rust/clippy_utils/src/lib.rs

1650 lines
54 KiB
Rust
Raw Normal View History

#![feature(box_patterns)]
#![feature(in_band_lifetimes)]
2021-03-08 17:57:44 -06:00
#![feature(iter_zip)]
2020-11-21 15:22:32 -06:00
#![cfg_attr(bootstrap, feature(or_patterns))]
#![feature(rustc_private)]
#![recursion_limit = "512"]
#![allow(clippy::missing_errors_doc, clippy::missing_panics_doc, clippy::must_use_candidate)]
// FIXME: switch to something more ergonomic here, once available.
// (Currently there is no way to opt into sysroot crates without `extern crate`.)
extern crate rustc_ast;
extern crate rustc_ast_pretty;
extern crate rustc_attr;
extern crate rustc_data_structures;
extern crate rustc_errors;
extern crate rustc_hir;
extern crate rustc_infer;
extern crate rustc_lexer;
extern crate rustc_lint;
extern crate rustc_middle;
extern crate rustc_mir;
extern crate rustc_session;
extern crate rustc_span;
extern crate rustc_target;
extern crate rustc_trait_selection;
extern crate rustc_typeck;
#[macro_use]
pub mod sym_helper;
#[allow(clippy::module_name_repetitions)]
pub mod ast_utils;
pub mod attrs;
pub mod camel_case;
pub mod comparisons;
pub mod consts;
pub mod diagnostics;
pub mod eager_or_lazy;
pub mod higher;
mod hir_utils;
pub mod msrvs;
pub mod numeric_literal;
pub mod paths;
pub mod ptr;
pub mod qualify_min_const_fn;
pub mod source;
pub mod sugg;
pub mod ty;
pub mod usage;
pub mod visitors;
pub use self::attrs::*;
pub use self::hir_utils::{both, count_eq, eq_expr_value, over, SpanlessEq, SpanlessHash};
use std::collections::hash_map::Entry;
use std::hash::BuildHasherDefault;
use if_chain::if_chain;
use rustc_ast::ast::{self, Attribute, BorrowKind, LitKind};
use rustc_data_structures::fx::FxHashMap;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
2021-05-11 05:00:59 -05:00
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::{self, walk_expr, ErasedMap, FnKind, NestedVisitorMap, Visitor};
use rustc_hir::LangItem::{ResultErr, ResultOk};
use rustc_hir::{
def, Arm, BindingAnnotation, Block, Body, Constness, Destination, Expr, ExprKind, FnDecl, GenericArgs, HirId, Impl,
ImplItem, ImplItemKind, IsAsync, Item, ItemKind, LangItem, Local, MatchSource, Node, Param, Pat, PatKind, Path,
PathSegment, QPath, Stmt, StmtKind, TraitItem, TraitItemKind, TraitRef, TyKind,
};
use rustc_lint::{LateContext, Level, Lint, LintContext};
use rustc_middle::hir::exports::Export;
use rustc_middle::hir::map::Map;
use rustc_middle::ty as rustc_ty;
use rustc_middle::ty::{layout::IntegerExt, DefIdTree, Ty, TyCtxt, TypeFoldable};
use rustc_semver::RustcVersion;
use rustc_session::Session;
use rustc_span::hygiene::{ExpnKind, MacroKind};
use rustc_span::source_map::original_sp;
use rustc_span::sym;
use rustc_span::symbol::{kw, Symbol};
use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::Integer;
use crate::consts::{constant, Constant};
use crate::ty::{can_partially_move_ty, is_recursively_primitive_type};
pub fn parse_msrv(msrv: &str, sess: Option<&Session>, span: Option<Span>) -> Option<RustcVersion> {
if let Ok(version) = RustcVersion::parse(msrv) {
return Some(version);
} else if let Some(sess) = sess {
if let Some(span) = span {
sess.span_err(span, &format!("`{}` is not a valid Rust version", msrv));
}
}
None
}
pub fn meets_msrv(msrv: Option<&RustcVersion>, lint_msrv: &RustcVersion) -> bool {
msrv.map_or(true, |msrv| msrv.meets(*lint_msrv))
}
#[macro_export]
macro_rules! extract_msrv_attr {
(LateContext) => {
extract_msrv_attr!(@LateContext, ());
};
(EarlyContext) => {
extract_msrv_attr!(@EarlyContext);
};
(@$context:ident$(, $call:tt)?) => {
fn enter_lint_attrs(&mut self, cx: &rustc_lint::$context<'tcx>, attrs: &'tcx [rustc_ast::ast::Attribute]) {
use $crate::get_unique_inner_attr;
match get_unique_inner_attr(cx.sess$($call)?, attrs, "msrv") {
Some(msrv_attr) => {
if let Some(msrv) = msrv_attr.value_str() {
self.msrv = $crate::parse_msrv(
&msrv.to_string(),
Some(cx.sess$($call)?),
Some(msrv_attr.span),
);
} else {
cx.sess$($call)?.span_err(msrv_attr.span, "bad clippy attribute");
}
},
_ => (),
}
}
};
}
/// Returns `true` if the two spans come from differing expansions (i.e., one is
/// from a macro and one isn't).
#[must_use]
pub fn differing_macro_contexts(lhs: Span, rhs: Span) -> bool {
rhs.ctxt() != lhs.ctxt()
}
/// If the given expression is a local binding, find the initializer expression.
/// If that initializer expression is another local binding, find its initializer again.
/// This process repeats as long as possible (but usually no more than once). Initializer
/// expressions with adjustments are ignored. If this is not desired, use [`find_binding_init`]
/// instead.
///
/// Examples:
/// ```ignore
/// let abc = 1;
/// // ^ output
/// let def = abc;
/// dbg!(def)
/// // ^^^ input
///
/// // or...
/// let abc = 1;
/// let def = abc + 2;
/// // ^^^^^^^ output
/// dbg!(def)
/// // ^^^ input
/// ```
pub fn expr_or_init<'a, 'b, 'tcx: 'b>(cx: &LateContext<'tcx>, mut expr: &'a Expr<'b>) -> &'a Expr<'b> {
while let Some(init) = path_to_local(expr)
.and_then(|id| find_binding_init(cx, id))
.filter(|init| cx.typeck_results().expr_adjustments(init).is_empty())
{
expr = init;
}
expr
}
/// Finds the initializer expression for a local binding. Returns `None` if the binding is mutable.
/// By only considering immutable bindings, we guarantee that the returned expression represents the
/// value of the binding wherever it is referenced.
///
/// Example: For `let x = 1`, if the `HirId` of `x` is provided, the `Expr` `1` is returned.
/// Note: If you have an expression that references a binding `x`, use `path_to_local` to get the
/// canonical binding `HirId`.
pub fn find_binding_init<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx Expr<'tcx>> {
let hir = cx.tcx.hir();
if_chain! {
if let Some(Node::Binding(pat)) = hir.find(hir_id);
if matches!(pat.kind, PatKind::Binding(BindingAnnotation::Unannotated, ..));
let parent = hir.get_parent_node(hir_id);
if let Some(Node::Local(local)) = hir.find(parent);
then {
return local.init;
}
}
None
}
/// Returns `true` if the given `NodeId` is inside a constant context
///
/// # Example
///
/// ```rust,ignore
/// if in_constant(cx, expr.hir_id) {
/// // Do something
/// }
/// ```
pub fn in_constant(cx: &LateContext<'_>, id: HirId) -> bool {
let parent_id = cx.tcx.hir().get_parent_item(id);
match cx.tcx.hir().get(parent_id) {
Node::Item(&Item {
kind: ItemKind::Const(..) | ItemKind::Static(..),
..
})
| Node::TraitItem(&TraitItem {
kind: TraitItemKind::Const(..),
..
})
| Node::ImplItem(&ImplItem {
kind: ImplItemKind::Const(..),
..
})
| Node::AnonConst(_) => true,
Node::Item(&Item {
kind: ItemKind::Fn(ref sig, ..),
..
