Architecture
//!
//! Although this build system defers most of the complicated logic to Cargo
//! itself, it still needs to maintain a list of targets and dependencies which
//! it can itself perform. Rustbuild is made up of a list of rules with
//! dependencies amongst them (created in the `step` module) and then knows how
//! to execute each in sequence. Each time rustbuild is invoked, it will simply
//! iterate through this list of steps and execute each serially in turn. For
//! each step rustbuild relies on the step internally being incremental and
//! parallel. Note, though, that the `-j` parameter to rustbuild gets forwarded
//! to appropriate test harnesses and such.
//!
//! Most of the "meaty" steps that matter are backed by Cargo, which does indeed
//! have its own parallelism and incremental management. Later steps, like
//! tests, aren't incremental and simply run the entire suite currently.
//!
//! When you execute `x.py build`, the steps which are executed are:
//!
//! * First, the python script is run. This will automatically download the
//! stage0 rustc and cargo according to `src/stage0.txt`, or using the cached
//! versions if they're available. These are then used to compile rustbuild
//! itself (using Cargo). Finally, control is then transferred to rustbuild.
//!
//! * Rustbuild takes over, performs sanity checks, probes the environment,
//! reads configuration, builds up a list of steps, and then starts executing
//! them.
//!
//! * The stage0 libstd is compiled
//! * The stage0 libtest is compiled
//! * The stage0 librustc is compiled
//! * The stage1 compiler is assembled
//! * The stage1 libstd, libtest, librustc are compiled
//! * The stage2 compiler is assembled
//! * The stage2 libstd, libtest, librustc are compiled
//!
//! Each step is driven by a separate Cargo project and rustbuild orchestrates
//! copying files between steps and otherwise preparing for Cargo to run.
//!
//! ## Further information
//!
//! More documentation can be found in each respective module below, and you can
//! also check out the `src/bootstrap/README.md` file for more information.
#![deny(warnings)]
#[macro_use]
extern crate build_helper;
extern crate cmake;
extern crate filetime;
extern crate gcc;
extern crate getopts;
extern crate num_cpus;
extern crate rustc_serialize;
extern crate toml;
#[cfg(unix)]
extern crate libc;
use std::cmp;
use std::collections::HashMap;
use std::env;
use std::ffi::OsString;
use std::fs::{self, File};
use std::io::Read;
use std::path::{Component, PathBuf, Path};
use std::process::Command;
rustbuild: Add support for compiling Cargo This commit adds support to rustbuild for compiling Cargo as part of the release process. Previously rustbuild would simply download a Cargo snapshot and repackage it. With this change we should be able to turn off artifacts from the rust-lang/cargo repository and purely rely on the artifacts Cargo produces here. The infrastructure added here is intended to be extensible to other components, such as the RLS. It won't exactly be a one-line addition, but the addition of Cargo didn't require too much hooplah anyway. The process for release Cargo will now look like: * The rust-lang/rust repository has a Cargo submodule which is used to build a Cargo to pair with the rust-lang/rust release * Periodically we'll update the cargo submodule as necessary on rust-lang/rust's master branch * When branching beta we'll create a new branch of Cargo (as we do today), and the first commit to the beta branch will be to update the Cargo submodule to this exact revision. * When branching stable, we'll ensure that the Cargo submodule is updated and then make a stable release. Backports to Cargo will look like: * Send a PR to cargo's master branch * Send a PR to cargo's release branch (e.g. rust-1.16.0) * Send a PR to rust-lang/rust's beta branch updating the submodule * Eventually send a PR to rust-lang/rust's master branch updating the submodule For reference, the process to add a new component to the rust-lang/rust release would look like: * Add `$foo` as a submodule in `src/tools` * Add a `tool-$foo` step which compiles `$foo` with the specified compiler, likely mirroring what Cargo does. * Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output to create a rust-installer package for `$foo` likely mirroring what Cargo does. * Update the `dist-extended` step with a new dependency on `dist-$foo` * Update `src/tools/build-manifest` for the new component.
2017-02-15 15:57:06 -08:00
use build_helper::{run_silent, run_suppressed, output, mtime};
use util::{exe, libdir, add_lib_path};
mod cc;
mod channel;
mod check;
mod clean;
mod compile;
rustbuild: Rewrite user-facing interface This commit is a rewrite of the user-facing interface to the rustbuild build system. The intention here is to make it much easier to compile/test the project without having to remember weird rule names and such. An overall view of the new interface is: # build everything ./x.py build # document everyting ./x.py doc # test everything ./x.py test # test libstd ./x.py test src/libstd # build libcore stage0 ./x.py build src/libcore --stage 0 # run stage1 run-pass tests ./x.py test src/test/run-pass --stage 1 The `src/bootstrap/bootstrap.py` script is now aliased as a top-level `x.py` script. This `x` was chosen to be both short and easily tab-completable (no collisions in that namespace!). The build system now accepts a "subcommand" of what to do next, the main ones being build/doc/test. Each subcommand then receives an optional list of arguments. These arguments are paths in the source repo of what to work with. That is, if you want to test a directory, you just pass that directory as an argument. The purpose of this rewrite is to do away with all of the arcane renames like "rpass" is the "run-pass" suite, "cfail" is the "compile-fail" suite, etc. By simply working with directories and files it's much more intuitive of how to run a test (just pass it as an argument). The rustbuild step/dependency management was also rewritten along the way to make this easy to work with and define, but that's largely just a refactoring of what was there before. The *intention* is that this support is extended for arbitrary files (e.g. `src/test/run-pass/my-test-case.rs`), but that isn't quite implemented just yet. Instead directories work for now but we can follow up with stricter path filtering logic to plumb through all the arguments.
2016-10-21 13:18:09 -07:00
mod metadata;
mod config;
mod dist;
mod doc;
mod flags;
mod install;
mod native;
mod sanity;
mod step;
pub mod util;
#[cfg(windows)]
mod job;
#[cfg(unix)]
mod job {
use libc;
//apparently glibc defines their own enum for this parameter, in a different type
#[cfg(not(any(target_env = "musl", target_env = "musleabi", target_env = "musleabihf",
target_os = "emscripten", target_arch = "mips", target_arch = "mipsel")))]
const PRIO_PGRP: libc::c_uint = libc::PRIO_PGRP as libc::c_uint;
#[cfg(any(target_env = "musl", target_env = "musleabi", target_env = "musleabihf",
target_os = "emscripten", target_arch = "mips", target_arch = "mipsel"))]
const PRIO_PGRP: libc::c_int = libc::PRIO_PGRP;
pub unsafe fn setup(build: &mut ::Build) {
if build.config.low_priority {
libc::setpriority(PRIO_PGRP, 0, 10);
}
}
}
#[cfg(not(any(unix, windows)))]
mod job {
pub unsafe fn setup(_build: &mut ::Build) {
}
}
pub use config::Config;
rustbuild: Rewrite user-facing interface This commit is a rewrite of the user-facing interface to the rustbuild build system. The intention here is to make it much easier to compile/test the project without having to remember weird rule names and such. An overall view of the new interface is: # build everything ./x.py build # document everyting ./x.py doc # test everything ./x.py test # test libstd ./x.py test src/libstd # build libcore stage0 ./x.py build src/libcore --stage 0 # run stage1 run-pass tests ./x.py test src/test/run-pass --stage 1 The `src/bootstrap/bootstrap.py` script is now aliased as a top-level `x.py` script. This `x` was chosen to be both short and easily tab-completable (no collisions in that namespace!). The build system now accepts a "subcommand" of what to do next, the main ones being build/doc/test. Each subcommand then receives an optional list of arguments. These arguments are paths in the source repo of what to work with. That is, if you want to test a directory, you just pass that directory as an argument. The purpose of this rewrite is to do away with all of the arcane renames like "rpass" is the "run-pass" suite, "cfail" is the "compile-fail" suite, etc. By simply working with directories and files it's much more intuitive of how to run a test (just pass it as an argument). The rustbuild step/dependency management was also rewritten along the way to make this easy to work with and define, but that's largely just a refactoring of what was there before. The *intention* is that this support is extended for arbitrary files (e.g. `src/test/run-pass/my-test-case.rs`), but that isn't quite implemented just yet. Instead directories work for now but we can follow up with stricter path filtering logic to plumb through all the arguments.
2016-10-21 13:18:09 -07:00
pub use flags::{Flags, Subcommand};
/// A structure representing a Rust compiler.
///
/// Each compiler has a `stage` that it is associated with and a `host` that
/// corresponds to the platform the compiler runs on. This structure is used as
/// a parameter to many methods below.
#[derive(Eq, PartialEq, Clone, Copy, Hash, Debug)]
pub struct Compiler<'a> {
stage: u32,
host: &'a str,
}
/// Global configuration for the build system.
///
/// This structure transitively contains all configuration for the build system.
/// All filesystem-encoded configuration is in `config`, all flags are in
/// `flags`, and then parsed or probed information is listed in the keys below.
///
/// This structure is a parameter of almost all methods in the build system,
/// although most functions are implemented as free functions rather than
/// methods specifically on this structure itself (to make it easier to
/// organize).
pub struct Build {
// User-specified configuration via config.toml
config: Config,
// User-specified configuration via CLI flags
flags: Flags,
// Derived properties from the above two configurations
cargo: PathBuf,
rustc: PathBuf,
src: PathBuf,
out: PathBuf,
rustbuild: Add support for compiling Cargo This commit adds support to rustbuild for compiling Cargo as part of the release process. Previously rustbuild would simply download a Cargo snapshot and repackage it. With this change we should be able to turn off artifacts from the rust-lang/cargo repository and purely rely on the artifacts Cargo produces here. The infrastructure added here is intended to be extensible to other components, such as the RLS. It won't exactly be a one-line addition, but the addition of Cargo didn't require too much hooplah anyway. The process for release Cargo will now look like: * The rust-lang/rust repository has a Cargo submodule which is used to build a Cargo to pair with the rust-lang/rust release * Periodically we'll update the cargo submodule as necessary on rust-lang/rust's master branch * When branching beta we'll create a new branch of Cargo (as we do today), and the first commit to the beta branch will be to update the Cargo submodule to this exact revision. * When branching stable, we'll ensure that the Cargo submodule is updated and then make a stable release. Backports to Cargo will look like: * Send a PR to cargo's master branch * Send a PR to cargo's release branch (e.g. rust-1.16.0) * Send a PR to rust-lang/rust's beta branch updating the submodule * Eventually send a PR to rust-lang/rust's master branch updating the submodule For reference, the process to add a new component to the rust-lang/rust release would look like: * Add `$foo` as a submodule in `src/tools` * Add a `tool-$foo` step which compiles `$foo` with the specified compiler, likely mirroring what Cargo does. * Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output to create a rust-installer package for `$foo` likely mirroring what Cargo does. * Update the `dist-extended` step with a new dependency on `dist-$foo` * Update `src/tools/build-manifest` for the new component.
