rust/src/librustc_trans/trans/common.rs

1181 lines
42 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types, non_snake_case)]
//! Code that is useful in various trans modules.
pub use self::ExprOrMethodCall::*;
use session::Session;
use llvm;
use llvm::{ValueRef, BasicBlockRef, BuilderRef, ContextRef};
use llvm::{True, False, Bool};
use middle::cfg;
use middle::def;
use middle::infer;
use middle::lang_items::LangItem;
use middle::subst::{self, Substs};
use trans::base;
use trans::build;
use trans::callee;
use trans::cleanup;
use trans::consts;
use trans::datum;
use trans::debuginfo::{self, DebugLoc};
use trans::declare;
use trans::machine;
use trans::monomorphize;
use trans::type_::Type;
use trans::type_of;
use middle::traits;
use middle::ty::{self, HasTypeFlags, Ty};
use middle::ty_fold;
use middle::ty_fold::{TypeFolder, TypeFoldable};
2015-06-09 18:40:45 -05:00
use rustc::ast_map::{PathElem, PathName};
use util::nodemap::{FnvHashMap, NodeMap};
use arena::TypedArena;
use libc::{c_uint, c_char};
use std::ffi::CString;
use std::cell::{Cell, RefCell};
use std::result::Result as StdResult;
2014-02-26 11:58:41 -06:00
use std::vec::Vec;
use syntax::ast;
use syntax::codemap::{DUMMY_SP, Span};
use syntax::parse::token::InternedString;
use syntax::parse::token;
pub use trans::context::CrateContext;
2013-06-12 21:02:33 -05:00
/// Returns an equivalent value with all free regions removed (note
/// that late-bound regions remain, because they are important for
/// subtyping, but they are anonymized and normalized as well). This
/// is a stronger, caching version of `ty_fold::erase_regions`.
pub fn erase_regions<'tcx,T>(cx: &ty::ctxt<'tcx>, value: &T) -> T
where T : TypeFoldable<'tcx>
{
let value1 = value.fold_with(&mut RegionEraser(cx));
2015-06-18 12:25:05 -05:00
debug!("erase_regions({:?}) = {:?}",
value, value1);
return value1;
struct RegionEraser<'a, 'tcx: 'a>(&'a ty::ctxt<'tcx>);
impl<'a, 'tcx> TypeFolder<'tcx> for RegionEraser<'a, 'tcx> {
fn tcx(&self) -> &ty::ctxt<'tcx> { self.0 }
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
match self.tcx().normalized_cache.borrow().get(&ty).cloned() {
None => {}
Some(u) => return u
}
let t_norm = ty_fold::super_fold_ty(self, ty);
self.tcx().normalized_cache.borrow_mut().insert(ty, t_norm);
return t_norm;
}
fn fold_binder<T>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T>
where T : TypeFoldable<'tcx>
{
let u = self.tcx().anonymize_late_bound_regions(t);
ty_fold::super_fold_binder(self, &u)
}
fn fold_region(&mut self, r: ty::Region) -> ty::Region {
// because late-bound regions affect subtyping, we can't
// erase the bound/free distinction, but we can replace
// all free regions with 'static.
//
// Note that we *CAN* replace early-bound regions -- the
// type system never "sees" those, they get substituted
// away. In trans, they will always be erased to 'static
// whenever a substitution occurs.
match r {
ty::ReLateBound(..) => r,
_ => ty::ReStatic
}
}
fn fold_substs(&mut self,
substs: &subst::Substs<'tcx>)
-> subst::Substs<'tcx> {
subst::Substs { regions: subst::ErasedRegions,
types: substs.types.fold_with(self) }
}
}
}
/// Is the type's representation size known at compile time?
pub fn type_is_sized<'tcx>(tcx: &ty::ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
ty.is_sized(&tcx.empty_parameter_environment(), DUMMY_SP)
}
pub fn type_is_fat_ptr<'tcx>(cx: &ty::ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.sty {
ty::TyRawPtr(ty::TypeAndMut{ty, ..}) |
ty::TyRef(_, ty::TypeAndMut{ty, ..}) |
ty::TyBox(ty) => {
!type_is_sized(cx, ty)
}
_ => {
false
}
}
}
/// If `type_needs_drop` returns true, then `ty` is definitely
/// non-copy and *might* have a destructor attached; if it returns
/// false, then `ty` definitely has no destructor (i.e. no drop glue).