})
| Node::ImplItem(&ImplItem {
kind: ImplItemKind::Fn(ref sig, _),
..
}) => sig.header.constness == Constness::Const,
_ => false,
}
}
/// Checks if a `QPath` resolves to a constructor of a `LangItem`.
/// For example, use this to check whether a function call or a pattern is `Some(..)`.
pub fn is_lang_ctor(cx: &LateContext<'_>, qpath: &QPath<'_>, lang_item: LangItem) -> bool {
if let QPath::Resolved(_, path) = qpath {
if let Res::Def(DefKind::Ctor(..), ctor_id) = path.res {
if let Ok(item_id) = cx.tcx.lang_items().require(lang_item) {
return cx.tcx.parent(ctor_id) == Some(item_id);
}
}
}
false
}
/// Returns `true` if this `span` was expanded by any macro.
#[must_use]
pub fn in_macro(span: Span) -> bool {
if span.from_expansion() {
!matches!(span.ctxt().outer_expn_data().kind, ExpnKind::Desugaring(..))
} else {
false
}
}
/// Checks if given pattern is a wildcard (`_`)
pub fn is_wild<'tcx>(pat: &impl std::ops::Deref<Target = Pat<'tcx>>) -> bool {
matches!(pat.kind, PatKind::Wild)
}
/// Checks if the first type parameter is a lang item.
pub fn is_ty_param_lang_item(cx: &LateContext<'_>, qpath: &QPath<'tcx>, item: LangItem) -> Option<&'tcx hir::Ty<'tcx>> {
let ty = get_qpath_generic_tys(qpath).next()?;
if let TyKind::Path(qpath) = &ty.kind {
cx.qpath_res(qpath, ty.hir_id)
.opt_def_id()
.map_or(false, |id| {
cx.tcx.lang_items().require(item).map_or(false, |lang_id| id == lang_id)
})
.then(|| ty)
} else {
None
}
}
/// Checks if the first type parameter is a diagnostic item.
pub fn is_ty_param_diagnostic_item(
cx: &LateContext<'_>,
qpath: &QPath<'tcx>,
item: Symbol,
) -> Option<&'tcx hir::Ty<'tcx>> {
let ty = get_qpath_generic_tys(qpath).next()?;
if let TyKind::Path(qpath) = &ty.kind {
cx.qpath_res(qpath, ty.hir_id)
.opt_def_id()
.map_or(false, |id| cx.tcx.is_diagnostic_item(item, id))
.then(|| ty)
} else {
None
}
}
/// Checks if the method call given in `expr` belongs to the given trait.
/// This is a deprecated function, consider using [`is_trait_method`].
pub fn match_trait_method(cx: &LateContext<'_>, expr: &Expr<'_>, path: &[&str]) -> bool {
let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id).unwrap();
let trt_id = cx.tcx.trait_of_item(def_id);
trt_id.map_or(false, |trt_id| match_def_path(cx, trt_id, path))
}
/// Checks if a method is defined in an impl of a diagnostic item
pub fn is_diag_item_method(cx: &LateContext<'_>, def_id: DefId, diag_item: Symbol) -> bool {
if let Some(impl_did) = cx.tcx.impl_of_method(def_id) {
if let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def() {
return cx.tcx.is_diagnostic_item(diag_item, adt.did);
}
}
false
}
/// Checks if a method is in a diagnostic item trait
pub fn is_diag_trait_item(cx: &LateContext<'_>, def_id: DefId, diag_item: Symbol) -> bool {
if let Some(trait_did) = cx.tcx.trait_of_item(def_id) {
return cx.tcx.is_diagnostic_item(diag_item, trait_did);
}
false
}
/// Checks if the method call given in `expr` belongs to the given trait.
pub fn is_trait_method(cx: &LateContext<'_>, expr: &Expr<'_>, diag_item: Symbol) -> bool {
cx.typeck_results()
.type_dependent_def_id(expr.hir_id)
.map_or(false, |did| is_diag_trait_item(cx, did, diag_item))
}
/// Checks if an expression references a variable of the given name.
pub fn match_var(expr: &Expr<'_>, var: Symbol) -> bool {
if let ExprKind::Path(QPath::Resolved(None, ref path)) = expr.kind {
if let [p] = path.segments {
return p.ident.name == var;
}
}
false
}
pub fn last_path_segment<'tcx>(path: &QPath<'tcx>) -> &'tcx PathSegment<'tcx> {
match *path {
QPath::Resolved(_, ref path) => path.segments.last().expect("A path must have at least one segment"),
QPath::TypeRelative(_, ref seg) => seg,
QPath::LangItem(..) => panic!("last_path_segment: lang item has no path segments"),
}
}
pub fn get_qpath_generics(path: &QPath<'tcx>) -> Option<&'tcx GenericArgs<'tcx>> {
match path {
QPath::Resolved(_, p) => p.segments.last().and_then(|s| s.args),
QPath::TypeRelative(_, s) => s.args,
QPath::LangItem(..) => None,
}
}
pub fn get_qpath_generic_tys(path: &QPath<'tcx>) -> impl Iterator<Item = &'tcx hir::Ty<'tcx>> {
get_qpath_generics(path)
.map_or([].as_ref(), |a| a.args)
.iter()
.filter_map(|a| {
if let hir::GenericArg::Type(ty) = a {
Some(ty)
} else {
None
}
})
}
pub fn single_segment_path<'tcx>(path: &QPath<'tcx>) -> Option<&'tcx PathSegment<'tcx>> {
match *path {
QPath::Resolved(_, ref path) => path.segments.get(0),
QPath::TypeRelative(_, ref seg) => Some(seg),
QPath::LangItem(..) => None,
}
}
/// THIS METHOD IS DEPRECATED and will eventually be removed since it does not match against the
/// entire path or resolved `DefId`. Prefer using `match_def_path`. Consider getting a `DefId` from
/// `QPath::Resolved.1.res.opt_def_id()`.
///
/// Matches a `QPath` against a slice of segment string literals.
///
/// There is also `match_path` if you are dealing with a `rustc_hir::Path` instead of a
/// `rustc_hir::QPath`.
///
/// # Examples
/// ```rust,ignore
/// match_qpath(path, &["std", "rt", "begin_unwind"])
/// ```
pub fn match_qpath(path: &QPath<'_>, segments: &[&str]) -> bool {
match *path {
QPath::Resolved(_, ref path) => match_path(path, segments),
QPath::TypeRelative(ref ty, ref segment) => match ty.kind {
TyKind::Path(ref inner_path) => {
if let [prefix @ .., end] = segments {
if match_qpath(inner_path, prefix) {
return segment.ident.name.as_str() == *end;
}
}
false
},
_ => false,
},
QPath::LangItem(..) => false,
}
}
/// If the expression is a path, resolve it. Otherwise, return `Res::Err`.
pub fn expr_path_res(cx: &LateContext<'_>, expr: &Expr<'_>) -> Res {
if let ExprKind::Path(p) = &expr.kind {
cx.qpath_res(p, expr.hir_id)
} else {
Res::Err
}
}
/// Resolves the path to a `DefId` and checks if it matches the given path.
pub fn is_qpath_def_path(cx: &LateContext<'_>, path: &QPath<'_>, hir_id: HirId, segments: &[&str]) -> bool {
cx.qpath_res(path, hir_id)
.opt_def_id()
.map_or(false, |id| match_def_path(cx, id, segments))
}
/// If the expression is a path, resolves it to a `DefId` and checks if it matches the given path.
pub fn is_expr_path_def_path(cx: &LateContext<'_>, expr: &Expr<'_>, segments: &[&str]) -> bool {
expr_path_res(cx, expr)
.opt_def_id()
.map_or(false, |id| match_def_path(cx, id, segments))
}
/// THIS METHOD IS DEPRECATED and will eventually be removed since it does not match against the
/// entire path or resolved `DefId`. Prefer using `match_def_path`. Consider getting a `DefId` from
/// `QPath::Resolved.1.res.opt_def_id()`.
///
/// Matches a `Path` against a slice of segment string literals.