2017-02-15 15:57:06 -08:00
rust_info: channel::GitInfo,
cargo_info: channel::GitInfo,
rls_info: channel::GitInfo,
local_rebuild: bool,
// Probed tools at runtime
lldb_version: Option<String>,
lldb_python_dir: Option<String>,
// Runtime state filled in later on
cc: HashMap<String, (gcc::Tool, Option<PathBuf>)>,
cxx: HashMap<String, gcc::Tool>,
rustbuild: Rewrite user-facing interface This commit is a rewrite of the user-facing interface to the rustbuild build system. The intention here is to make it much easier to compile/test the project without having to remember weird rule names and such. An overall view of the new interface is: # build everything ./x.py build # document everyting ./x.py doc # test everything ./x.py test # test libstd ./x.py test src/libstd # build libcore stage0 ./x.py build src/libcore --stage 0 # run stage1 run-pass tests ./x.py test src/test/run-pass --stage 1 The `src/bootstrap/bootstrap.py` script is now aliased as a top-level `x.py` script. This `x` was chosen to be both short and easily tab-completable (no collisions in that namespace!). The build system now accepts a "subcommand" of what to do next, the main ones being build/doc/test. Each subcommand then receives an optional list of arguments. These arguments are paths in the source repo of what to work with. That is, if you want to test a directory, you just pass that directory as an argument. The purpose of this rewrite is to do away with all of the arcane renames like "rpass" is the "run-pass" suite, "cfail" is the "compile-fail" suite, etc. By simply working with directories and files it's much more intuitive of how to run a test (just pass it as an argument). The rustbuild step/dependency management was also rewritten along the way to make this easy to work with and define, but that's largely just a refactoring of what was there before. The *intention* is that this support is extended for arbitrary files (e.g. `src/test/run-pass/my-test-case.rs`), but that isn't quite implemented just yet. Instead directories work for now but we can follow up with stricter path filtering logic to plumb through all the arguments.
2016-10-21 13:18:09 -07:00
crates: HashMap<String, Crate>,
is_sudo: bool,
2017-04-03 13:46:50 -07:00
src_is_git: bool,
rustbuild: Rewrite user-facing interface This commit is a rewrite of the user-facing interface to the rustbuild build system. The intention here is to make it much easier to compile/test the project without having to remember weird rule names and such. An overall view of the new interface is: # build everything ./x.py build # document everyting ./x.py doc # test everything ./x.py test # test libstd ./x.py test src/libstd # build libcore stage0 ./x.py build src/libcore --stage 0 # run stage1 run-pass tests ./x.py test src/test/run-pass --stage 1 The `src/bootstrap/bootstrap.py` script is now aliased as a top-level `x.py` script. This `x` was chosen to be both short and easily tab-completable (no collisions in that namespace!). The build system now accepts a "subcommand" of what to do next, the main ones being build/doc/test. Each subcommand then receives an optional list of arguments. These arguments are paths in the source repo of what to work with. That is, if you want to test a directory, you just pass that directory as an argument. The purpose of this rewrite is to do away with all of the arcane renames like "rpass" is the "run-pass" suite, "cfail" is the "compile-fail" suite, etc. By simply working with directories and files it's much more intuitive of how to run a test (just pass it as an argument). The rustbuild step/dependency management was also rewritten along the way to make this easy to work with and define, but that's largely just a refactoring of what was there before. The *intention* is that this support is extended for arbitrary files (e.g. `src/test/run-pass/my-test-case.rs`), but that isn't quite implemented just yet. Instead directories work for now but we can follow up with stricter path filtering logic to plumb through all the arguments.
2016-10-21 13:18:09 -07:00
}
#[derive(Debug)]
struct Crate {
name: String,
rustbuild: Add support for compiling Cargo This commit adds support to rustbuild for compiling Cargo as part of the release process. Previously rustbuild would simply download a Cargo snapshot and repackage it. With this change we should be able to turn off artifacts from the rust-lang/cargo repository and purely rely on the artifacts Cargo produces here. The infrastructure added here is intended to be extensible to other components, such as the RLS. It won't exactly be a one-line addition, but the addition of Cargo didn't require too much hooplah anyway. The process for release Cargo will now look like: * The rust-lang/rust repository has a Cargo submodule which is used to build a Cargo to pair with the rust-lang/rust release * Periodically we'll update the cargo submodule as necessary on rust-lang/rust's master branch * When branching beta we'll create a new branch of Cargo (as we do today), and the first commit to the beta branch will be to update the Cargo submodule to this exact revision. * When branching stable, we'll ensure that the Cargo submodule is updated and then make a stable release. Backports to Cargo will look like: * Send a PR to cargo's master branch * Send a PR to cargo's release branch (e.g. rust-1.16.0) * Send a PR to rust-lang/rust's beta branch updating the submodule * Eventually send a PR to rust-lang/rust's master branch updating the submodule For reference, the process to add a new component to the rust-lang/rust release would look like: * Add `$foo` as a submodule in `src/tools` * Add a `tool-$foo` step which compiles `$foo` with the specified compiler, likely mirroring what Cargo does. * Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output to create a rust-installer package for `$foo` likely mirroring what Cargo does. * Update the `dist-extended` step with a new dependency on `dist-$foo` * Update `src/tools/build-manifest` for the new component.
2017-02-15 15:57:06 -08:00
version: String,
rustbuild: Rewrite user-facing interface This commit is a rewrite of the user-facing interface to the rustbuild build system. The intention here is to make it much easier to compile/test the project without having to remember weird rule names and such. An overall view of the new interface is: # build everything ./x.py build # document everyting ./x.py doc # test everything ./x.py test # test libstd ./x.py test src/libstd # build libcore stage0 ./x.py build src/libcore --stage 0 # run stage1 run-pass tests ./x.py test src/test/run-pass --stage 1 The `src/bootstrap/bootstrap.py` script is now aliased as a top-level `x.py` script. This `x` was chosen to be both short and easily tab-completable (no collisions in that namespace!). The build system now accepts a "subcommand" of what to do next, the main ones being build/doc/test. Each subcommand then receives an optional list of arguments. These arguments are paths in the source repo of what to work with. That is, if you want to test a directory, you just pass that directory as an argument. The purpose of this rewrite is to do away with all of the arcane renames like "rpass" is the "run-pass" suite, "cfail" is the "compile-fail" suite, etc. By simply working with directories and files it's much more intuitive of how to run a test (just pass it as an argument). The rustbuild step/dependency management was also rewritten along the way to make this easy to work with and define, but that's largely just a refactoring of what was there before. The *intention* is that this support is extended for arbitrary files (e.g. `src/test/run-pass/my-test-case.rs`), but that isn't quite implemented just yet. Instead directories work for now but we can follow up with stricter path filtering logic to plumb through all the arguments.
2016-10-21 13:18:09 -07:00
deps: Vec<String>,
path: PathBuf,
doc_step: String,
build_step: String,
test_step: String,
bench_step: String,
}
/// The various "modes" of invoking Cargo.
///
/// These entries currently correspond to the various output directories of the
/// build system, with each mod generating output in a different directory.
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum Mode {
/// This cargo is going to build the standard library, placing output in the
/// "stageN-std" directory.
Libstd,
/// This cargo is going to build libtest, placing output in the
/// "stageN-test" directory.
Libtest,
/// This cargo is going to build librustc and compiler libraries, placing
/// output in the "stageN-rustc" directory.
Librustc,
/// This cargo is going to some build tool, placing output in the
/// "stageN-tools" directory.
Tool,
}
impl Build {
/// Creates a new set of build configuration from the `flags` on the command
/// line and the filesystem `config`.
///
/// By default all build output will be placed in the current directory.
pub fn new(flags: Flags, config: Config) -> Build {
let cwd = t!(env::current_dir());
rustbuild: Rewrite user-facing interface This commit is a rewrite of the user-facing interface to the rustbuild build system. The intention here is to make it much easier to compile/test the project without having to remember weird rule names and such. An overall view of the new interface is: # build everything ./x.py build # document everyting ./x.py doc # test everything ./x.py test # test libstd ./x.py test src/libstd # build libcore stage0 ./x.py build src/libcore --stage 0 # run stage1 run-pass tests ./x.py test src/test/run-pass --stage 1 The `src/bootstrap/bootstrap.py` script is now aliased as a top-level `x.py` script. This `x` was chosen to be both short and easily tab-completable (no collisions in that namespace!). The build system now accepts a "subcommand" of what to do next, the main ones being build/doc/test. Each subcommand then receives an optional list of arguments. These arguments are paths in the source repo of what to work with. That is, if you want to test a directory, you just pass that directory as an argument. The purpose of this rewrite is to do away with all of the arcane renames like "rpass" is the "run-pass" suite, "cfail" is the "compile-fail" suite, etc. By simply working with directories and files it's much more intuitive of how to run a test (just pass it as an argument). The rustbuild step/dependency management was also rewritten along the way to make this easy to work with and define, but that's largely just a refactoring of what was there before. The *intention* is that this support is extended for arbitrary files (e.g. `src/test/run-pass/my-test-case.rs`), but that isn't quite implemented just yet. Instead directories work for now but we can follow up with stricter path filtering logic to plumb through all the arguments.