///
/// (Note that this implies that if `ty` has a destructor attached,
/// then `type_needs_drop` will definitely return `true` for `ty`.)
pub fn type_needs_drop<'tcx>(cx: &ty::ctxt<'tcx>, ty: Ty<'tcx>) -> bool {
type_needs_drop_given_env(cx, ty, &cx.empty_parameter_environment())
}
/// Core implementation of type_needs_drop, potentially making use of
/// and/or updating caches held in the `param_env`.
fn type_needs_drop_given_env<'a,'tcx>(cx: &ty::ctxt<'tcx>,
ty: Ty<'tcx>,
param_env: &ty::ParameterEnvironment<'a,'tcx>) -> bool {
// Issue #22536: We first query type_moves_by_default. It sees a
// normalized version of the type, and therefore will definitely
// know whether the type implements Copy (and thus needs no
// cleanup/drop/zeroing) ...
let implements_copy = !ty.moves_by_default(param_env, DUMMY_SP);
if implements_copy { return false; }
// ... (issue #22536 continued) but as an optimization, still use
// prior logic of asking if the `needs_drop` bit is set; we need
// not zero non-Copy types if they have no destructor.
// FIXME(#22815): Note that calling `ty::type_contents` is a
// conservative heuristic; it may report that `needs_drop` is set
// when actual type does not actually have a destructor associated
// with it. But since `ty` absolutely did not have the `Copy`
// bound attached (see above), it is sound to treat it as having a
// destructor (e.g. zero its memory on move).
let contents = ty.type_contents(cx);
2015-06-18 12:25:05 -05:00
debug!("type_needs_drop ty={:?} contents={:?}", ty, contents);
contents.needs_drop(cx)
}
fn type_is_newtype_immediate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
match ty.sty {
ty::TyStruct(def, substs) => {
let fields = ccx.tcx().lookup_struct_fields(def.did);
fields.len() == 1 && {
let ty = ccx.tcx().lookup_field_type(def.did, fields[0].id, substs);
let ty = monomorphize::normalize_associated_type(ccx.tcx(), &ty);
type_is_immediate(ccx, ty)
}
}
_ => false
}
}
pub fn type_is_immediate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
use trans::machine::llsize_of_alloc;
use trans::type_of::sizing_type_of;
let tcx = ccx.tcx();
let simple = ty.is_scalar() ||
ty.is_unique() || ty.is_region_ptr() ||
type_is_newtype_immediate(ccx, ty) ||
ty.is_simd(tcx);
if simple && !type_is_fat_ptr(tcx, ty) {
return true;
}
if !type_is_sized(tcx, ty) {
return false;
}
match ty.sty {
ty::TyStruct(..) | ty::TyEnum(..) | ty::TyTuple(..) | ty::TyArray(_, _) |
ty::TyClosure(..) => {
let llty = sizing_type_of(ccx, ty);
llsize_of_alloc(ccx, llty) <= llsize_of_alloc(ccx, ccx.int_type())
}
_ => type_is_zero_size(ccx, ty)
}
}
/// Identify types which have size zero at runtime.
pub fn type_is_zero_size<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
use trans::machine::llsize_of_alloc;
use trans::type_of::sizing_type_of;
let llty = sizing_type_of(ccx, ty);
llsize_of_alloc(ccx, llty) == 0
}
/// Identifies types which we declare to be equivalent to `void` in C for the purpose of function
/// return types. These are `()`, bot, and uninhabited enums. Note that all such types are also
/// zero-size, but not all zero-size types use a `void` return type (in order to aid with C ABI
/// compatibility).
pub fn return_type_is_void(ccx: &CrateContext, ty: Ty) -> bool {
ty.is_nil() || ty.is_empty(ccx.tcx())
}
/// Generates a unique symbol based off the name given. This is used to create
/// unique symbols for things like closures.
pub fn gensym_name(name: &str) -> PathElem {
let num = token::gensym(name).usize();
// use one colon which will get translated to a period by the mangler, and
// we're guaranteed that `num` is globally unique for this crate.
PathName(token::gensym(&format!("{}:{}", name, num)))
}
/*
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* Most "externs" are implicitly declared (automatically) as a result of a
* user declaring an extern _module_ dependency; this causes the rust driver
* to locate an extern crate, scan its compilation metadata, and emit extern
* declarations for any symbols used by the declaring crate.
*
* A "foreign" is an extern that references C (or other non-rust ABI) code.
* There is no metadata to scan for extern references so in these cases either
* a header-digester like bindgen, or manual function prototypes, have to
* serve as declarators. So these are usually given explicitly as prototype
* declarations, in rust code, with ABI attributes on them noting which ABI to
* link via.