///
/// There is also `match_qpath` if you are dealing with a `rustc_hir::QPath` instead of a
/// `rustc_hir::Path`.
///
/// # Examples
///
/// ```rust,ignore
/// if match_path(&trait_ref.path, &paths::HASH) {
/// // This is the `std::hash::Hash` trait.
/// }
///
/// if match_path(ty_path, &["rustc", "lint", "Lint"]) {
/// // This is a `rustc_middle::lint::Lint`.
/// }
/// ```
pub fn match_path(path: &Path<'_>, segments: &[&str]) -> bool {
path.segments
.iter()
.rev()
.zip(segments.iter().rev())
.all(|(a, b)| a.ident.name.as_str() == *b)
}
/// If the expression is a path to a local, returns the canonical `HirId` of the local.
pub fn path_to_local(expr: &Expr<'_>) -> Option<HirId> {
if let ExprKind::Path(QPath::Resolved(None, ref path)) = expr.kind {
if let Res::Local(id) = path.res {
return Some(id);
}
}
None
}
/// Returns true if the expression is a path to a local with the specified `HirId`.
/// Use this function to see if an expression matches a function argument or a match binding.
pub fn path_to_local_id(expr: &Expr<'_>, id: HirId) -> bool {
path_to_local(expr) == Some(id)
}
/// Gets the definition associated to a path.
#[allow(clippy::shadow_unrelated)] // false positive #6563
pub fn path_to_res(cx: &LateContext<'_>, path: &[&str]) -> Res {
macro_rules! try_res {
($e:expr) => {
match $e {
Some(e) => e,
None => return Res::Err,
}
};
}
fn item_child_by_name<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, name: &str) -> Option<&'tcx Export<HirId>> {
tcx.item_children(def_id)
.iter()
.find(|item| item.ident.name.as_str() == name)
}
let (krate, first, path) = match *path {
[krate, first, ref path @ ..] => (krate, first, path),
_ => return Res::Err,
};
let tcx = cx.tcx;
let crates = tcx.crates();
let krate = try_res!(crates.iter().find(|&&num| tcx.crate_name(num).as_str() == krate));
let first = try_res!(item_child_by_name(tcx, krate.as_def_id(), first));
let last = path
.iter()
.copied()
// `get_def_path` seems to generate these empty segments for extern blocks.
// We can just ignore them.
.filter(|segment| !segment.is_empty())
// for each segment, find the child item
.try_fold(first, |item, segment| {
let def_id = item.res.def_id();
if let Some(item) = item_child_by_name(tcx, def_id, segment) {
Some(item)
} else if matches!(item.res, Res::Def(DefKind::Enum | DefKind::Struct, _)) {
// it is not a child item so check inherent impl items
tcx.inherent_impls(def_id)
.iter()
.find_map(|&impl_def_id| item_child_by_name(tcx, impl_def_id, segment))
} else {
None
}
});
try_res!(last).res
}
/// Convenience function to get the `DefId` of a trait by path.
/// It could be a trait or trait alias.
pub fn get_trait_def_id(cx: &LateContext<'_>, path: &[&str]) -> Option<DefId> {
match path_to_res(cx, path) {
Res::Def(DefKind::Trait | DefKind::TraitAlias, trait_id) => Some(trait_id),
_ => None,
}
}
/// Gets the `hir::TraitRef` of the trait the given method is implemented for.
///
/// Use this if you want to find the `TraitRef` of the `Add` trait in this example:
///
/// ```rust
/// struct Point(isize, isize);
///
/// impl std::ops::Add for Point {
/// type Output = Self;
///
/// fn add(self, other: Self) -> Self {
/// Point(0, 0)
/// }
/// }
/// ```
pub fn trait_ref_of_method<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx TraitRef<'tcx>> {
// Get the implemented trait for the current function
let parent_impl = cx.tcx.hir().get_parent_item(hir_id);
if_chain! {
if parent_impl != hir::CRATE_HIR_ID;
if let hir::Node::Item(item) = cx.tcx.hir().get(parent_impl);
if let hir::ItemKind::Impl(impl_) = &item.kind;
then { return impl_.of_trait.as_ref(); }
}
None
}
/// Checks if the top level expression can be moved into a closure as is.
pub fn can_move_expr_to_closure_no_visit(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>, jump_targets: &[HirId]) -> bool {
match expr.kind {
ExprKind::Break(Destination { target_id: Ok(id), .. }, _)
| ExprKind::Continue(Destination { target_id: Ok(id), .. })
if jump_targets.contains(&id) =>
{
true
},
ExprKind::Break(..)
| ExprKind::Continue(_)
| ExprKind::Ret(_)
| ExprKind::Yield(..)
| ExprKind::InlineAsm(_)
| ExprKind::LlvmInlineAsm(_) => false,
// Accessing a field of a local value can only be done if the type isn't
// partially moved.
ExprKind::Field(base_expr, _)
if matches!(
base_expr.kind,
ExprKind::Path(QPath::Resolved(_, Path { res: Res::Local(_), .. }))
) && can_partially_move_ty(cx, cx.typeck_results().expr_ty(base_expr)) =>
{
// TODO: check if the local has been partially moved. Assume it has for now.
false
}
_ => true,
}
}
/// Checks if the expression can be moved into a closure as is.
pub fn can_move_expr_to_closure(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> bool {
struct V<'cx, 'tcx> {
cx: &'cx LateContext<'tcx>,
loops: Vec<HirId>,
allow_closure: bool,
}
impl Visitor<'tcx> for V<'_, 'tcx> {
type Map = ErasedMap<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
if !self.allow_closure {
return;
}
if let ExprKind::Loop(b, ..) = e.kind {
self.loops.push(e.hir_id);
self.visit_block(b);
self.loops.pop();
} else {
self.allow_closure &= can_move_expr_to_closure_no_visit(self.cx, e, &self.loops);
walk_expr(self, e);
}
}
}
let mut v = V {
cx,
allow_closure: true,
loops: Vec::new(),
};
v.visit_expr(expr);
v.allow_closure
}
/// Returns the method names and argument list of nested method call expressions that make up
/// `expr`. method/span lists are sorted with the most recent call first.
pub fn method_calls<'tcx>(
expr: &'tcx Expr<'tcx>,
max_depth: usize,
) -> (Vec<Symbol>, Vec<&'tcx [Expr<'tcx>]>, Vec<Span>) {
let mut method_names = Vec::with_capacity(max_depth);
let mut arg_lists = Vec::with_capacity(max_depth);
let mut spans = Vec::with_capacity(max_depth);
let mut current = expr;
for _ in 0..max_depth {
if let ExprKind::MethodCall(path, span, args, _) = &current.kind {
if args.iter().any(|e| e.span.from_expansion()) {
break;
}
method_names.push(path.ident.name);
arg_lists.push(&**args);
spans.push(*span);
current = &args[0];
} else {
break;
}
}
(method_names, arg_lists, spans)
}
/// Matches an `Expr` against a chain of methods, and return the matched `Expr`s.