2016-10-21 13:18:09 -07:00
let src = flags.src.clone().or_else(|| {
env::var_os("SRC").map(|x| x.into())
}).unwrap_or(cwd.clone());
let out = cwd.join("build");
let stage0_root = out.join(&config.build).join("stage0/bin");
let rustc = match config.rustc {
Some(ref s) => PathBuf::from(s),
None => stage0_root.join(exe("rustc", &config.build)),
};
let cargo = match config.cargo {
Some(ref s) => PathBuf::from(s),
None => stage0_root.join(exe("cargo", &config.build)),
};
let local_rebuild = config.local_rebuild;
let is_sudo = match env::var_os("SUDO_USER") {
Some(sudo_user) => {
match env::var_os("USER") {
Some(user) => user != sudo_user,
None => false,
}
}
None => false,
};
rustbuild: Add support for compiling Cargo This commit adds support to rustbuild for compiling Cargo as part of the release process. Previously rustbuild would simply download a Cargo snapshot and repackage it. With this change we should be able to turn off artifacts from the rust-lang/cargo repository and purely rely on the artifacts Cargo produces here. The infrastructure added here is intended to be extensible to other components, such as the RLS. It won't exactly be a one-line addition, but the addition of Cargo didn't require too much hooplah anyway. The process for release Cargo will now look like: * The rust-lang/rust repository has a Cargo submodule which is used to build a Cargo to pair with the rust-lang/rust release * Periodically we'll update the cargo submodule as necessary on rust-lang/rust's master branch * When branching beta we'll create a new branch of Cargo (as we do today), and the first commit to the beta branch will be to update the Cargo submodule to this exact revision. * When branching stable, we'll ensure that the Cargo submodule is updated and then make a stable release. Backports to Cargo will look like: * Send a PR to cargo's master branch * Send a PR to cargo's release branch (e.g. rust-1.16.0) * Send a PR to rust-lang/rust's beta branch updating the submodule * Eventually send a PR to rust-lang/rust's master branch updating the submodule For reference, the process to add a new component to the rust-lang/rust release would look like: * Add `$foo` as a submodule in `src/tools` * Add a `tool-$foo` step which compiles `$foo` with the specified compiler, likely mirroring what Cargo does. * Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output to create a rust-installer package for `$foo` likely mirroring what Cargo does. * Update the `dist-extended` step with a new dependency on `dist-$foo` * Update `src/tools/build-manifest` for the new component.
2017-02-15 15:57:06 -08:00
let rust_info = channel::GitInfo::new(&src);
let cargo_info = channel::GitInfo::new(&src.join("src/tools/cargo"));
let rls_info = channel::GitInfo::new(&src.join("src/tools/rls"));
let src_is_git = src.join(".git").exists();
Build {
flags: flags,
config: config,
cargo: cargo,
rustc: rustc,
src: src,
out: out,
rustbuild: Add support for compiling Cargo This commit adds support to rustbuild for compiling Cargo as part of the release process. Previously rustbuild would simply download a Cargo snapshot and repackage it. With this change we should be able to turn off artifacts from the rust-lang/cargo repository and purely rely on the artifacts Cargo produces here. The infrastructure added here is intended to be extensible to other components, such as the RLS. It won't exactly be a one-line addition, but the addition of Cargo didn't require too much hooplah anyway. The process for release Cargo will now look like: * The rust-lang/rust repository has a Cargo submodule which is used to build a Cargo to pair with the rust-lang/rust release * Periodically we'll update the cargo submodule as necessary on rust-lang/rust's master branch * When branching beta we'll create a new branch of Cargo (as we do today), and the first commit to the beta branch will be to update the Cargo submodule to this exact revision. * When branching stable, we'll ensure that the Cargo submodule is updated and then make a stable release. Backports to Cargo will look like: * Send a PR to cargo's master branch * Send a PR to cargo's release branch (e.g. rust-1.16.0) * Send a PR to rust-lang/rust's beta branch updating the submodule * Eventually send a PR to rust-lang/rust's master branch updating the submodule For reference, the process to add a new component to the rust-lang/rust release would look like: * Add `$foo` as a submodule in `src/tools` * Add a `tool-$foo` step which compiles `$foo` with the specified compiler, likely mirroring what Cargo does. * Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output to create a rust-installer package for `$foo` likely mirroring what Cargo does. * Update the `dist-extended` step with a new dependency on `dist-$foo` * Update `src/tools/build-manifest` for the new component.
2017-02-15 15:57:06 -08:00
rust_info: rust_info,
cargo_info: cargo_info,
rls_info: rls_info,
local_rebuild: local_rebuild,
cc: HashMap::new(),
cxx: HashMap::new(),
rustbuild: Rewrite user-facing interface This commit is a rewrite of the user-facing interface to the rustbuild build system. The intention here is to make it much easier to compile/test the project without having to remember weird rule names and such. An overall view of the new interface is: # build everything ./x.py build # document everyting ./x.py doc # test everything ./x.py test # test libstd ./x.py test src/libstd # build libcore stage0 ./x.py build src/libcore --stage 0 # run stage1 run-pass tests ./x.py test src/test/run-pass --stage 1 The `src/bootstrap/bootstrap.py` script is now aliased as a top-level `x.py` script. This `x` was chosen to be both short and easily tab-completable (no collisions in that namespace!). The build system now accepts a "subcommand" of what to do next, the main ones being build/doc/test. Each subcommand then receives an optional list of arguments. These arguments are paths in the source repo of what to work with. That is, if you want to test a directory, you just pass that directory as an argument. The purpose of this rewrite is to do away with all of the arcane renames like "rpass" is the "run-pass" suite, "cfail" is the "compile-fail" suite, etc. By simply working with directories and files it's much more intuitive of how to run a test (just pass it as an argument). The rustbuild step/dependency management was also rewritten along the way to make this easy to work with and define, but that's largely just a refactoring of what was there before. The *intention* is that this support is extended for arbitrary files (e.g. `src/test/run-pass/my-test-case.rs`), but that isn't quite implemented just yet. Instead directories work for now but we can follow up with stricter path filtering logic to plumb through all the arguments.
2016-10-21 13:18:09 -07:00
crates: HashMap::new(),
lldb_version: None,
lldb_python_dir: None,
is_sudo: is_sudo,
2017-04-03 13:46:50 -07:00
src_is_git: src_is_git,
}
}
/// Executes the entire build, as configured by the flags and configuration.
pub fn build(&mut self) {
unsafe {
job::setup(self);
}
rustbuild: Rewrite user-facing interface This commit is a rewrite of the user-facing interface to the rustbuild build system. The intention here is to make it much easier to compile/test the project without having to remember weird rule names and such. An overall view of the new interface is: # build everything ./x.py build # document everyting ./x.py doc # test everything ./x.py test # test libstd ./x.py test src/libstd # build libcore stage0 ./x.py build src/libcore --stage 0 # run stage1 run-pass tests ./x.py test src/test/run-pass --stage 1 The `src/bootstrap/bootstrap.py` script is now aliased as a top-level `x.py` script. This `x` was chosen to be both short and easily tab-completable (no collisions in that namespace!). The build system now accepts a "subcommand" of what to do next, the main ones being build/doc/test. Each subcommand then receives an optional list of arguments. These arguments are paths in the source repo of what to work with. That is, if you want to test a directory, you just pass that directory as an argument. The purpose of this rewrite is to do away with all of the arcane renames like "rpass" is the "run-pass" suite, "cfail" is the "compile-fail" suite, etc. By simply working with directories and files it's much more intuitive of how to run a test (just pass it as an argument). The rustbuild step/dependency management was also rewritten along the way to make this easy to work with and define, but that's largely just a refactoring of what was there before. The *intention* is that this support is extended for arbitrary files (e.g. `src/test/run-pass/my-test-case.rs`), but that isn't quite implemented just yet. Instead directories work for now but we can follow up with stricter path filtering logic to plumb through all the arguments.
2016-10-21 13:18:09 -07:00
if let Subcommand::Clean = self.flags.cmd {
return clean::clean(self);
}
self.verbose("finding compilers");
cc::find(self);
self.verbose("running sanity check");
sanity::check(self);
// If local-rust is the same major.minor as the current version, then force a local-rebuild
let local_version_verbose = output(
Command::new(&self.rustc).arg("--version").arg("--verbose"));
let local_release = local_version_verbose
.lines().filter(|x| x.starts_with("release:"))
.next().unwrap().trim_left_matches("release:").trim();
rustbuild: Add support for compiling Cargo This commit adds support to rustbuild for compiling Cargo as part of the release process. Previously rustbuild would simply download a Cargo snapshot and repackage it. With this change we should be able to turn off artifacts from the rust-lang/cargo repository and purely rely on the artifacts Cargo produces here. The infrastructure added here is intended to be extensible to other components, such as the RLS. It won't exactly be a one-line addition, but the addition of Cargo didn't require too much hooplah anyway. The process for release Cargo will now look like: * The rust-lang/rust repository has a Cargo submodule which is used to build a Cargo to pair with the rust-lang/rust release * Periodically we'll update the cargo submodule as necessary on rust-lang/rust's master branch * When branching beta we'll create a new branch of Cargo (as we do today), and the first commit to the beta branch will be to update the Cargo submodule to this exact revision. * When branching stable, we'll ensure that the Cargo submodule is updated and then make a stable release. Backports to Cargo will look like: * Send a PR to cargo's master branch * Send a PR to cargo's release branch (e.g. rust-1.16.0) * Send a PR to rust-lang/rust's beta branch updating the submodule * Eventually send a PR to rust-lang/rust's master branch updating the submodule For reference, the process to add a new component to the rust-lang/rust release would look like: * Add `$foo` as a submodule in `src/tools` * Add a `tool-$foo` step which compiles `$foo` with the specified compiler, likely mirroring what Cargo does. * Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output to create a rust-installer package for `$foo` likely mirroring what Cargo does. * Update the `dist-extended` step with a new dependency on `dist-$foo` * Update `src/tools/build-manifest` for the new component.
