rust/compiler/rustc_lint/src/non_fmt_panic.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

363 lines
15 KiB
Rust
Raw Normal View History

use crate::{LateContext, LateLintPass, LintContext};
use rustc_ast as ast;
use rustc_errors::{pluralize, Applicability};
use rustc_hir as hir;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::lint::in_external_macro;
use rustc_middle::ty;
use rustc_middle::ty::subst::InternalSubsts;
use rustc_parse_format::{ParseMode, Parser, Piece};
use rustc_session::lint::FutureIncompatibilityReason;
use rustc_span::edition::Edition;
use rustc_span::{hygiene, sym, symbol::kw, InnerSpan, Span, Symbol};
use rustc_trait_selection::infer::InferCtxtExt;
declare_lint! {
2021-06-29 13:33:31 -05:00
/// The `non_fmt_panics` lint detects `panic!(..)` invocations where the first
/// argument is not a formatting string.
///
/// ### Example
///
/// ```rust,no_run,edition2018
/// panic!("{}");
/// panic!(123);
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In Rust 2018 and earlier, `panic!(x)` directly uses `x` as the message.
/// That means that `panic!("{}")` panics with the message `"{}"` instead
/// of using it as a formatting string, and `panic!(123)` will panic with
/// an `i32` as message.
///
/// Rust 2021 always interprets the first argument as format string.
2021-06-29 13:33:31 -05:00
NON_FMT_PANICS,
Warn,
"detect single-argument panic!() invocations in which the argument is not a format string",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionSemanticsChange(Edition::Edition2021),
explain_reason: false,
};
report_in_external_macro
}
2021-06-29 13:33:31 -05:00
declare_lint_pass!(NonPanicFmt => [NON_FMT_PANICS]);
impl<'tcx> LateLintPass<'tcx> for NonPanicFmt {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
if let hir::ExprKind::Call(f, [arg]) = &expr.kind {
if let &ty::FnDef(def_id, _) = cx.typeck_results().expr_ty(f).kind() {
let f_diagnostic_name = cx.tcx.get_diagnostic_name(def_id);
if Some(def_id) == cx.tcx.lang_items().begin_panic_fn()
|| Some(def_id) == cx.tcx.lang_items().panic_fn()
|| f_diagnostic_name == Some(sym::panic_str)
{
if let Some(id) = f.span.ctxt().outer_expn_data().macro_def_id {
2021-10-04 16:11:22 -05:00
if matches!(
cx.tcx.get_diagnostic_name(id),
Some(sym::core_panic_2015_macro | sym::std_panic_2015_macro)
) {
check_panic(cx, f, arg);
}
}
} else if f_diagnostic_name == Some(sym::unreachable_display) {
if let Some(id) = f.span.ctxt().outer_expn_data().macro_def_id {
if cx.tcx.is_diagnostic_item(sym::unreachable_2015_macro, id) {
check_panic(
cx,
f,
// This is safe because we checked above that the callee is indeed
// unreachable_display
match &arg.kind {
// Get the borrowed arg not the borrow
hir::ExprKind::AddrOf(ast::BorrowKind::Ref, _, arg) => arg,
_ => bug!("call to unreachable_display without borrow"),
},
);
}
}
}
}
}
}
}
fn check_panic<'tcx>(cx: &LateContext<'tcx>, f: &'tcx hir::Expr<'tcx>, arg: &'tcx hir::Expr<'tcx>) {
if let hir::ExprKind::Lit(lit) = &arg.kind {
if let ast::LitKind::Str(sym, _) = lit.node {
// The argument is a string literal.
check_panic_str(cx, f, arg, sym.as_str());
return;
}
}
// The argument is *not* a string literal.
let (span, panic, symbol) = panic_call(cx, f);
if in_external_macro(cx.sess(), span) {
// Nothing that can be done about it in the current crate.
return;
}
// Find the span of the argument to `panic!()` or `unreachable!`, before expansion in the
// case of `panic!(some_macro!())` or `unreachable!(some_macro!())`.