///
/// For example, if `expr` represents the `.baz()` in `foo.bar().baz()`,
/// `method_chain_args(expr, &["bar", "baz"])` will return a `Vec`
/// containing the `Expr`s for
/// `.bar()` and `.baz()`
pub fn method_chain_args<'a>(expr: &'a Expr<'_>, methods: &[&str]) -> Option<Vec<&'a [Expr<'a>]>> {
let mut current = expr;
let mut matched = Vec::with_capacity(methods.len());
for method_name in methods.iter().rev() {
// method chains are stored last -> first
if let ExprKind::MethodCall(ref path, _, ref args, _) = current.kind {
if path.ident.name.as_str() == *method_name {
if args.iter().any(|e| e.span.from_expansion()) {
return None;
}
matched.push(&**args); // build up `matched` backwards
current = &args[0] // go to parent expression
} else {
return None;
}
} else {
return None;
}
}
// Reverse `matched` so that it is in the same order as `methods`.
matched.reverse();
Some(matched)
}
/// Returns `true` if the provided `def_id` is an entrypoint to a program.
pub fn is_entrypoint_fn(cx: &LateContext<'_>, def_id: DefId) -> bool {
cx.tcx
2021-05-11 05:00:59 -05:00
.entry_fn(())
.map_or(false, |(entry_fn_def_id, _)| def_id == entry_fn_def_id)
}
/// Returns `true` if the expression is in the program's `#[panic_handler]`.
pub fn is_in_panic_handler(cx: &LateContext<'_>, e: &Expr<'_>) -> bool {
let parent = cx.tcx.hir().get_parent_item(e.hir_id);
let def_id = cx.tcx.hir().local_def_id(parent).to_def_id();
Some(def_id) == cx.tcx.lang_items().panic_impl()
}
/// Gets the name of the item the expression is in, if available.
pub fn get_item_name(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<Symbol> {
let parent_id = cx.tcx.hir().get_parent_item(expr.hir_id);
match cx.tcx.hir().find(parent_id) {
Some(
Node::Item(Item { ident, .. })
| Node::TraitItem(TraitItem { ident, .. })
| Node::ImplItem(ImplItem { ident, .. }),
) => Some(ident.name),
_ => None,
}
}
/// Gets the name of a `Pat`, if any.
pub fn get_pat_name(pat: &Pat<'_>) -> Option<Symbol> {
match pat.kind {
PatKind::Binding(.., ref spname, _) => Some(spname.name),
PatKind::Path(ref qpath) => single_segment_path(qpath).map(|ps| ps.ident.name),
PatKind::Box(ref p) | PatKind::Ref(ref p, _) => get_pat_name(&*p),
_ => None,
}
}
pub struct ContainsName {
pub name: Symbol,
pub result: bool,
}
impl<'tcx> Visitor<'tcx> for ContainsName {
type Map = Map<'tcx>;
fn visit_name(&mut self, _: Span, name: Symbol) {
if self.name == name {
self.result = true;
}
}
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
}
/// Checks if an `Expr` contains a certain name.
pub fn contains_name(name: Symbol, expr: &Expr<'_>) -> bool {
let mut cn = ContainsName { name, result: false };
cn.visit_expr(expr);
cn.result
}
/// Returns `true` if `expr` contains a return expression
pub fn contains_return(expr: &hir::Expr<'_>) -> bool {
struct RetCallFinder {
found: bool,
}
impl<'tcx> hir::intravisit::Visitor<'tcx> for RetCallFinder {
type Map = Map<'tcx>;
fn visit_expr(&mut self, expr: &'tcx hir::Expr<'_>) {
if self.found {
return;
}
if let hir::ExprKind::Ret(..) = &expr.kind {
self.found = true;
} else {
hir::intravisit::walk_expr(self, expr);
}
}
fn nested_visit_map(&mut self) -> hir::intravisit::NestedVisitorMap<Self::Map> {
hir::intravisit::NestedVisitorMap::None
}
}
let mut visitor = RetCallFinder { found: false };
visitor.visit_expr(expr);
visitor.found
}
struct FindMacroCalls<'a, 'b> {
names: &'a [&'b str],
result: Vec<Span>,
}
impl<'a, 'b, 'tcx> Visitor<'tcx> for FindMacroCalls<'a, 'b> {
type Map = Map<'tcx>;
fn visit_expr(&mut self, expr: &'tcx Expr<'_>) {
if self.names.iter().any(|fun| is_expn_of(expr.span, fun).is_some()) {
self.result.push(expr.span);
}
// and check sub-expressions
intravisit::walk_expr(self, expr);
}
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
}
/// Finds calls of the specified macros in a function body.
pub fn find_macro_calls(names: &[&str], body: &Body<'_>) -> Vec<Span> {
let mut fmc = FindMacroCalls {
names,
result: Vec::new(),
};
fmc.visit_expr(&body.value);
fmc.result
}
/// Extends the span to the beginning of the spans line, incl. whitespaces.
///
/// ```rust,ignore
/// let x = ();
/// // ^^
/// // will be converted to
/// let x = ();
/// // ^^^^^^^^^^^^^^
/// ```
fn line_span<T: LintContext>(cx: &T, span: Span) -> Span {
let span = original_sp(span, DUMMY_SP);
let source_map_and_line = cx.sess().source_map().lookup_line(span.lo()).unwrap();
let line_no = source_map_and_line.line;
let line_start = source_map_and_line.sf.lines[line_no];
Span::new(line_start, span.hi(), span.ctxt())
}
/// Gets the parent node, if any.
pub fn get_parent_node(tcx: TyCtxt<'_>, id: HirId) -> Option<Node<'_>> {
tcx.hir().parent_iter(id).next().map(|(_, node)| node)
}
/// Gets the parent expression, if any - this is useful to constrain a lint.
pub fn get_parent_expr<'tcx>(cx: &LateContext<'tcx>, e: &Expr<'_>) -> Option<&'tcx Expr<'tcx>> {
get_parent_expr_for_hir(cx, e.hir_id)
}
/// This retrieves the parent for the given `HirId` if it's an expression. This is useful for
/// constraint lints
pub fn get_parent_expr_for_hir<'tcx>(cx: &LateContext<'tcx>, hir_id: hir::HirId) -> Option<&'tcx Expr<'tcx>> {
match get_parent_node(cx.tcx, hir_id) {
Some(Node::Expr(parent)) => Some(parent),
_ => None,
}
}
pub fn get_enclosing_block<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx Block<'tcx>> {
let map = &cx.tcx.hir();
let enclosing_node = map
.get_enclosing_scope(hir_id)
.and_then(|enclosing_id| map.find(enclosing_id));
enclosing_node.and_then(|node| match node {
Node::Block(block) => Some(block),
Node::Item(&Item {
kind: ItemKind::Fn(_, _, eid),
..
})
| Node::ImplItem(&ImplItem {
kind: ImplItemKind::Fn(_, eid),
..
}) => match cx.tcx.hir().body(eid).value.kind {
ExprKind::Block(ref block, _) => Some(block),
_ => None,
},
_ => None,
})
}
/// Gets the parent node if it's an impl block.
pub fn get_parent_as_impl(tcx: TyCtxt<'_>, id: HirId) -> Option<&Impl<'_>> {
let map = tcx.hir();
match map.parent_iter(id).next() {
Some((
_,
Node::Item(Item {
kind: ItemKind::Impl(imp),
..
}),
)) => Some(imp),
_ => None,
}
}
/// Checks if the given expression is the else clause of either an `if` or `if let` expression.
pub fn is_else_clause(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
let map = tcx.hir();
let mut iter = map.parent_iter(expr.hir_id);
match iter.next() {
Some((arm_id, Node::Arm(..))) => matches!(
iter.next(),
Some((
_,
Node::Expr(Expr {
kind: ExprKind::Match(_, [_, else_arm], MatchSource::IfLetDesugar { .. }),
..
})
))
if else_arm.hir_id == arm_id
),
Some((
_,
Node::Expr(Expr {
kind: ExprKind::If(_, _, Some(else_expr)),
..
}),
)) => else_expr.hir_id == expr.hir_id,
_ => false,
}
}
/// Checks whether the given expression is a constant integer of the given value.
/// unlike `is_integer_literal`, this version does const folding
pub fn is_integer_const(cx: &LateContext<'_>, e: &Expr<'_>, value: u128) -> bool {
if is_integer_literal(e, value) {
return true;
}
let map = cx.tcx.hir();
let parent_item = map.get_parent_item(e.hir_id);
if let Some((Constant::Int(v), _)) = map
.maybe_body_owned_by(parent_item)
.and_then(|body_id| constant(cx, cx.tcx.typeck_body(body_id), e))
{
value == v
} else {
false
}
}
/// Checks whether the given expression is a constant literal of the given value.
pub fn is_integer_literal(expr: &Expr<'_>, value: u128) -> bool {
// FIXME: use constant folding
if let ExprKind::Lit(ref spanned) = expr.kind {
if let LitKind::Int(v, _) = spanned.node {
return v == value;
}
}
false
}
/// Returns `true` if the given `Expr` has been coerced before.