2017-02-15 15:57:06 -08:00
let my_version = channel::CFG_RELEASE_NUM;
if local_release.split('.').take(2).eq(my_version.split('.').take(2)) {
self.verbose(&format!("auto-detected local-rebuild {}", local_release));
self.local_rebuild = true;
}
self.verbose("updating submodules");
self.update_submodules();
rustbuild: Rewrite user-facing interface This commit is a rewrite of the user-facing interface to the rustbuild build system. The intention here is to make it much easier to compile/test the project without having to remember weird rule names and such. An overall view of the new interface is: # build everything ./x.py build # document everyting ./x.py doc # test everything ./x.py test # test libstd ./x.py test src/libstd # build libcore stage0 ./x.py build src/libcore --stage 0 # run stage1 run-pass tests ./x.py test src/test/run-pass --stage 1 The `src/bootstrap/bootstrap.py` script is now aliased as a top-level `x.py` script. This `x` was chosen to be both short and easily tab-completable (no collisions in that namespace!). The build system now accepts a "subcommand" of what to do next, the main ones being build/doc/test. Each subcommand then receives an optional list of arguments. These arguments are paths in the source repo of what to work with. That is, if you want to test a directory, you just pass that directory as an argument. The purpose of this rewrite is to do away with all of the arcane renames like "rpass" is the "run-pass" suite, "cfail" is the "compile-fail" suite, etc. By simply working with directories and files it's much more intuitive of how to run a test (just pass it as an argument). The rustbuild step/dependency management was also rewritten along the way to make this easy to work with and define, but that's largely just a refactoring of what was there before. The *intention* is that this support is extended for arbitrary files (e.g. `src/test/run-pass/my-test-case.rs`), but that isn't quite implemented just yet. Instead directories work for now but we can follow up with stricter path filtering logic to plumb through all the arguments.
2016-10-21 13:18:09 -07:00
self.verbose("learning about cargo");
metadata::build(self);
rustbuild: Rewrite user-facing interface This commit is a rewrite of the user-facing interface to the rustbuild build system. The intention here is to make it much easier to compile/test the project without having to remember weird rule names and such. An overall view of the new interface is: # build everything ./x.py build # document everyting ./x.py doc # test everything ./x.py test # test libstd ./x.py test src/libstd # build libcore stage0 ./x.py build src/libcore --stage 0 # run stage1 run-pass tests ./x.py test src/test/run-pass --stage 1 The `src/bootstrap/bootstrap.py` script is now aliased as a top-level `x.py` script. This `x` was chosen to be both short and easily tab-completable (no collisions in that namespace!). The build system now accepts a "subcommand" of what to do next, the main ones being build/doc/test. Each subcommand then receives an optional list of arguments. These arguments are paths in the source repo of what to work with. That is, if you want to test a directory, you just pass that directory as an argument. The purpose of this rewrite is to do away with all of the arcane renames like "rpass" is the "run-pass" suite, "cfail" is the "compile-fail" suite, etc. By simply working with directories and files it's much more intuitive of how to run a test (just pass it as an argument). The rustbuild step/dependency management was also rewritten along the way to make this easy to work with and define, but that's largely just a refactoring of what was there before. The *intention* is that this support is extended for arbitrary files (e.g. `src/test/run-pass/my-test-case.rs`), but that isn't quite implemented just yet. Instead directories work for now but we can follow up with stricter path filtering logic to plumb through all the arguments.
2016-10-21 13:18:09 -07:00
step::run(self);
}
/// Updates all git submodules that we have.
///
/// This will detect if any submodules are out of date an run the necessary
/// commands to sync them all with upstream.
fn update_submodules(&self) {
struct Submodule<'a> {
path: &'a Path,
state: State,
}
enum State {
// The submodule may have staged/unstaged changes
MaybeDirty,
// Or could be initialized but never updated
NotInitialized,
// The submodule, itself, has extra commits but those changes haven't been commited to
// the (outer) git repository
OutOfSync,
}
2017-04-03 13:46:50 -07:00
if !self.src_is_git || !self.config.submodules {
return
}
let git = || {
let mut cmd = Command::new("git");
cmd.current_dir(&self.src);
return cmd
};
let git_submodule = || {
let mut cmd = Command::new("git");
cmd.current_dir(&self.src).arg("submodule");
return cmd
};
// FIXME: this takes a seriously long time to execute on Windows and a
// nontrivial amount of time on Unix, we should have a better way
// of detecting whether we need to run all the submodule commands
// below.
let out = output(git_submodule().arg("status"));
let mut submodules = vec![];
for line in out.lines() {
// NOTE `git submodule status` output looks like this:
//
// -5066b7dcab7e700844b0e2ba71b8af9dc627a59b src/liblibc
2016-08-28 22:13:35 -05:00
// +b37ef24aa82d2be3a3cc0fe89bf82292f4ca181c src/compiler-rt (remotes/origin/..)
// e058ca661692a8d01f8cf9d35939dfe3105ce968 src/jemalloc (3.6.0-533-ge058ca6)
//
// The first character can be '-', '+' or ' ' and denotes the `State` of the submodule
// Right next to this character is the SHA-1 of the submodule HEAD
// And after that comes the path to the submodule
let path = Path::new(line[1..].split(' ').skip(1).next().unwrap());
let state = if line.starts_with('-') {
State::NotInitialized
2016-08-29 16:53:38 +08:00
} else if line.starts_with('+') {
State::OutOfSync
} else if line.starts_with(' ') {
State::MaybeDirty
} else {
panic!("unexpected git submodule state: {:?}", line.chars().next());
};
submodules.push(Submodule { path: path, state: state })
}
self.run(git_submodule().arg("sync"));
for submodule in submodules {
// If using llvm-root then don't touch the llvm submodule.
if submodule.path.components().any(|c| c == Component::Normal("llvm".as_ref())) &&
self.config.target_config.get(&self.config.build)
.and_then(|c| c.llvm_config.as_ref()).is_some()
{
continue
}
if submodule.path.components().any(|c| c == Component::Normal("jemalloc".as_ref())) &&
!self.config.use_jemalloc
{
continue
}
2016-09-30 11:15:37 +02:00
// `submodule.path` is the relative path to a submodule (from the repository root)
// `submodule_path` is the path to a submodule from the cwd
// use `submodule.path` when e.g. executing a submodule specific command from the
// repository root
// use `submodule_path` when e.g. executing a normal git command for the submodule
// (set via `current_dir`)
let submodule_path = self.src.join(submodule.path);
match submodule.state {
State::MaybeDirty => {
// drop staged changes
2016-09-30 11:15:37 +02:00
self.run(git().current_dir(&submodule_path)
.args(&["reset", "--hard"]));
// drops unstaged changes
2016-09-30 11:15:37 +02:00
self.run(git().current_dir(&submodule_path)
.args(&["clean", "-fdx"]));
},
State::NotInitialized => {
self.run(git_submodule().arg("init").arg(submodule.path));
self.run(git_submodule().arg("update").arg(submodule.path));
},
State::OutOfSync => {
// drops submodule commits that weren't reported to the (outer) git repository
self.run(git_submodule().arg("update").arg(submodule.path));
2016-09-30 11:15:37 +02:00
self.run(git().current_dir(&submodule_path)
.args(&["reset", "--hard"]));
2016-09-30 11:15:37 +02:00
self.run(git().current_dir(&submodule_path)
.args(&["clean", "-fdx"]));
},
}
}
}
/// Clear out `dir` if `input` is newer.
///
/// After this executes, it will also ensure that `dir` exists.
fn clear_if_dirty(&self, dir: &Path, input: &Path) {
let stamp = dir.join(".stamp");
if mtime(&stamp) < mtime(input) {
self.verbose(&format!("Dirty - {}", dir.display()));
let _ = fs::remove_dir_all(dir);
} else if stamp.exists() {
return
}
t!(fs::create_dir_all(dir));
t!(File::create(stamp));
}
/// Prepares an invocation of `cargo` to be run.
///
/// This will create a `Command` that represents a pending execution of
/// Cargo. This cargo will be configured to use `compiler` as the actual
/// rustc compiler, its output will be scoped by `mode`'s output directory,
/// it will pass the `--target` flag for the specified `target`, and will be
/// executing the Cargo command `cmd`.
fn cargo(&self,
compiler: &Compiler,
mode: Mode,
target: &str,
cmd: &str) -> Command {
let mut cargo = Command::new(&self.cargo);
let out_dir = self.stage_out(compiler, mode);
cargo.env("CARGO_TARGET_DIR", out_dir)
.arg(cmd)
.arg("-j").arg(self.jobs().to_string())
.arg("--target").arg(target);
// FIXME: Temporary fix for https://github.com/rust-lang/cargo/issues/3005
// Force cargo to output binaries with disambiguating hashes in the name
cargo.env("__CARGO_DEFAULT_LIB_METADATA", "1");
let stage;
if compiler.stage == 0 && self.local_rebuild {
// Assume the local-rebuild rustc already has stage1 features.
stage = 1;
} else {
stage = compiler.stage;
}
// Customize the compiler we're running. Specify the compiler to cargo
// as our shim and then pass it some various options used to configure
// how the actual compiler itself is called.