// We don't use source_callsite(), because this `panic!(..)` might itself
// be expanded from another macro, in which case we want to stop at that
// expansion.
let mut arg_span = arg.span;
let mut arg_macro = None;
while !span.contains(arg_span) {
let expn = arg_span.ctxt().outer_expn_data();
if expn.is_root() {
break;
}
arg_macro = expn.macro_def_id;
arg_span = expn.call_site;
}
2021-06-29 13:33:31 -05:00
cx.struct_span_lint(NON_FMT_PANICS, arg_span, |lint| {
let mut l = lint.build("panic message is not a string literal");
l.note(&format!("this usage of {}!() is deprecated; it will be a hard error in Rust 2021", symbol));
l.note("for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2021/panic-macro-consistency.html>");
if !is_arg_inside_call(arg_span, span) {
// No clue where this argument is coming from.
l.emit();
return;
}
if arg_macro.map_or(false, |id| cx.tcx.is_diagnostic_item(sym::format_macro, id)) {
// A case of `panic!(format!(..))`.
l.note(format!("the {}!() macro supports formatting, so there's no need for the format!() macro here", symbol).as_str());
if let Some((open, close, _)) = find_delimiters(cx, arg_span) {
l.multipart_suggestion(
"remove the `format!(..)` macro call",
vec![
(arg_span.until(open.shrink_to_hi()), "".into()),
(close.until(arg_span.shrink_to_hi()), "".into()),
],
Applicability::MachineApplicable,
);
}
} else {
let ty = cx.typeck_results().expr_ty(arg);
// If this is a &str or String, we can confidently give the `"{}", ` suggestion.
let is_str = matches!(
ty.kind(),
ty::Ref(_, r, _) if *r.kind() == ty::Str,
) || matches!(
ty.ty_adt_def(),
Some(ty_def) if cx.tcx.is_diagnostic_item(sym::String, ty_def.did()),
);
let (suggest_display, suggest_debug) = cx.tcx.infer_ctxt().enter(|infcx| {
2021-10-02 18:51:01 -05:00
let display = is_str || cx.tcx.get_diagnostic_item(sym::Display).map(|t| {
infcx.type_implements_trait(t, ty, InternalSubsts::empty(), cx.param_env).may_apply()
}) == Some(true);
2021-10-02 18:51:01 -05:00
let debug = !display && cx.tcx.get_diagnostic_item(sym::Debug).map(|t| {
infcx.type_implements_trait(t, ty, InternalSubsts::empty(), cx.param_env).may_apply()
}) == Some(true);
(display, debug)
});
let suggest_panic_any = !is_str && panic == sym::std_panic_macro;
let fmt_applicability = if suggest_panic_any {
// If we can use panic_any, use that as the MachineApplicable suggestion.
Applicability::MaybeIncorrect
} else {
// If we don't suggest panic_any, using a format string is our best bet.
Applicability::MachineApplicable
};
if suggest_display {
l.span_suggestion_verbose(
arg_span.shrink_to_lo(),
"add a \"{}\" format string to Display the message",
"\"{}\", ",
fmt_applicability,
);
} else if suggest_debug {
l.span_suggestion_verbose(
arg_span.shrink_to_lo(),
&format!(
"add a \"{{:?}}\" format string to use the Debug implementation of `{}`",
ty,
),
"\"{:?}\", ",
fmt_applicability,
);
}
if suggest_panic_any {
if let Some((open, close, del)) = find_delimiters(cx, span) {
l.multipart_suggestion(
&format!(
"{}use std::panic::panic_any instead",
if suggest_display || suggest_debug {
"or "
} else {
""
},
),
if del == '(' {
vec![(span.until(open), "std::panic::panic_any".into())]
} else {
vec![
(span.until(open.shrink_to_hi()), "std::panic::panic_any(".into()),
(close, ")".into()),
]
},
Applicability::MachineApplicable,
);
}
}
}
l.emit();
});
}
fn check_panic_str<'tcx>(
cx: &LateContext<'tcx>,
f: &'tcx hir::Expr<'tcx>,
arg: &'tcx hir::Expr<'tcx>,
fmt: &str,
) {
2021-12-02 20:06:36 -06:00
if !fmt.contains(&['{', '}']) {
// No brace, no problem.
return;
}
let (span, _, _) = panic_call(cx, f);
if in_external_macro(cx.sess(), span) && in_external_macro(cx.sess(), arg.span) {
// Nothing that can be done about it in the current crate.