///
/// Examples of coercions can be found in the Nomicon at
/// <https://doc.rust-lang.org/nomicon/coercions.html>.
///
/// See `rustc_middle::ty::adjustment::Adjustment` and `rustc_typeck::check::coercion` for more
/// information on adjustments and coercions.
pub fn is_adjusted(cx: &LateContext<'_>, e: &Expr<'_>) -> bool {
cx.typeck_results().adjustments().get(e.hir_id).is_some()
}
/// Returns the pre-expansion span if is this comes from an expansion of the
/// macro `name`.
/// See also `is_direct_expn_of`.
#[must_use]
pub fn is_expn_of(mut span: Span, name: &str) -> Option<Span> {
loop {
if span.from_expansion() {
let data = span.ctxt().outer_expn_data();
let new_span = data.call_site;
Implement span quoting for proc-macros This PR implements span quoting, allowing proc-macros to produce spans pointing *into their own crate*. This is used by the unstable `proc_macro::quote!` macro, allowing us to get error messages like this: ``` error[E0412]: cannot find type `MissingType` in this scope --> $DIR/auxiliary/span-from-proc-macro.rs:37:20 | LL | pub fn error_from_attribute(_args: TokenStream, _input: TokenStream) -> TokenStream { | ----------------------------------------------------------------------------------- in this expansion of procedural macro `#[error_from_attribute]` ... LL | field: MissingType | ^^^^^^^^^^^ not found in this scope | ::: $DIR/span-from-proc-macro.rs:8:1 | LL | #[error_from_attribute] | ----------------------- in this macro invocation ``` Here, `MissingType` occurs inside the implementation of the proc-macro `#[error_from_attribute]`. Previosuly, this would always result in a span pointing at `#[error_from_attribute]` This will make many proc-macro-related error message much more useful - when a proc-macro generates code containing an error, users will get an error message pointing directly at that code (within the macro definition), instead of always getting a span pointing at the macro invocation site. This is implemented as follows: * When a proc-macro crate is being *compiled*, it causes the `quote!` macro to get run. This saves all of the sapns in the input to `quote!` into the metadata of *the proc-macro-crate* (which we are currently compiling). The `quote!` macro then expands to a call to `proc_macro::Span::recover_proc_macro_span(id)`, where `id` is an opaque identifier for the span in the crate metadata. * When the same proc-macro crate is *run* (e.g. it is loaded from disk and invoked by some consumer crate), the call to `proc_macro::Span::recover_proc_macro_span` causes us to load the span from the proc-macro crate's metadata. The proc-macro then produces a `TokenStream` containing a `Span` pointing into the proc-macro crate itself. The recursive nature of 'quote!' can be difficult to understand at first. The file `src/test/ui/proc-macro/quote-debug.stdout` shows the output of the `quote!` macro, which should make this eaier to understand. This PR also supports custom quoting spans in custom quote macros (e.g. the `quote` crate). All span quoting goes through the `proc_macro::quote_span` method, which can be called by a custom quote macro to perform span quoting. An example of this usage is provided in `src/test/ui/proc-macro/auxiliary/custom-quote.rs` Custom quoting currently has a few limitations: In order to quote a span, we need to generate a call to `proc_macro::Span::recover_proc_macro_span`. However, proc-macros support renaming the `proc_macro` crate, so we can't simply hardcode this path. Previously, the `quote_span` method used the path `crate::Span` - however, this only works when it is called by the builtin `quote!` macro in the same crate. To support being called from arbitrary crates, we need access to the name of the `proc_macro` crate to generate a path. This PR adds an additional argument to `quote_span` to specify the name of the `proc_macro` crate. Howver, this feels kind of hacky, and we may want to change this before stabilizing anything quote-related. Additionally, using `quote_span` currently requires enabling the `proc_macro_internals` feature. The builtin `quote!` macro has an `#[allow_internal_unstable]` attribute, but this won't work for custom quote implementations. This will likely require some additional tricks to apply `allow_internal_unstable` to the span of `proc_macro::Span::recover_proc_macro_span`.
2020-08-02 18:52:16 -05:00
if let ExpnKind::Macro { kind: MacroKind::Bang, name: mac_name, proc_macro: _ } = data.kind {
if mac_name.as_str() == name {
return Some(new_span);
}
}
span = new_span;
} else {
return None;
}
}
}
/// Returns the pre-expansion span if the span directly comes from an expansion
/// of the macro `name`.
/// The difference with `is_expn_of` is that in
/// ```rust,ignore
/// foo!(bar!(42));
/// ```
/// `42` is considered expanded from `foo!` and `bar!` by `is_expn_of` but only
/// `bar!` by
/// `is_direct_expn_of`.
#[must_use]
pub fn is_direct_expn_of(span: Span, name: &str) -> Option<Span> {
if span.from_expansion() {
let data = span.ctxt().outer_expn_data();
let new_span = data.call_site;
Implement span quoting for proc-macros This PR implements span quoting, allowing proc-macros to produce spans pointing *into their own crate*. This is used by the unstable `proc_macro::quote!` macro, allowing us to get error messages like this: ``` error[E0412]: cannot find type `MissingType` in this scope --> $DIR/auxiliary/span-from-proc-macro.rs:37:20 | LL | pub fn error_from_attribute(_args: TokenStream, _input: TokenStream) -> TokenStream { | ----------------------------------------------------------------------------------- in this expansion of procedural macro `#[error_from_attribute]` ... LL | field: MissingType | ^^^^^^^^^^^ not found in this scope | ::: $DIR/span-from-proc-macro.rs:8:1 | LL | #[error_from_attribute] | ----------------------- in this macro invocation ``` Here, `MissingType` occurs inside the implementation of the proc-macro `#[error_from_attribute]`. Previosuly, this would always result in a span pointing at `#[error_from_attribute]` This will make many proc-macro-related error message much more useful - when a proc-macro generates code containing an error, users will get an error message pointing directly at that code (within the macro definition), instead of always getting a span pointing at the macro invocation site. This is implemented as follows: * When a proc-macro crate is being *compiled*, it causes the `quote!` macro to get run. This saves all of the sapns in the input to `quote!` into the metadata of *the proc-macro-crate* (which we are currently compiling). The `quote!` macro then expands to a call to `proc_macro::Span::recover_proc_macro_span(id)`, where `id` is an opaque identifier for the span in the crate metadata. * When the same proc-macro crate is *run* (e.g. it is loaded from disk and invoked by some consumer crate), the call to `proc_macro::Span::recover_proc_macro_span` causes us to load the span from the proc-macro crate's metadata. The proc-macro then produces a `TokenStream` containing a `Span` pointing into the proc-macro crate itself. The recursive nature of 'quote!' can be difficult to understand at first. The file `src/test/ui/proc-macro/quote-debug.stdout` shows the output of the `quote!` macro, which should make this eaier to understand. This PR also supports custom quoting spans in custom quote macros (e.g. the `quote` crate). All span quoting goes through the `proc_macro::quote_span` method, which can be called by a custom quote macro to perform span quoting. An example of this usage is provided in `src/test/ui/proc-macro/auxiliary/custom-quote.rs` Custom quoting currently has a few limitations: In order to quote a span, we need to generate a call to `proc_macro::Span::recover_proc_macro_span`. However, proc-macros support renaming the `proc_macro` crate, so we can't simply hardcode this path. Previously, the `quote_span` method used the path `crate::Span` - however, this only works when it is called by the builtin `quote!` macro in the same crate. To support being called from arbitrary crates, we need access to the name of the `proc_macro` crate to generate a path. This PR adds an additional argument to `quote_span` to specify the name of the `proc_macro` crate. Howver, this feels kind of hacky, and we may want to change this before stabilizing anything quote-related. Additionally, using `quote_span` currently requires enabling the `proc_macro_internals` feature. The builtin `quote!` macro has an `#[allow_internal_unstable]` attribute, but this won't work for custom quote implementations. This will likely require some additional tricks to apply `allow_internal_unstable` to the span of `proc_macro::Span::recover_proc_macro_span`.