//
// These variables are primarily all read by
// src/bootstrap/bin/{rustc.rs,rustdoc.rs}
cargo.env("RUSTBUILD_NATIVE_DIR", self.native_dir(target))
.env("RUSTC", self.out.join("bootstrap/debug/rustc"))
.env("RUSTC_REAL", self.compiler_path(compiler))
.env("RUSTC_STAGE", stage.to_string())
.env("RUSTC_CODEGEN_UNITS",
self.config.rust_codegen_units.to_string())
.env("RUSTC_DEBUG_ASSERTIONS",
self.config.rust_debug_assertions.to_string())
.env("RUSTC_SYSROOT", self.sysroot(compiler))
.env("RUSTC_LIBDIR", self.rustc_libdir(compiler))
.env("RUSTC_RPATH", self.config.rust_rpath.to_string())
.env("RUSTDOC", self.out.join("bootstrap/debug/rustdoc"))
.env("RUSTDOC_REAL", self.rustdoc(compiler))
.env("RUSTC_FLAGS", self.rustc_flags(target).join(" "));
// Tools don't get debuginfo right now, e.g. cargo and rls don't get
// compiled with debuginfo.
if mode != Mode::Tool {
cargo.env("RUSTC_DEBUGINFO", self.config.rust_debuginfo.to_string())
.env("RUSTC_DEBUGINFO_LINES", self.config.rust_debuginfo_lines.to_string())
.env("RUSTC_FORCE_UNSTABLE", "1");
}
// Enable usage of unstable features
cargo.env("RUSTC_BOOTSTRAP", "1");
self.add_rust_test_threads(&mut cargo);
rustbuild: Add support for compiling Cargo This commit adds support to rustbuild for compiling Cargo as part of the release process. Previously rustbuild would simply download a Cargo snapshot and repackage it. With this change we should be able to turn off artifacts from the rust-lang/cargo repository and purely rely on the artifacts Cargo produces here. The infrastructure added here is intended to be extensible to other components, such as the RLS. It won't exactly be a one-line addition, but the addition of Cargo didn't require too much hooplah anyway. The process for release Cargo will now look like: * The rust-lang/rust repository has a Cargo submodule which is used to build a Cargo to pair with the rust-lang/rust release * Periodically we'll update the cargo submodule as necessary on rust-lang/rust's master branch * When branching beta we'll create a new branch of Cargo (as we do today), and the first commit to the beta branch will be to update the Cargo submodule to this exact revision. * When branching stable, we'll ensure that the Cargo submodule is updated and then make a stable release. Backports to Cargo will look like: * Send a PR to cargo's master branch * Send a PR to cargo's release branch (e.g. rust-1.16.0) * Send a PR to rust-lang/rust's beta branch updating the submodule * Eventually send a PR to rust-lang/rust's master branch updating the submodule For reference, the process to add a new component to the rust-lang/rust release would look like: * Add `$foo` as a submodule in `src/tools` * Add a `tool-$foo` step which compiles `$foo` with the specified compiler, likely mirroring what Cargo does. * Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output to create a rust-installer package for `$foo` likely mirroring what Cargo does. * Update the `dist-extended` step with a new dependency on `dist-$foo` * Update `src/tools/build-manifest` for the new component.
2017-02-15 15:57:06 -08:00
// Almost all of the crates that we compile as part of the bootstrap may
// have a build script, including the standard library. To compile a
// build script, however, it itself needs a standard library! This
// introduces a bit of a pickle when we're compiling the standard
// library itself.
//
// To work around this we actually end up using the snapshot compiler
// (stage0) for compiling build scripts of the standard library itself.
// The stage0 compiler is guaranteed to have a libstd available for use.
//
// For other crates, however, we know that we've already got a standard
// library up and running, so we can use the normal compiler to compile
// build scripts in that situation.
if mode == Mode::Libstd {
rustbuild: Add support for compiling Cargo This commit adds support to rustbuild for compiling Cargo as part of the release process. Previously rustbuild would simply download a Cargo snapshot and repackage it. With this change we should be able to turn off artifacts from the rust-lang/cargo repository and purely rely on the artifacts Cargo produces here. The infrastructure added here is intended to be extensible to other components, such as the RLS. It won't exactly be a one-line addition, but the addition of Cargo didn't require too much hooplah anyway. The process for release Cargo will now look like: * The rust-lang/rust repository has a Cargo submodule which is used to build a Cargo to pair with the rust-lang/rust release * Periodically we'll update the cargo submodule as necessary on rust-lang/rust's master branch * When branching beta we'll create a new branch of Cargo (as we do today), and the first commit to the beta branch will be to update the Cargo submodule to this exact revision. * When branching stable, we'll ensure that the Cargo submodule is updated and then make a stable release. Backports to Cargo will look like: * Send a PR to cargo's master branch * Send a PR to cargo's release branch (e.g. rust-1.16.0) * Send a PR to rust-lang/rust's beta branch updating the submodule * Eventually send a PR to rust-lang/rust's master branch updating the submodule For reference, the process to add a new component to the rust-lang/rust release would look like: * Add `$foo` as a submodule in `src/tools` * Add a `tool-$foo` step which compiles `$foo` with the specified compiler, likely mirroring what Cargo does. * Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output to create a rust-installer package for `$foo` likely mirroring what Cargo does. * Update the `dist-extended` step with a new dependency on `dist-$foo` * Update `src/tools/build-manifest` for the new component.
2017-02-15 15:57:06 -08:00
cargo.env("RUSTC_SNAPSHOT", &self.rustc)
.env("RUSTC_SNAPSHOT_LIBDIR", self.rustc_snapshot_libdir());
} else {
cargo.env("RUSTC_SNAPSHOT", self.compiler_path(compiler))
.env("RUSTC_SNAPSHOT_LIBDIR", self.rustc_libdir(compiler));
}
// There are two invariants we try must maintain:
// * stable crates cannot depend on unstable crates (general Rust rule),
// * crates that end up in the sysroot must be unstable (rustbuild rule).
//
// In order to do enforce the latter, we pass the env var
// `RUSTBUILD_UNSTABLE` down the line for any crates which will end up
// in the sysroot. We read this in bootstrap/bin/rustc.rs and if it is
// set, then we pass the `rustbuild` feature to rustc when building the
// the crate.
//
// In turn, crates that can be used here should recognise the `rustbuild`
// feature and opt-in to `rustc_private`.
//
// We can't always pass `rustbuild` because crates which are outside of
// the comipiler, libs, and tests are stable and we don't want to make
// their deps unstable (since this would break the first invariant
// above).
//
// FIXME: remove this after next stage0
if mode != Mode::Tool && stage == 0 {
cargo.env("RUSTBUILD_UNSTABLE", "1");
}
// Ignore incremental modes except for stage0, since we're
// not guaranteeing correctness acros builds if the compiler
// is changing under your feet.`
if self.flags.incremental && compiler.stage == 0 {
let incr_dir = self.incremental_dir(compiler);
cargo.env("RUSTC_INCREMENTAL", incr_dir);
}
if let Some(ref on_fail) = self.flags.on_fail {
cargo.env("RUSTC_ON_FAIL", on_fail);
}
let verbose = cmp::max(self.config.verbose, self.flags.verbose);
cargo.env("RUSTC_VERBOSE", format!("{}", verbose));
// Specify some various options for build scripts used throughout
// the build.
//
// FIXME: the guard against msvc shouldn't need to be here
if !target.contains("msvc") {
cargo.env(format!("CC_{}", target), self.cc(target))
.env(format!("AR_{}", target), self.ar(target).unwrap()) // only msvc is None
.env(format!("CFLAGS_{}", target), self.cflags(target).join(" "));
}
if self.config.extended && compiler.is_final_stage(self) {
cargo.env("RUSTC_SAVE_ANALYSIS", "api".to_string());
}
// When being built Cargo will at some point call `nmake.exe` on Windows
// MSVC. Unfortunately `nmake` will read these two environment variables
// below and try to intepret them. We're likely being run, however, from
// MSYS `make` which uses the same variables.
//
// As a result, to prevent confusion and errors, we remove these
// variables from our environment to prevent passing MSYS make flags to
// nmake, causing it to blow up.
if cfg!(target_env = "msvc") {
cargo.env_remove("MAKE");
cargo.env_remove("MAKEFLAGS");
}
// Environment variables *required* needed throughout the build
//
// FIXME: should update code to not require this env var
cargo.env("CFG_COMPILER_HOST_TRIPLE", target);
if self.config.verbose() || self.flags.verbose() {
cargo.arg("-v");
}
// FIXME: cargo bench does not accept `--release`
if self.config.rust_optimize && cmd != "bench" {
cargo.arg("--release");
}
if self.config.locked_deps {
cargo.arg("--locked");
}
if self.config.vendor || self.is_sudo {
cargo.arg("--frozen");
}
return cargo
}
/// Get a path to the compiler specified.
fn compiler_path(&self, compiler: &Compiler) -> PathBuf {
if compiler.is_snapshot(self) {
self.rustc.clone()
} else {
self.sysroot(compiler).join("bin").join(exe("rustc", compiler.host))
}
}
/// Get the specified tool built by the specified compiler
fn tool(&self, compiler: &Compiler, tool: &str) -> PathBuf {
self.cargo_out(compiler, Mode::Tool, compiler.host)
.join(exe(tool, compiler.host))
}
/// Get the `rustdoc` executable next to the specified compiler
fn rustdoc(&self, compiler: &Compiler) -> PathBuf {
let mut rustdoc = self.compiler_path(compiler);
rustdoc.pop();
rustdoc.push(exe("rustdoc", compiler.host));
return rustdoc
}
/// Get a `Command` which is ready to run `tool` in `stage` built for
/// `host`.
fn tool_cmd(&self, compiler: &Compiler, tool: &str) -> Command {
let mut cmd = Command::new(self.tool(&compiler, tool));
self.prepare_tool_cmd(compiler, &mut cmd);
return cmd
}
/// Prepares the `cmd` provided to be able to run the `compiler` provided.