*
* An "upcall" is a foreign call generated by the compiler (not corresponding
* to any user-written call in the code) into the runtime library, to perform
* some helper task such as bringing a task to life, allocating memory, etc.
*
*/
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone)]
pub struct NodeIdAndSpan {
pub id: ast::NodeId,
pub span: Span,
}
pub fn expr_info(expr: &ast::Expr) -> NodeIdAndSpan {
NodeIdAndSpan { id: expr.id, span: expr.span }
}
pub struct BuilderRef_res {
pub b: BuilderRef,
}
impl Drop for BuilderRef_res {
fn drop(&mut self) {
unsafe {
llvm::LLVMDisposeBuilder(self.b);
}
}
}
pub fn BuilderRef_res(b: BuilderRef) -> BuilderRef_res {
BuilderRef_res {
b: b
}
2012-09-05 17:58:43 -05:00
}
pub type ExternMap = FnvHashMap<String, ValueRef>;
2013-02-04 17:30:32 -06:00
pub fn validate_substs(substs: &Substs) {
assert!(!substs.types.needs_infer());
}
// work around bizarre resolve errors
2014-12-28 15:22:37 -06:00
type RvalueDatum<'tcx> = datum::Datum<'tcx, datum::Rvalue>;
pub type LvalueDatum<'tcx> = datum::Datum<'tcx, datum::Lvalue>;
#[derive(Clone, Debug)]
struct HintEntry<'tcx> {
// The datum for the dropflag-hint itself; note that many
// source-level Lvalues will be associated with the same
// dropflag-hint datum.
datum: cleanup::DropHintDatum<'tcx>,
}
pub struct DropFlagHintsMap<'tcx> {
// Maps NodeId for expressions that read/write unfragmented state
// to that state's drop-flag "hint." (A stack-local hint
// indicates either that (1.) it is certain that no-drop is
// needed, or (2.) inline drop-flag must be consulted.)
node_map: NodeMap<HintEntry<'tcx>>,
}
impl<'tcx> DropFlagHintsMap<'tcx> {
pub fn new() -> DropFlagHintsMap<'tcx> { DropFlagHintsMap { node_map: NodeMap() } }
pub fn has_hint(&self, id: ast::NodeId) -> bool { self.node_map.contains_key(&id) }
pub fn insert(&mut self, id: ast::NodeId, datum: cleanup::DropHintDatum<'tcx>) {
self.node_map.insert(id, HintEntry { datum: datum });
}
pub fn hint_datum(&self, id: ast::NodeId) -> Option<cleanup::DropHintDatum<'tcx>> {
self.node_map.get(&id).map(|t|t.datum)
}
}
// Function context. Every LLVM function we create will have one of
// these.
pub struct FunctionContext<'a, 'tcx: 'a> {
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
// address of the first instruction in the sequence of
// instructions for this function that will go in the .text
// section of the executable we're generating.
pub llfn: ValueRef,
2011-07-27 07:19:39 -05:00
// always an empty parameter-environment NOTE: @jroesch another use of ParamEnv
pub param_env: ty::ParameterEnvironment<'a, 'tcx>,
// The environment argument in a closure.
pub llenv: Option<ValueRef>,
// A pointer to where to store the return value. If the return type is
// immediate, this points to an alloca in the function. Otherwise, it's a
// pointer to the hidden first parameter of the function. After function
// construction, this should always be Some.
pub llretslotptr: Cell<Option<ValueRef>>,
2011-07-27 07:19:39 -05:00
// These pub elements: "hoisted basic blocks" containing
// administrative activities that have to happen in only one place in
// the function, due to LLVM's quirks.
// A marker for the place where we want to insert the function's static
// allocas, so that LLVM will coalesce them into a single alloca call.
pub alloca_insert_pt: Cell<Option<ValueRef>>,
pub llreturn: Cell<Option<BasicBlockRef>>,
// If the function has any nested return's, including something like:
// fn foo() -> Option<Foo> { Some(Foo { x: return None }) }, then
// we use a separate alloca for each return
pub needs_ret_allocas: bool,
// The a value alloca'd for calls to upcalls.rust_personality. Used when
// outputting the resume instruction.
pub personality: Cell<Option<ValueRef>>,
2011-07-27 07:19:39 -05:00
// True if the caller expects this fn to use the out pointer to
// return. Either way, your code should write into the slot llretslotptr
// points to, but if this value is false, that slot will be a local alloca.
pub caller_expects_out_pointer: bool,
// Maps the DefId's for local variables to the allocas created for
// them in llallocas.