return;
}
let fmt_span = arg.span.source_callsite();
let (snippet, style) = match cx.sess().parse_sess.source_map().span_to_snippet(fmt_span) {
Ok(snippet) => {
// Count the number of `#`s between the `r` and `"`.
let style = snippet.strip_prefix('r').and_then(|s| s.find('"'));
(Some(snippet), style)
}
Err(_) => (None, None),
};
2021-10-07 16:18:39 -05:00
let mut fmt_parser = Parser::new(fmt, style, snippet.clone(), false, ParseMode::Format);
let n_arguments = (&mut fmt_parser).filter(|a| matches!(a, Piece::NextArgument(_))).count();
if n_arguments > 0 && fmt_parser.errors.is_empty() {
let arg_spans: Vec<_> = match &fmt_parser.arg_places[..] {
[] => vec![fmt_span],
v => v
.iter()
.map(|span| fmt_span.from_inner(InnerSpan::new(span.start, span.end)))
.collect(),
};
2021-06-29 13:33:31 -05:00
cx.struct_span_lint(NON_FMT_PANICS, arg_spans, |lint| {
let mut l = lint.build(match n_arguments {
1 => "panic message contains an unused formatting placeholder",
_ => "panic message contains unused formatting placeholders",
});
l.note("this message is not used as a format string when given without arguments, but will be in Rust 2021");
if is_arg_inside_call(arg.span, span) {
l.span_suggestion(
arg.span.shrink_to_hi(),
&format!("add the missing argument{}", pluralize!(n_arguments)),
", ...",
Applicability::HasPlaceholders,
);
l.span_suggestion(
arg.span.shrink_to_lo(),
"or add a \"{}\" format string to use the message literally",
"\"{}\", ",
Applicability::MachineApplicable,
);
}
l.emit();
});
} else {
let brace_spans: Option<Vec<_>> =
snippet.filter(|s| s.starts_with('"') || s.starts_with("r#")).map(|s| {
s.char_indices()
.filter(|&(_, c)| c == '{' || c == '}')
.map(|(i, _)| fmt_span.from_inner(InnerSpan { start: i, end: i + 1 }))
.collect()
});
let msg = match &brace_spans {
Some(v) if v.len() == 1 => "panic message contains a brace",
_ => "panic message contains braces",
};
2021-06-29 13:33:31 -05:00
cx.struct_span_lint(NON_FMT_PANICS, brace_spans.unwrap_or_else(|| vec![span]), |lint| {
let mut l = lint.build(msg);
l.note("this message is not used as a format string, but will be in Rust 2021");
if is_arg_inside_call(arg.span, span) {
l.span_suggestion(
arg.span.shrink_to_lo(),
"add a \"{}\" format string to use the message literally",
"\"{}\", ",
Applicability::MachineApplicable,
);
}
l.emit();
});
}
}
/// Given the span of `some_macro!(args);`, gives the span of `(` and `)`,
/// and the type of (opening) delimiter used.
fn find_delimiters<'tcx>(cx: &LateContext<'tcx>, span: Span) -> Option<(Span, Span, char)> {
let snippet = cx.sess().parse_sess.source_map().span_to_snippet(span).ok()?;
let (open, open_ch) = snippet.char_indices().find(|&(_, c)| "([{".contains(c))?;
let close = snippet.rfind(|c| ")]}".contains(c))?;
Some((
2021-02-14 12:51:15 -06:00
span.from_inner(InnerSpan { start: open, end: open + 1 }),
span.from_inner(InnerSpan { start: close, end: close + 1 }),
open_ch,
))
}
fn panic_call<'tcx>(cx: &LateContext<'tcx>, f: &'tcx hir::Expr<'tcx>) -> (Span, Symbol, Symbol) {
let mut expn = f.span.ctxt().outer_expn_data();
let mut panic_macro = kw::Empty;
// Unwrap more levels of macro expansion, as panic_2015!()
// was likely expanded from panic!() and possibly from
// [debug_]assert!().