///
/// Notably this munges the dynamic library lookup path to point to the
/// right location to run `compiler`.
fn prepare_tool_cmd(&self, compiler: &Compiler, cmd: &mut Command) {
let host = compiler.host;
let mut paths = vec![
rustbuild: Compile rustc twice, not thrice This commit switches the rustbuild build system to compiling the compiler twice for a normal bootstrap rather than the historical three times. Rust is a bootstrapped language which means that a previous version of the compiler is used to build the next version of the compiler. Over time, however, we change many parts of compiler artifacts such as the metadata format, symbol names, etc. These changes make artifacts from one compiler incompatible from another compiler. Consequently if a compiler wants to be able to use some artifacts then it itself must have compiled the artifacts. Historically the rustc build system has achieved this by compiling the compiler three times: * An older compiler (stage0) is downloaded to kick off the chain. * This compiler now compiles a new compiler (stage1) * The stage1 compiler then compiles another compiler (stage2) * Finally, the stage2 compiler needs libraries to link against, so it compiles all the libraries again. This entire process amounts in compiling the compiler three times. Additionally, this process always guarantees that the Rust source tree can compile itself because the stage2 compiler (created by a freshly created compiler) would successfully compile itself again. This property, ensuring Rust can compile itself, is quite important! In general, though, this third compilation is not required for general purpose development on the compiler. The third compiler (stage2) can reuse the libraries that were created during the second compile. In other words, the second compilation can produce both a compiler and the libraries that compiler will use. These artifacts *must* be compatible due to the way plugins work today anyway, and they were created by the same source code so they *should* be compatible as well. So given all that, this commit switches the default build process to only compile the compiler three times, avoiding this third compilation by copying artifacts from the previous one. Along the way a new entry in the Travis matrix was also added to ensure that our full bootstrap can succeed. This entry does not run tests, though, as it should not be necessary. To restore the old behavior of a full bootstrap (three compiles) you can either pass: ./configure --enable-full-bootstrap or if you're using config.toml: [build] full-bootstrap = true Overall this will hopefully be an easy 33% win in build times of the compiler. If we do 33% less work we should be 33% faster! This in turn should affect cycle times and such on Travis and AppVeyor positively as well as making it easier to work on the compiler itself.
2016-12-25 15:20:33 -08:00
self.sysroot_libdir(compiler, compiler.host),
self.cargo_out(compiler, Mode::Tool, host).join("deps"),
];
// On MSVC a tool may invoke a C compiler (e.g. compiletest in run-make
// mode) and that C compiler may need some extra PATH modification. Do
// so here.
if compiler.host.contains("msvc") {
let curpaths = env::var_os("PATH").unwrap_or(OsString::new());
let curpaths = env::split_paths(&curpaths).collect::<Vec<_>>();
for &(ref k, ref v) in self.cc[compiler.host].0.env() {
if k != "PATH" {
continue
}
for path in env::split_paths(v) {
if !curpaths.contains(&path) {
paths.push(path);
}
}
}
}
add_lib_path(paths, cmd);
}
/// Get the space-separated set of activated features for the standard
/// library.
fn std_features(&self) -> String {
let mut features = "panic-unwind".to_string();
2016-12-29 23:28:11 -05:00
if self.config.debug_jemalloc {
features.push_str(" debug-jemalloc");
}
if self.config.use_jemalloc {
features.push_str(" jemalloc");
}
if self.config.backtrace {
features.push_str(" backtrace");
}
return features
}
/// Get the space-separated set of activated features for the compiler.
fn rustc_features(&self) -> String {
let mut features = String::new();
if self.config.use_jemalloc {
features.push_str(" jemalloc");
}
return features
}
/// Component directory that Cargo will produce output into (e.g.
/// release/debug)
fn cargo_dir(&self) -> &'static str {
if self.config.rust_optimize {"release"} else {"debug"}
}
/// Returns the sysroot for the `compiler` specified that *this build system
/// generates*.
///
/// That is, the sysroot for the stage0 compiler is not what the compiler
/// thinks it is by default, but it's the same as the default for stages
/// 1-3.
fn sysroot(&self, compiler: &Compiler) -> PathBuf {
if compiler.stage == 0 {
self.out.join(compiler.host).join("stage0-sysroot")
} else {
self.out.join(compiler.host).join(format!("stage{}", compiler.stage))
}
}
/// Get the directory for incremental by-products when using the
/// given compiler.
fn incremental_dir(&self, compiler: &Compiler) -> PathBuf {
self.out.join(compiler.host).join(format!("stage{}-incremental", compiler.stage))
}
/// Returns the libdir where the standard library and other artifacts are
/// found for a compiler's sysroot.
fn sysroot_libdir(&self, compiler: &Compiler, target: &str) -> PathBuf {
self.sysroot(compiler).join("lib").join("rustlib")
.join(target).join("lib")
}
/// Returns the root directory for all output generated in a particular
/// stage when running with a particular host compiler.
///
/// The mode indicates what the root directory is for.
fn stage_out(&self, compiler: &Compiler, mode: Mode) -> PathBuf {
let suffix = match mode {
Mode::Libstd => "-std",
Mode::Libtest => "-test",
Mode::Tool => "-tools",
Mode::Librustc => "-rustc",
};
self.out.join(compiler.host)
.join(format!("stage{}{}", compiler.stage, suffix))
}
/// Returns the root output directory for all Cargo output in a given stage,
/// running a particular comipler, wehther or not we're building the
/// standard library, and targeting the specified architecture.
fn cargo_out(&self,
compiler: &Compiler,
mode: Mode,
target: &str) -> PathBuf {
self.stage_out(compiler, mode).join(target).join(self.cargo_dir())
}
/// Root output directory for LLVM compiled for `target`
///
/// Note that if LLVM is configured externally then the directory returned
/// will likely be empty.
fn llvm_out(&self, target: &str) -> PathBuf {
self.out.join(target).join("llvm")
}
rustbuild: Rewrite user-facing interface This commit is a rewrite of the user-facing interface to the rustbuild build system. The intention here is to make it much easier to compile/test the project without having to remember weird rule names and such. An overall view of the new interface is: # build everything ./x.py build # document everyting ./x.py doc # test everything ./x.py test # test libstd ./x.py test src/libstd # build libcore stage0 ./x.py build src/libcore --stage 0 # run stage1 run-pass tests ./x.py test src/test/run-pass --stage 1 The `src/bootstrap/bootstrap.py` script is now aliased as a top-level `x.py` script. This `x` was chosen to be both short and easily tab-completable (no collisions in that namespace!). The build system now accepts a "subcommand" of what to do next, the main ones being build/doc/test. Each subcommand then receives an optional list of arguments. These arguments are paths in the source repo of what to work with. That is, if you want to test a directory, you just pass that directory as an argument. The purpose of this rewrite is to do away with all of the arcane renames like "rpass" is the "run-pass" suite, "cfail" is the "compile-fail" suite, etc. By simply working with directories and files it's much more intuitive of how to run a test (just pass it as an argument). The rustbuild step/dependency management was also rewritten along the way to make this easy to work with and define, but that's largely just a refactoring of what was there before. The *intention* is that this support is extended for arbitrary files (e.g. `src/test/run-pass/my-test-case.rs`), but that isn't quite implemented just yet. Instead directories work for now but we can follow up with stricter path filtering logic to plumb through all the arguments.
2016-10-21 13:18:09 -07:00
/// Output directory for all documentation for a target
fn doc_out(&self, target: &str) -> PathBuf {
self.out.join(target).join("doc")
}
/// Output directory for all crate documentation for a target (temporary)
///
/// The artifacts here are then copied into `doc_out` above.
fn crate_doc_out(&self, target: &str) -> PathBuf {
self.out.join(target).join("crate-docs")
}
/// Returns true if no custom `llvm-config` is set for the specified target.
///
/// If no custom `llvm-config` was specified then Rust's llvm will be used.
fn is_rust_llvm(&self, target: &str) -> bool {
match self.config.target_config.get(target) {
Some(ref c) => c.llvm_config.is_none(),
None => true
}
}
/// Returns the path to `llvm-config` for the specified target.
///
/// If a custom `llvm-config` was specified for target then that's returned
/// instead.
fn llvm_config(&self, target: &str) -> PathBuf {
let target_config = self.config.target_config.get(target);
if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) {
s.clone()
} else {
self.llvm_out(&self.config.build).join("bin")
.join(exe("llvm-config", target))
}
}
/// Returns the path to `FileCheck` binary for the specified target
fn llvm_filecheck(&self, target: &str) -> PathBuf {
let target_config = self.config.target_config.get(target);
if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) {
2016-12-20 19:48:14 +09:00
let llvm_bindir = output(Command::new(s).arg("--bindir"));
Path::new(llvm_bindir.trim()).join(exe("FileCheck", target))
} else {
let base = self.llvm_out(&self.config.build).join("build");
let exe = exe("FileCheck", target);
2017-02-27 23:39:16 +03:00
if !self.config.ninja && self.config.build.contains("msvc") {
base.join("Release/bin").join(exe)
} else {
base.join("bin").join(exe)
}
}
}
/// Directory for libraries built from C/C++ code and shared between stages.
fn native_dir(&self, target: &str) -> PathBuf {
self.out.join(target).join("native")
}
/// Root output directory for rust_test_helpers library compiled for
/// `target`
fn test_helpers_out(&self, target: &str) -> PathBuf {
self.native_dir(target).join("rust-test-helpers")
}
/// Adds the compiler's directory of dynamic libraries to `cmd`'s dynamic
/// library lookup path.
fn add_rustc_lib_path(&self, compiler: &Compiler, cmd: &mut Command) {
// Windows doesn't need dylib path munging because the dlls for the
// compiler live next to the compiler and the system will find them
// automatically.
if cfg!(windows) {
return
}
add_lib_path(vec![self.rustc_libdir(compiler)], cmd);
}
/// Adds the `RUST_TEST_THREADS` env var if necessary
fn add_rust_test_threads(&self, cmd: &mut Command) {
if env::var_os("RUST_TEST_THREADS").is_none() {
cmd.env("RUST_TEST_THREADS", self.jobs().to_string());
}
}
/// Returns the compiler's libdir where it stores the dynamic libraries that
/// it itself links against.