2020-08-02 18:52:16 -05:00
if let ExpnKind::Macro { kind: MacroKind::Bang, name: mac_name, proc_macro: _ } = data.kind {
if mac_name.as_str() == name {
return Some(new_span);
}
}
}
None
}
/// Convenience function to get the return type of a function.
pub fn return_ty<'tcx>(cx: &LateContext<'tcx>, fn_item: hir::HirId) -> Ty<'tcx> {
let fn_def_id = cx.tcx.hir().local_def_id(fn_item);
let ret_ty = cx.tcx.fn_sig(fn_def_id).output();
cx.tcx.erase_late_bound_regions(ret_ty)
}
/// Checks if an expression is constructing a tuple-like enum variant or struct
pub fn is_ctor_or_promotable_const_function(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
if let ExprKind::Call(ref fun, _) = expr.kind {
if let ExprKind::Path(ref qp) = fun.kind {
let res = cx.qpath_res(qp, fun.hir_id);
return match res {
def::Res::Def(DefKind::Variant | DefKind::Ctor(..), ..) => true,
def::Res::Def(_, def_id) => cx.tcx.is_promotable_const_fn(def_id),
_ => false,
};
}
}
false
}
/// Returns `true` if a pattern is refutable.
// TODO: should be implemented using rustc/mir_build/thir machinery
pub fn is_refutable(cx: &LateContext<'_>, pat: &Pat<'_>) -> bool {
fn is_enum_variant(cx: &LateContext<'_>, qpath: &QPath<'_>, id: HirId) -> bool {
matches!(
cx.qpath_res(qpath, id),
def::Res::Def(DefKind::Variant, ..) | Res::Def(DefKind::Ctor(def::CtorOf::Variant, _), _)
)
}
fn are_refutable<'a, I: Iterator<Item = &'a Pat<'a>>>(cx: &LateContext<'_>, mut i: I) -> bool {
i.any(|pat| is_refutable(cx, pat))
}
match pat.kind {
PatKind::Wild => false,
PatKind::Binding(_, _, _, pat) => pat.map_or(false, |pat| is_refutable(cx, pat)),
PatKind::Box(ref pat) | PatKind::Ref(ref pat, _) => is_refutable(cx, pat),
PatKind::Lit(..) | PatKind::Range(..) => true,
PatKind::Path(ref qpath) => is_enum_variant(cx, qpath, pat.hir_id),
PatKind::Or(ref pats) => {
// TODO: should be the honest check, that pats is exhaustive set
are_refutable(cx, pats.iter().map(|pat| &**pat))
},
PatKind::Tuple(ref pats, _) => are_refutable(cx, pats.iter().map(|pat| &**pat)),
PatKind::Struct(ref qpath, ref fields, _) => {
is_enum_variant(cx, qpath, pat.hir_id) || are_refutable(cx, fields.iter().map(|field| &*field.pat))
},
PatKind::TupleStruct(ref qpath, ref pats, _) => {
is_enum_variant(cx, qpath, pat.hir_id) || are_refutable(cx, pats.iter().map(|pat| &**pat))
},
PatKind::Slice(ref head, ref middle, ref tail) => {
match &cx.typeck_results().node_type(pat.hir_id).kind() {
rustc_ty::Slice(..) => {
// [..] is the only irrefutable slice pattern.
!head.is_empty() || middle.is_none() || !tail.is_empty()
},
rustc_ty::Array(..) => {
are_refutable(cx, head.iter().chain(middle).chain(tail.iter()).map(|pat| &**pat))
},
_ => {
// unreachable!()
true
},
}
},
}
}
/// If the pattern is an `or` pattern, call the function once for each sub pattern. Otherwise, call
/// the function once on the given pattern.
pub fn recurse_or_patterns<'tcx, F: FnMut(&'tcx Pat<'tcx>)>(pat: &'tcx Pat<'tcx>, mut f: F) {
if let PatKind::Or(pats) = pat.kind {
pats.iter().copied().for_each(f)
} else {
f(pat)
}
}
/// Checks for the `#[automatically_derived]` attribute all `#[derive]`d
/// implementations have.
pub fn is_automatically_derived(attrs: &[ast::Attribute]) -> bool {
attrs.iter().any(|attr| attr.has_name(sym::automatically_derived))
}
/// Remove blocks around an expression.
///
/// Ie. `x`, `{ x }` and `{{{{ x }}}}` all give `x`. `{ x; y }` and `{}` return
/// themselves.
pub fn remove_blocks<'tcx>(mut expr: &'tcx Expr<'tcx>) -> &'tcx Expr<'tcx> {
while let ExprKind::Block(ref block, ..) = expr.kind {
match (block.stmts.is_empty(), block.expr.as_ref()) {
(true, Some(e)) => expr = e,
_ => break,
}
}
expr
}
pub fn is_self(slf: &Param<'_>) -> bool {
if let PatKind::Binding(.., name, _) = slf.pat.kind {
name.name == kw::SelfLower
} else {
false
}
}
pub fn is_self_ty(slf: &hir::Ty<'_>) -> bool {
if_chain! {
if let TyKind::Path(QPath::Resolved(None, ref path)) = slf.kind;
if let Res::SelfTy(..) = path.res;
then {
return true
}
}
false
}
pub fn iter_input_pats<'tcx>(decl: &FnDecl<'_>, body: &'tcx Body<'_>) -> impl Iterator<Item = &'tcx Param<'tcx>> {
(0..decl.inputs.len()).map(move |i| &body.params[i])
}
/// Checks if a given expression is a match expression expanded from the `?`
/// operator or the `try` macro.
pub fn is_try<'tcx>(cx: &LateContext<'_>, expr: &'tcx Expr<'tcx>) -> Option<&'tcx Expr<'tcx>> {
fn is_ok(cx: &LateContext<'_>, arm: &Arm<'_>) -> bool {
if_chain! {
if let PatKind::TupleStruct(ref path, ref pat, None) = arm.pat.kind;
if is_lang_ctor(cx, path, ResultOk);
if let PatKind::Binding(_, hir_id, _, None) = pat[0].kind;
if path_to_local_id(arm.body, hir_id);
then {
return true;
}
}
false
}
fn is_err(cx: &LateContext<'_>, arm: &Arm<'_>) -> bool {
if let PatKind::TupleStruct(ref path, _, _) = arm.pat.kind {
is_lang_ctor(cx, path, ResultErr)
} else {
false
}
}
if let ExprKind::Match(_, ref arms, ref source) = expr.kind {
// desugared from a `?` operator
if let MatchSource::TryDesugar = *source {
return Some(expr);
}
if_chain! {
if arms.len() == 2;
if arms[0].guard.is_none();
if arms[1].guard.is_none();
if (is_ok(cx, &arms[0]) && is_err(cx, &arms[1])) ||
(is_ok(cx, &arms[1]) && is_err(cx, &arms[0]));
then {
return Some(expr);
}
}
}
None
}
/// Returns `true` if the lint is allowed in the current context
///
/// Useful for skipping long running code when it's unnecessary
pub fn is_allowed(cx: &LateContext<'_>, lint: &'static Lint, id: HirId) -> bool {
cx.tcx.lint_level_at_node(lint, id).0 == Level::Allow
}
pub fn strip_pat_refs<'hir>(mut pat: &'hir Pat<'hir>) -> &'hir Pat<'hir> {
while let PatKind::Ref(subpat, _) = pat.kind {
pat = subpat;
}
pat
}
pub fn int_bits(tcx: TyCtxt<'_>, ity: rustc_ty::IntTy) -> u64 {
Integer::from_int_ty(&tcx, ity).size().bits()
}
#[allow(clippy::cast_possible_wrap)]
/// Turn a constant int byte representation into an i128
pub fn sext(tcx: TyCtxt<'_>, u: u128, ity: rustc_ty::IntTy) -> i128 {
let amt = 128 - int_bits(tcx, ity);
((u as i128) << amt) >> amt
}
#[allow(clippy::cast_sign_loss)]
/// clip unused bytes
pub fn unsext(tcx: TyCtxt<'_>, u: i128, ity: rustc_ty::IntTy) -> u128 {
let amt = 128 - int_bits(tcx, ity);
((u as u128) << amt) >> amt
}
/// clip unused bytes
pub fn clip(tcx: TyCtxt<'_>, u: u128, ity: rustc_ty::UintTy) -> u128 {
let bits = Integer::from_uint_ty(&tcx, ity).size().bits();
let amt = 128 - bits;
(u << amt) >> amt
}
pub fn any_parent_is_automatically_derived(tcx: TyCtxt<'_>, node: HirId) -> bool {
let map = &tcx.hir();
let mut prev_enclosing_node = None;
let mut enclosing_node = node;
while Some(enclosing_node) != prev_enclosing_node {
if is_automatically_derived(map.attrs(enclosing_node)) {
return true;
}
prev_enclosing_node = Some(enclosing_node);
enclosing_node = map.get_parent_item(enclosing_node);
}
false
}
/// Matches a function call with the given path and returns the arguments.