2021-11-16 13:12:38 -06:00
loop {
let parent = expn.call_site.ctxt().outer_expn_data();
2021-11-16 13:12:38 -06:00
let Some(id) = parent.macro_def_id else { break };
let Some(name) = cx.tcx.get_diagnostic_name(id) else { break };
if !matches!(
name,
sym::core_panic_macro
| sym::std_panic_macro
| sym::assert_macro
| sym::debug_assert_macro
| sym::unreachable_macro
2021-11-16 13:12:38 -06:00
) {
break;
}
2021-11-16 13:12:38 -06:00
expn = parent;
panic_macro = name;
}
Implement span quoting for proc-macros This PR implements span quoting, allowing proc-macros to produce spans pointing *into their own crate*. This is used by the unstable `proc_macro::quote!` macro, allowing us to get error messages like this: ``` error[E0412]: cannot find type `MissingType` in this scope --> $DIR/auxiliary/span-from-proc-macro.rs:37:20 | LL | pub fn error_from_attribute(_args: TokenStream, _input: TokenStream) -> TokenStream { | ----------------------------------------------------------------------------------- in this expansion of procedural macro `#[error_from_attribute]` ... LL | field: MissingType | ^^^^^^^^^^^ not found in this scope | ::: $DIR/span-from-proc-macro.rs:8:1 | LL | #[error_from_attribute] | ----------------------- in this macro invocation ``` Here, `MissingType` occurs inside the implementation of the proc-macro `#[error_from_attribute]`. Previosuly, this would always result in a span pointing at `#[error_from_attribute]` This will make many proc-macro-related error message much more useful - when a proc-macro generates code containing an error, users will get an error message pointing directly at that code (within the macro definition), instead of always getting a span pointing at the macro invocation site. This is implemented as follows: * When a proc-macro crate is being *compiled*, it causes the `quote!` macro to get run. This saves all of the sapns in the input to `quote!` into the metadata of *the proc-macro-crate* (which we are currently compiling). The `quote!` macro then expands to a call to `proc_macro::Span::recover_proc_macro_span(id)`, where `id` is an opaque identifier for the span in the crate metadata. * When the same proc-macro crate is *run* (e.g. it is loaded from disk and invoked by some consumer crate), the call to `proc_macro::Span::recover_proc_macro_span` causes us to load the span from the proc-macro crate's metadata. The proc-macro then produces a `TokenStream` containing a `Span` pointing into the proc-macro crate itself. The recursive nature of 'quote!' can be difficult to understand at first. The file `src/test/ui/proc-macro/quote-debug.stdout` shows the output of the `quote!` macro, which should make this eaier to understand. This PR also supports custom quoting spans in custom quote macros (e.g. the `quote` crate). All span quoting goes through the `proc_macro::quote_span` method, which can be called by a custom quote macro to perform span quoting. An example of this usage is provided in `src/test/ui/proc-macro/auxiliary/custom-quote.rs` Custom quoting currently has a few limitations: In order to quote a span, we need to generate a call to `proc_macro::Span::recover_proc_macro_span`. However, proc-macros support renaming the `proc_macro` crate, so we can't simply hardcode this path. Previously, the `quote_span` method used the path `crate::Span` - however, this only works when it is called by the builtin `quote!` macro in the same crate. To support being called from arbitrary crates, we need access to the name of the `proc_macro` crate to generate a path. This PR adds an additional argument to `quote_span` to specify the name of the `proc_macro` crate. Howver, this feels kind of hacky, and we may want to change this before stabilizing anything quote-related. Additionally, using `quote_span` currently requires enabling the `proc_macro_internals` feature. The builtin `quote!` macro has an `#[allow_internal_unstable]` attribute, but this won't work for custom quote implementations. This will likely require some additional tricks to apply `allow_internal_unstable` to the span of `proc_macro::Span::recover_proc_macro_span`.
2020-08-02 18:52:16 -05:00
let macro_symbol =
if let hygiene::ExpnKind::Macro(_, symbol) = expn.kind { symbol } else { sym::panic };
(expn.call_site, panic_macro, macro_symbol)
}
fn is_arg_inside_call(arg: Span, call: Span) -> bool {
// We only add suggestions if the argument we're looking at appears inside the
// panic call in the source file, to avoid invalid suggestions when macros are involved.
// We specifically check for the spans to not be identical, as that happens sometimes when
// proc_macros lie about spans and apply the same span to all the tokens they produce.
call.contains(arg) && !call.source_equal(arg)
}