///
/// For example this returns `<sysroot>/lib` on Unix and `<sysroot>/bin` on
/// Windows.
fn rustc_libdir(&self, compiler: &Compiler) -> PathBuf {
if compiler.is_snapshot(self) {
self.rustc_snapshot_libdir()
} else {
self.sysroot(compiler).join(libdir(compiler.host))
}
}
/// Returns the libdir of the snapshot compiler.
fn rustc_snapshot_libdir(&self) -> PathBuf {
self.rustc.parent().unwrap().parent().unwrap()
.join(libdir(&self.config.build))
}
/// Runs a command, printing out nice contextual information if it fails.
fn run(&self, cmd: &mut Command) {
self.verbose(&format!("running: {:?}", cmd));
run_silent(cmd)
}
rustbuild: Add support for compiling Cargo This commit adds support to rustbuild for compiling Cargo as part of the release process. Previously rustbuild would simply download a Cargo snapshot and repackage it. With this change we should be able to turn off artifacts from the rust-lang/cargo repository and purely rely on the artifacts Cargo produces here. The infrastructure added here is intended to be extensible to other components, such as the RLS. It won't exactly be a one-line addition, but the addition of Cargo didn't require too much hooplah anyway. The process for release Cargo will now look like: * The rust-lang/rust repository has a Cargo submodule which is used to build a Cargo to pair with the rust-lang/rust release * Periodically we'll update the cargo submodule as necessary on rust-lang/rust's master branch * When branching beta we'll create a new branch of Cargo (as we do today), and the first commit to the beta branch will be to update the Cargo submodule to this exact revision. * When branching stable, we'll ensure that the Cargo submodule is updated and then make a stable release. Backports to Cargo will look like: * Send a PR to cargo's master branch * Send a PR to cargo's release branch (e.g. rust-1.16.0) * Send a PR to rust-lang/rust's beta branch updating the submodule * Eventually send a PR to rust-lang/rust's master branch updating the submodule For reference, the process to add a new component to the rust-lang/rust release would look like: * Add `$foo` as a submodule in `src/tools` * Add a `tool-$foo` step which compiles `$foo` with the specified compiler, likely mirroring what Cargo does. * Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output to create a rust-installer package for `$foo` likely mirroring what Cargo does. * Update the `dist-extended` step with a new dependency on `dist-$foo` * Update `src/tools/build-manifest` for the new component.
2017-02-15 15:57:06 -08:00
/// Runs a command, printing out nice contextual information if it fails.
fn run_quiet(&self, cmd: &mut Command) {
self.verbose(&format!("running: {:?}", cmd));
run_suppressed(cmd)
}
/// Prints a message if this build is configured in verbose mode.
fn verbose(&self, msg: &str) {
if self.flags.verbose() || self.config.verbose() {
println!("{}", msg);
}
}
/// Returns the number of parallel jobs that have been configured for this
/// build.
fn jobs(&self) -> u32 {
self.flags.jobs.unwrap_or(num_cpus::get() as u32)
}
/// Returns the path to the C compiler for the target specified.
fn cc(&self, target: &str) -> &Path {
self.cc[target].0.path()
}
/// Returns a list of flags to pass to the C compiler for the target
/// specified.
fn cflags(&self, target: &str) -> Vec<String> {
// Filter out -O and /O (the optimization flags) that we picked up from
// gcc-rs because the build scripts will determine that for themselves.
let mut base = self.cc[target].0.args().iter()
.map(|s| s.to_string_lossy().into_owned())
.filter(|s| !s.starts_with("-O") && !s.starts_with("/O"))
.collect::<Vec<_>>();
// If we're compiling on macOS then we add a few unconditional flags
// indicating that we want libc++ (more filled out than libstdc++) and
// we want to compile for 10.7. This way we can ensure that
// LLVM/jemalloc/etc are all properly compiled.
if target.contains("apple-darwin") {
base.push("-stdlib=libc++".into());
}
// Work around an apparently bad MinGW / GCC optimization,
// See: http://lists.llvm.org/pipermail/cfe-dev/2016-December/051980.html
// See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=78936
if target == "i686-pc-windows-gnu" {
base.push("-fno-omit-frame-pointer".into());
}
return base
}
/// Returns the path to the `ar` archive utility for the target specified.
fn ar(&self, target: &str) -> Option<&Path> {
self.cc[target].1.as_ref().map(|p| &**p)
}
/// Returns the path to the C++ compiler for the target specified, may panic
/// if no C++ compiler was configured for the target.
fn cxx(&self, target: &str) -> &Path {
match self.cxx.get(target) {
Some(p) => p.path(),
None => panic!("\n\ntarget `{}` is not configured as a host,
only as a target\n\n", target),
}
}
/// Returns flags to pass to the compiler to generate code for `target`.
fn rustc_flags(&self, target: &str) -> Vec<String> {
// New flags should be added here with great caution!
//
// It's quite unfortunate to **require** flags to generate code for a
// target, so it should only be passed here if absolutely necessary!
// Most default configuration should be done through target specs rather
// than an entry here.
let mut base = Vec::new();
2016-09-08 01:58:00 +00:00
if target != self.config.build && !target.contains("msvc") &&
!target.contains("emscripten") {
base.push(format!("-Clinker={}", self.cc(target).display()));
}
return base
}
/// Returns the "musl root" for this `target`, if defined
fn musl_root(&self, target: &str) -> Option<&Path> {
self.config.target_config.get(target)
.and_then(|t| t.musl_root.as_ref())
.or(self.config.musl_root.as_ref())
.map(|p| &**p)
}
travis: Parallelize tests on Android Currently our slowest test suite on android, run-pass, takes over 5 times longer than the x86_64 component (~400 -> ~2200s). Typically QEMU emulation does indeed add overhead, but not 5x for this kind of workload. One of the slowest parts of the Android process is that *compilation* happens serially. Tests themselves need to run single-threaded on the emulator (due to how the test harness works) and this forces the compiles themselves to be single threaded. Now Travis gives us more than one core per machine, so it'd be much better if we could take advantage of them! The emulator itself is still fundamentally single-threaded, but we should see a nice speedup by sending binaries for it to run much more quickly. It turns out that we've already got all the tools to do this in-tree. The qemu-test-{server,client} that are in use for the ARM Linux testing are a perfect match for the Android emulator. This commit migrates the custom adb management code in compiletest/rustbuild to the same qemu-test-{server,client} implementation that ARM Linux uses. This allows us to lift the parallelism restriction on the compiletest test suites, namely run-pass. Consequently although we'll still basically run the tests themselves in single threaded mode we'll be able to compile all of them in parallel, keeping the pipeline much more full and using more cores for the work at hand. Additionally the architecture here should be a bit speedier as it should have less overhead than adb which is a whole new process on both the host and the emulator! Locally on an 8 core machine I've seen the run-pass test suite speed up from taking nearly an hour to only taking 6 minutes. I don't think we'll see quite a drastic speedup on Travis but I'm hoping this change can place the Android tests well below 2 hours instead of just above 2 hours. Because the client/server here are now repurposed for more than just QEMU, they've been renamed to `remote-test-{server,client}`. Note that this PR does not currently modify how debuginfo tests are executed on Android. While parallelizable it wouldn't be quite as easy, so that's left to another day. Thankfully that test suite is much smaller than the run-pass test suite. As a final fix I discovered that the ARM and Android test suites were actually running all library unit tests (e.g. stdtest, coretest, etc) twice. I've corrected that to only run tests once which should also give a nice boost in overall cycle time here.
2017-04-26 08:52:19 -07:00
/// Returns whether the target will be tested using the `remote-test-client`
/// and `remote-test-server` binaries.
fn remote_tested(&self, target: &str) -> bool {
self.qemu_rootfs(target).is_some() || target.contains("android")
}
/// Returns the root of the "rootfs" image that this target will be using,
/// if one was configured.
///
/// If `Some` is returned then that means that tests for this target are
/// emulated with QEMU and binaries will need to be shipped to the emulator.
fn qemu_rootfs(&self, target: &str) -> Option<&Path> {
self.config.target_config.get(target)
.and_then(|t| t.qemu_rootfs.as_ref())
.map(|p| &**p)
}
/// Path to the python interpreter to use
fn python(&self) -> &Path {
self.config.python.as_ref().unwrap()
}
rustbuild: Compile rustc twice, not thrice This commit switches the rustbuild build system to compiling the compiler twice for a normal bootstrap rather than the historical three times. Rust is a bootstrapped language which means that a previous version of the compiler is used to build the next version of the compiler. Over time, however, we change many parts of compiler artifacts such as the metadata format, symbol names, etc. These changes make artifacts from one compiler incompatible from another compiler. Consequently if a compiler wants to be able to use some artifacts then it itself must have compiled the artifacts. Historically the rustc build system has achieved this by compiling the compiler three times: * An older compiler (stage0) is downloaded to kick off the chain. * This compiler now compiles a new compiler (stage1) * The stage1 compiler then compiles another compiler (stage2) * Finally, the stage2 compiler needs libraries to link against, so it compiles all the libraries again. This entire process amounts in compiling the compiler three times. Additionally, this process always guarantees that the Rust source tree can compile itself because the stage2 compiler (created by a freshly created compiler) would successfully compile itself again. This property, ensuring Rust can compile itself, is quite important! In general, though, this third compilation is not required for general purpose development on the compiler. The third compiler (stage2) can reuse the libraries that were created during the second compile. In other words, the second compilation can produce both a compiler and the libraries that compiler will use. These artifacts *must* be compatible due to the way plugins work today anyway, and they were created by the same source code so they *should* be compatible as well. So given all that, this commit switches the default build process to only compile the compiler three times, avoiding this third compilation by copying artifacts from the previous one. Along the way a new entry in the Travis matrix was also added to ensure that our full bootstrap can succeed. This entry does not run tests, though, as it should not be necessary. To restore the old behavior of a full bootstrap (three compiles) you can either pass: ./configure --enable-full-bootstrap or if you're using config.toml: [build] full-bootstrap = true Overall this will hopefully be an easy 33% win in build times of the compiler. If we do 33% less work we should be 33% faster! This in turn should affect cycle times and such on Travis and AppVeyor positively as well as making it easier to work on the compiler itself.