///
/// Usage:
///
/// ```rust,ignore
/// if let Some(args) = match_function_call(cx, cmp_max_call, &paths::CMP_MAX);
/// ```
pub fn match_function_call<'tcx>(
cx: &LateContext<'tcx>,
expr: &'tcx Expr<'_>,
path: &[&str],
) -> Option<&'tcx [Expr<'tcx>]> {
if_chain! {
if let ExprKind::Call(ref fun, ref args) = expr.kind;
if let ExprKind::Path(ref qpath) = fun.kind;
if let Some(fun_def_id) = cx.qpath_res(qpath, fun.hir_id).opt_def_id();
if match_def_path(cx, fun_def_id, path);
then {
return Some(&args)
}
};
None
}
/// Checks if the given `DefId` matches any of the paths. Returns the index of matching path, if
/// any.
pub fn match_any_def_paths(cx: &LateContext<'_>, did: DefId, paths: &[&[&str]]) -> Option<usize> {
let search_path = cx.get_def_path(did);
paths
.iter()
.position(|p| p.iter().map(|x| Symbol::intern(x)).eq(search_path.iter().copied()))
}
/// Checks if the given `DefId` matches the path.
pub fn match_def_path<'tcx>(cx: &LateContext<'tcx>, did: DefId, syms: &[&str]) -> bool {
// We should probably move to Symbols in Clippy as well rather than interning every time.
let path = cx.get_def_path(did);
syms.iter().map(|x| Symbol::intern(x)).eq(path.iter().copied())
}
pub fn match_panic_call(cx: &LateContext<'_>, expr: &'tcx Expr<'_>) -> Option<&'tcx Expr<'tcx>> {
if let ExprKind::Call(func, [arg]) = expr.kind {
expr_path_res(cx, func)
.opt_def_id()
.map_or(false, |id| match_panic_def_id(cx, id))
.then(|| arg)
} else {
None
}
}
pub fn match_panic_def_id(cx: &LateContext<'_>, did: DefId) -> bool {
match_any_def_paths(
cx,
did,
&[
&paths::BEGIN_PANIC,
&paths::BEGIN_PANIC_FMT,
&paths::PANIC_ANY,
&paths::PANICKING_PANIC,
&paths::PANICKING_PANIC_FMT,
&paths::PANICKING_PANIC_STR,
],
)
.is_some()
}
/// Returns the list of condition expressions and the list of blocks in a
/// sequence of `if/else`.
/// E.g., this returns `([a, b], [c, d, e])` for the expression
/// `if a { c } else if b { d } else { e }`.
pub fn if_sequence<'tcx>(mut expr: &'tcx Expr<'tcx>) -> (Vec<&'tcx Expr<'tcx>>, Vec<&'tcx Block<'tcx>>) {
let mut conds = Vec::new();
let mut blocks: Vec<&Block<'_>> = Vec::new();
while let ExprKind::If(ref cond, ref then_expr, ref else_expr) = expr.kind {
conds.push(&**cond);
if let ExprKind::Block(ref block, _) = then_expr.kind {
blocks.push(block);
} else {
panic!("ExprKind::If node is not an ExprKind::Block");
}
if let Some(ref else_expr) = *else_expr {
expr = else_expr;
} else {
break;
}
}
// final `else {..}`
if !blocks.is_empty() {
if let ExprKind::Block(ref block, _) = expr.kind {
blocks.push(&**block);
}
}
(conds, blocks)
}
/// Checks if the given function kind is an async function.
pub fn is_async_fn(kind: FnKind<'_>) -> bool {
matches!(kind, FnKind::ItemFn(_, _, header, _) if header.asyncness == IsAsync::Async)
}
/// Peels away all the compiler generated code surrounding the body of an async function,
pub fn get_async_fn_body(tcx: TyCtxt<'tcx>, body: &Body<'_>) -> Option<&'tcx Expr<'tcx>> {
if let ExprKind::Call(
_,
&[Expr {
kind: ExprKind::Closure(_, _, body, _, _),
..
}],
) = body.value.kind
{
if let ExprKind::Block(
Block {
stmts: [],
expr:
Some(Expr {
kind: ExprKind::DropTemps(expr),
..
}),
..
},
_,
) = tcx.hir().body(body).value.kind
{
return Some(expr);
}
};
None
}
// Finds the `#[must_use]` attribute, if any
pub fn must_use_attr(attrs: &[Attribute]) -> Option<&Attribute> {
attrs.iter().find(|a| a.has_name(sym::must_use))
}
// check if expr is calling method or function with #[must_use] attribute
pub fn is_must_use_func_call(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
let did = match expr.kind {
ExprKind::Call(ref path, _) => if_chain! {
if let ExprKind::Path(ref qpath) = path.kind;
if let def::Res::Def(_, did) = cx.qpath_res(qpath, path.hir_id);
then {
Some(did)
} else {
None
}
},
ExprKind::MethodCall(_, _, _, _) => cx.typeck_results().type_dependent_def_id(expr.hir_id),
_ => None,
};
did.map_or(false, |did| must_use_attr(&cx.tcx.get_attrs(did)).is_some())
}
/// Gets the node where an expression is either used, or it's type is unified with another branch.
pub fn get_expr_use_or_unification_node(tcx: TyCtxt<'tcx>, expr: &Expr<'_>) -> Option<Node<'tcx>> {
let map = tcx.hir();
let mut child_id = expr.hir_id;
let mut iter = map.parent_iter(child_id);
loop {
match iter.next() {
None => break None,
Some((id, Node::Block(_))) => child_id = id,
Some((id, Node::Arm(arm))) if arm.body.hir_id == child_id => child_id = id,
Some((_, Node::Expr(expr))) => match expr.kind {
ExprKind::Match(_, [arm], _) if arm.hir_id == child_id => child_id = expr.hir_id,
ExprKind::Block(..) | ExprKind::DropTemps(_) => child_id = expr.hir_id,
ExprKind::If(_, then_expr, None) if then_expr.hir_id == child_id => break None,
_ => break Some(Node::Expr(expr)),
},
Some((_, node)) => break Some(node),
}
}
}
/// Checks if the result of an expression is used, or it's type is unified with another branch.
pub fn is_expr_used_or_unified(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
!matches!(
get_expr_use_or_unification_node(tcx, expr),
None | Some(Node::Stmt(Stmt {
kind: StmtKind::Expr(_)
| StmtKind::Semi(_)
| StmtKind::Local(Local {
pat: Pat {
kind: PatKind::Wild,
..
},
..
}),
..
}))
)
}
/// Checks if the expression is the final expression returned from a block.
pub fn is_expr_final_block_expr(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
matches!(get_parent_node(tcx, expr.hir_id), Some(Node::Block(..)))
}
2020-11-26 16:38:53 -06:00
pub fn is_no_std_crate(cx: &LateContext<'_>) -> bool {
cx.tcx.hir().attrs(hir::CRATE_HIR_ID).iter().any(|attr| {
if let ast::AttrKind::Normal(ref attr, _) = attr.kind {
attr.path == sym::no_std
} else {
false
}
})
}
/// Check if parent of a hir node is a trait implementation block.
/// For example, `f` in
/// ```rust,ignore
/// impl Trait for S {
/// fn f() {}
/// }
/// ```
pub fn is_trait_impl_item(cx: &LateContext<'_>, hir_id: HirId) -> bool {
if let Some(Node::Item(item)) = cx.tcx.hir().find(cx.tcx.hir().get_parent_node(hir_id)) {
matches!(item.kind, ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }))
} else {
false
}
}
/// Check if it's even possible to satisfy the `where` clause for the item.
///
/// `trivial_bounds` feature allows functions with unsatisfiable bounds, for example:
///
/// ```ignore
/// fn foo() where i32: Iterator {
/// for _ in 2i32 {}
/// }
/// ```
pub fn fn_has_unsatisfiable_preds(cx: &LateContext<'_>, did: DefId) -> bool {
use rustc_trait_selection::traits;
let predicates = cx
.tcx
.predicates_of(did)
.predicates
.iter()
.filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None });
traits::impossible_predicates(
cx.tcx,
traits::elaborate_predicates(cx.tcx, predicates)
.map(|o| o.predicate)
.collect::<Vec<_>>(),
)
}
/// Returns the `DefId` of the callee if the given expression is a function or method call.
pub fn fn_def_id(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<DefId> {
match &expr.kind {
ExprKind::MethodCall(..) => cx.typeck_results().type_dependent_def_id(expr.hir_id),
ExprKind::Call(
Expr {
kind: ExprKind::Path(qpath),
hir_id: path_hir_id,
..
},
..,
) => cx.typeck_results().qpath_res(qpath, *path_hir_id).opt_def_id(),
_ => None,
}
}
/// This function checks if any of the lints in the slice is enabled for the provided `HirId`.
/// A lint counts as enabled with any of the levels: `Level::Forbid` | `Level::Deny` | `Level::Warn`
///
/// ```ignore
/// #[deny(clippy::YOUR_AWESOME_LINT)]
/// println!("Hello, World!"); // <- Clippy code: run_lints(cx, &[YOUR_AWESOME_LINT], id) == true
///
/// #[allow(clippy::YOUR_AWESOME_LINT)]
/// println!("See you soon!"); // <- Clippy code: run_lints(cx, &[YOUR_AWESOME_LINT], id) == false
/// ```
pub fn run_lints(cx: &LateContext<'_>, lints: &[&'static Lint], id: HirId) -> bool {
lints.iter().any(|lint| {
matches!(
cx.tcx.lint_level_at_node(lint, id),
(Level::Forbid | Level::Deny | Level::Warn, _)
)
})
}
/// Returns Option<String> where String is a textual representation of the type encapsulated in the
/// slice iff the given expression is a slice of primitives (as defined in the
/// `is_recursively_primitive_type` function) and None otherwise.
pub fn is_slice_of_primitives(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<String> {
let expr_type = cx.typeck_results().expr_ty_adjusted(expr);
let expr_kind = expr_type.kind();
let is_primitive = match expr_kind {
rustc_ty::Slice(element_type) => is_recursively_primitive_type(element_type),
rustc_ty::Ref(_, inner_ty, _) if matches!(inner_ty.kind(), &rustc_ty::Slice(_)) => {
if let rustc_ty::Slice(element_type) = inner_ty.kind() {
is_recursively_primitive_type(element_type)
} else {
unreachable!()
}
},
_ => false,
};
if is_primitive {
// if we have wrappers like Array, Slice or Tuple, print these
// and get the type enclosed in the slice ref
match expr_type.peel_refs().walk().nth(1).unwrap().expect_ty().kind() {
rustc_ty::Slice(..) => return Some("slice".into()),
rustc_ty::Array(..) => return Some("array".into()),
rustc_ty::Tuple(..) => return Some("tuple".into()),
_ => {
// is_recursively_primitive_type() should have taken care
// of the rest and we can rely on the type that is found
let refs_peeled = expr_type.peel_refs();
return Some(refs_peeled.walk().last().unwrap().to_string());
},
}
}
None
}
/// returns list of all pairs (a, b) from `exprs` such that `eq(a, b)`
/// `hash` must be comformed with `eq`
pub fn search_same<T, Hash, Eq>(exprs: &[T], hash: Hash, eq: Eq) -> Vec<(&T, &T)>
where
Hash: Fn(&T) -> u64,
Eq: Fn(&T, &T) -> bool,
{
if exprs.len() == 2 && eq(&exprs[0], &exprs[1]) {
return vec![(&exprs[0], &exprs[1])];
}
let mut match_expr_list: Vec<(&T, &T)> = Vec::new();
let mut map: FxHashMap<_, Vec<&_>> =
FxHashMap::with_capacity_and_hasher(exprs.len(), BuildHasherDefault::default());
for expr in exprs {
match map.entry(hash(expr)) {
Entry::Occupied(mut o) => {
for o in o.get() {
if eq(o, expr) {
match_expr_list.push((o, expr));
}
}
o.get_mut().push(expr);
},
Entry::Vacant(v) => {
v.insert(vec![expr]);
},
}
}
match_expr_list
}
/// Peels off all references on the pattern. Returns the underlying pattern and the number of
/// references removed.
pub fn peel_hir_pat_refs(pat: &'a Pat<'a>) -> (&'a Pat<'a>, usize) {
fn peel(pat: &'a Pat<'a>, count: usize) -> (&'a Pat<'a>, usize) {
if let PatKind::Ref(pat, _) = pat.kind {
peel(pat, count + 1)
} else {
(pat, count)
}
}
peel(pat, 0)
}
/// Peels of expressions while the given closure returns `Some`.
pub fn peel_hir_expr_while<'tcx>(
mut expr: &'tcx Expr<'tcx>,
mut f: impl FnMut(&'tcx Expr<'tcx>) -> Option<&'tcx Expr<'tcx>>,
) -> &'tcx Expr<'tcx> {
while let Some(e) = f(expr) {
expr = e;
}
expr
}
/// Peels off up to the given number of references on the expression. Returns the underlying
/// expression and the number of references removed.
pub fn peel_n_hir_expr_refs(expr: &'a Expr<'a>, count: usize) -> (&'a Expr<'a>, usize) {
let mut remaining = count;
let e = peel_hir_expr_while(expr, |e| match e.kind {
ExprKind::AddrOf(BorrowKind::Ref, _, e) if remaining != 0 => {
remaining -= 1;
Some(e)
},
_ => None,
});
(e, count - remaining)
}
/// Peels off all references on the expression. Returns the underlying expression and the number of
/// references removed.
pub fn peel_hir_expr_refs(expr: &'a Expr<'a>) -> (&'a Expr<'a>, usize) {
let mut count = 0;
let e = peel_hir_expr_while(expr, |e| match e.kind {
ExprKind::AddrOf(BorrowKind::Ref, _, e) => {
count += 1;
Some(e)
},
_ => None,
});
(e, count)
}
#[macro_export]
macro_rules! unwrap_cargo_metadata {
($cx: ident, $lint: ident, $deps: expr) => {{
let mut command = cargo_metadata::MetadataCommand::new();
if !$deps {
command.no_deps();
}
match command.exec() {
Ok(metadata) => metadata,
Err(err) => {
span_lint($cx, $lint, DUMMY_SP, &format!("could not read cargo metadata: {}", err));
return;
},
}
}};
}
pub fn is_hir_ty_cfg_dependant(cx: &LateContext<'_>, ty: &hir::Ty<'_>) -> bool {
if_chain! {
if let TyKind::Path(QPath::Resolved(_, path)) = ty.kind;
if let Res::Def(_, def_id) = path.res;
then {
cx.tcx.has_attr(def_id, sym::cfg) || cx.tcx.has_attr(def_id, sym::cfg_attr)
} else {
false
}
}
}