2016-12-25 15:20:33 -08:00
/// Tests whether the `compiler` compiling for `target` should be forced to
/// use a stage1 compiler instead.
///
/// Currently, by default, the build system does not perform a "full
/// bootstrap" by default where we compile the compiler three times.
/// Instead, we compile the compiler two times. The final stage (stage2)
/// just copies the libraries from the previous stage, which is what this
/// method detects.
///
/// Here we return `true` if:
///
/// * The build isn't performing a full bootstrap
/// * The `compiler` is in the final stage, 2
/// * We're not cross-compiling, so the artifacts are already available in
/// stage1
///
/// When all of these conditions are met the build will lift artifacts from
/// the previous stage forward.
fn force_use_stage1(&self, compiler: &Compiler, target: &str) -> bool {
!self.config.full_bootstrap &&
compiler.stage >= 2 &&
self.config.host.iter().any(|h| h == target)
}
rustbuild: Add support for compiling Cargo This commit adds support to rustbuild for compiling Cargo as part of the release process. Previously rustbuild would simply download a Cargo snapshot and repackage it. With this change we should be able to turn off artifacts from the rust-lang/cargo repository and purely rely on the artifacts Cargo produces here. The infrastructure added here is intended to be extensible to other components, such as the RLS. It won't exactly be a one-line addition, but the addition of Cargo didn't require too much hooplah anyway. The process for release Cargo will now look like: * The rust-lang/rust repository has a Cargo submodule which is used to build a Cargo to pair with the rust-lang/rust release * Periodically we'll update the cargo submodule as necessary on rust-lang/rust's master branch * When branching beta we'll create a new branch of Cargo (as we do today), and the first commit to the beta branch will be to update the Cargo submodule to this exact revision. * When branching stable, we'll ensure that the Cargo submodule is updated and then make a stable release. Backports to Cargo will look like: * Send a PR to cargo's master branch * Send a PR to cargo's release branch (e.g. rust-1.16.0) * Send a PR to rust-lang/rust's beta branch updating the submodule * Eventually send a PR to rust-lang/rust's master branch updating the submodule For reference, the process to add a new component to the rust-lang/rust release would look like: * Add `$foo` as a submodule in `src/tools` * Add a `tool-$foo` step which compiles `$foo` with the specified compiler, likely mirroring what Cargo does. * Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output to create a rust-installer package for `$foo` likely mirroring what Cargo does. * Update the `dist-extended` step with a new dependency on `dist-$foo` * Update `src/tools/build-manifest` for the new component.
2017-02-15 15:57:06 -08:00
/// Returns the directory that OpenSSL artifacts are compiled into if
/// configured to do so.
fn openssl_dir(&self, target: &str) -> Option<PathBuf> {
// OpenSSL not used on Windows
if target.contains("windows") {
None
} else if self.config.openssl_static {
Some(self.out.join(target).join("openssl"))
} else {
None
}
}
/// Returns the directory that OpenSSL artifacts are installed into if
/// configured as such.
fn openssl_install_dir(&self, target: &str) -> Option<PathBuf> {
self.openssl_dir(target).map(|p| p.join("install"))
}
/// Given `num` in the form "a.b.c" return a "release string" which
/// describes the release version number.
///
/// For example on nightly this returns "a.b.c-nightly", on beta it returns
/// "a.b.c-beta.1" and on stable it just returns "a.b.c".
fn release(&self, num: &str) -> String {
match &self.config.channel[..] {
"stable" => num.to_string(),
"beta" => format!("{}-beta{}", num, channel::CFG_PRERELEASE_VERSION),
"nightly" => format!("{}-nightly", num),
_ => format!("{}-dev", num),
}
}
/// Returns the value of `release` above for Rust itself.
fn rust_release(&self) -> String {
self.release(channel::CFG_RELEASE_NUM)
}
/// Returns the "package version" for a component given the `num` release
/// number.
///
/// The package version is typically what shows up in the names of tarballs.
/// For channels like beta/nightly it's just the channel name, otherwise
/// it's the `num` provided.
fn package_vers(&self, num: &str) -> String {
match &self.config.channel[..] {
"stable" => num.to_string(),
"beta" => "beta".to_string(),
"nightly" => "nightly".to_string(),
_ => format!("{}-dev", num),
}
}
/// Returns the value of `package_vers` above for Rust itself.
fn rust_package_vers(&self) -> String {
self.package_vers(channel::CFG_RELEASE_NUM)
}
/// Returns the value of `package_vers` above for Cargo
fn cargo_package_vers(&self) -> String {
2017-03-28 08:00:46 +13:00
self.package_vers(&self.release_num("cargo"))
}
/// Returns the value of `package_vers` above for rls
fn rls_package_vers(&self) -> String {
self.package_vers(&self.release_num("rls"))
}
rustbuild: Add support for compiling Cargo This commit adds support to rustbuild for compiling Cargo as part of the release process. Previously rustbuild would simply download a Cargo snapshot and repackage it. With this change we should be able to turn off artifacts from the rust-lang/cargo repository and purely rely on the artifacts Cargo produces here. The infrastructure added here is intended to be extensible to other components, such as the RLS. It won't exactly be a one-line addition, but the addition of Cargo didn't require too much hooplah anyway. The process for release Cargo will now look like: * The rust-lang/rust repository has a Cargo submodule which is used to build a Cargo to pair with the rust-lang/rust release * Periodically we'll update the cargo submodule as necessary on rust-lang/rust's master branch * When branching beta we'll create a new branch of Cargo (as we do today), and the first commit to the beta branch will be to update the Cargo submodule to this exact revision. * When branching stable, we'll ensure that the Cargo submodule is updated and then make a stable release. Backports to Cargo will look like: * Send a PR to cargo's master branch * Send a PR to cargo's release branch (e.g. rust-1.16.0) * Send a PR to rust-lang/rust's beta branch updating the submodule * Eventually send a PR to rust-lang/rust's master branch updating the submodule For reference, the process to add a new component to the rust-lang/rust release would look like: * Add `$foo` as a submodule in `src/tools` * Add a `tool-$foo` step which compiles `$foo` with the specified compiler, likely mirroring what Cargo does. * Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output to create a rust-installer package for `$foo` likely mirroring what Cargo does. * Update the `dist-extended` step with a new dependency on `dist-$foo` * Update `src/tools/build-manifest` for the new component.
2017-02-15 15:57:06 -08:00
/// Returns the `version` string associated with this compiler for Rust
/// itself.
///
/// Note that this is a descriptive string which includes the commit date,
/// sha, version, etc.
fn rust_version(&self) -> String {
self.rust_info.version(self, channel::CFG_RELEASE_NUM)
}
2017-03-28 08:00:46 +13:00
/// Returns the `a.b.c` version that the given package is at.
fn release_num(&self, package: &str) -> String {
let mut toml = String::new();
let toml_file_name = self.src.join(&format!("src/tools/{}/Cargo.toml", package));
2017-03-28 08:00:46 +13:00
t!(t!(File::open(toml_file_name)).read_to_string(&mut toml));
for line in toml.lines() {
let prefix = "version = \"";
let suffix = "\"";
if line.starts_with(prefix) && line.ends_with(suffix) {
return line[prefix.len()..line.len() - suffix.len()].to_string()
}
}
2017-03-28 08:00:46 +13:00
panic!("failed to find version in {}'s Cargo.toml", package)
}
rustbuild: Add support for compiling Cargo This commit adds support to rustbuild for compiling Cargo as part of the release process. Previously rustbuild would simply download a Cargo snapshot and repackage it. With this change we should be able to turn off artifacts from the rust-lang/cargo repository and purely rely on the artifacts Cargo produces here. The infrastructure added here is intended to be extensible to other components, such as the RLS. It won't exactly be a one-line addition, but the addition of Cargo didn't require too much hooplah anyway. The process for release Cargo will now look like: * The rust-lang/rust repository has a Cargo submodule which is used to build a Cargo to pair with the rust-lang/rust release * Periodically we'll update the cargo submodule as necessary on rust-lang/rust's master branch * When branching beta we'll create a new branch of Cargo (as we do today), and the first commit to the beta branch will be to update the Cargo submodule to this exact revision. * When branching stable, we'll ensure that the Cargo submodule is updated and then make a stable release. Backports to Cargo will look like: * Send a PR to cargo's master branch * Send a PR to cargo's release branch (e.g. rust-1.16.0) * Send a PR to rust-lang/rust's beta branch updating the submodule * Eventually send a PR to rust-lang/rust's master branch updating the submodule For reference, the process to add a new component to the rust-lang/rust release would look like: * Add `$foo` as a submodule in `src/tools` * Add a `tool-$foo` step which compiles `$foo` with the specified compiler, likely mirroring what Cargo does. * Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output to create a rust-installer package for `$foo` likely mirroring what Cargo does. * Update the `dist-extended` step with a new dependency on `dist-$foo` * Update `src/tools/build-manifest` for the new component.
2017-02-15 15:57:06 -08:00
/// Returns whether unstable features should be enabled for the compiler
/// we're building.
fn unstable_features(&self) -> bool {
match &self.config.channel[..] {
"stable" | "beta" => false,
"nightly" | _ => true,
}
}
}
impl<'a> Compiler<'a> {
/// Creates a new complier for the specified stage/host
fn new(stage: u32, host: &'a str) -> Compiler<'a> {
Compiler { stage: stage, host: host }
}
/// Returns whether this is a snapshot compiler for `build`'s configuration
fn is_snapshot(&self, build: &Build) -> bool {
self.stage == 0 && self.host == build.config.build
}
/// Returns if this compiler should be treated as a final stage one in the
/// current build session.
/// This takes into account whether we're performing a full bootstrap or
/// not; don't directly compare the stage with `2`!
fn is_final_stage(&self, build: &Build) -> bool {
let final_stage = if build.config.full_bootstrap { 2 } else { 1 };
self.stage >= final_stage
}
}