pub lllocals: RefCell<NodeMap<LvalueDatum<'tcx>>>,
// Same as above, but for closure upvars
pub llupvars: RefCell<NodeMap<ValueRef>>,
2011-07-27 07:19:39 -05:00
// Carries info about drop-flags for local bindings (longer term,
// paths) for the code being compiled.
pub lldropflag_hints: RefCell<DropFlagHintsMap<'tcx>>,
// The NodeId of the function, or -1 if it doesn't correspond to
// a user-defined function.
pub id: ast::NodeId,
// If this function is being monomorphized, this contains the type
// substitutions used.
pub param_substs: &'tcx Substs<'tcx>,
// The source span and nesting context where this function comes from, for
// error reporting and symbol generation.
pub span: Option<Span>,
// The arena that blocks are allocated from.
pub block_arena: &'a TypedArena<BlockS<'a, 'tcx>>,
// This function's enclosing crate context.
pub ccx: &'a CrateContext<'a, 'tcx>,
// Used and maintained by the debuginfo module.
pub debug_context: debuginfo::FunctionDebugContext,
// Cleanup scopes.
pub scopes: RefCell<Vec<cleanup::CleanupScope<'a, 'tcx>>>,
pub cfg: Option<cfg::CFG>,
}
impl<'a, 'tcx> FunctionContext<'a, 'tcx> {
Pass fat pointers in two immediate arguments This has a number of advantages compared to creating a copy in memory and passing a pointer. The obvious one is that we don't have to put the data into memory but can keep it in registers. Since we're currently passing a pointer anyway (instead of using e.g. a known offset on the stack, which is what the `byval` attribute would achieve), we only use a single additional register for each fat pointer, but save at least two pointers worth of stack in exchange (sometimes more because more than one copy gets eliminated). On archs that pass arguments on the stack, we save a pointer worth of stack even without considering the omitted copies. Additionally, LLVM can optimize the code a lot better, to a large degree due to the fact that lots of copies are gone or can be optimized away. Additionally, we can now emit attributes like nonnull on the data and/or vtable pointers contained in the fat pointer, potentially allowing for even more optimizations. This results in LLVM passes being about 3-7% faster (depending on the crate), and the resulting code is also a few percent smaller, for example: text data filename 5671479 3941461 before/librustc-d8ace771.so 5447663 3905745 after/librustc-d8ace771.so 1944425 2394024 before/libstd-d8ace771.so 1896769 2387610 after/libstd-d8ace771.so I had to remove a call in the backtrace-debuginfo test, because LLVM can now merge the tails of some blocks when optimizations are turned on, which can't correctly preserve line info. Fixes #22924 Cc #22891 (at least for fat pointers the code is good now)
2015-06-18 16:57:40 -05:00
pub fn arg_offset(&self) -> usize {
self.env_arg_pos() + if self.llenv.is_some() { 1 } else { 0 }
}
pub fn env_arg_pos(&self) -> usize {
if self.caller_expects_out_pointer {
1
} else {
0
}
}
pub fn cleanup(&self) {
unsafe {
llvm::LLVMInstructionEraseFromParent(self.alloca_insert_pt
.get()
.unwrap());
}
}
pub fn get_llreturn(&self) -> BasicBlockRef {
if self.llreturn.get().is_none() {
self.llreturn.set(Some(unsafe {
llvm::LLVMAppendBasicBlockInContext(self.ccx.llcx(), self.llfn,
"return\0".as_ptr() as *const _)
}))
}
self.llreturn.get().unwrap()
}
pub fn get_ret_slot(&self, bcx: Block<'a, 'tcx>,
output: ty::FnOutput<'tcx>,
name: &str) -> ValueRef {
if self.needs_ret_allocas {
base::alloca_no_lifetime(bcx, match output {
ty::FnConverging(output_type) => type_of::type_of(bcx.ccx(), output_type),
ty::FnDiverging => Type::void(bcx.ccx())
}, name)
} else {
self.llretslotptr.get().unwrap()
}
2013-07-02 14:47:32 -05:00
}
pub fn new_block(&'a self,
is_lpad: bool,
name: &str,
opt_node_id: Option<ast::NodeId>)
-> Block<'a, 'tcx> {
unsafe {
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-18 00:47:40 -06:00
let name = CString::new(name).unwrap();
let llbb = llvm::LLVMAppendBasicBlockInContext(self.ccx.llcx(),
self.llfn,
name.as_ptr());
BlockS::new(llbb, is_lpad, opt_node_id, self)
}
}
pub fn new_id_block(&'a self,
name: &str,
node_id: ast::NodeId)
-> Block<'a, 'tcx> {
self.new_block(false, name, Some(node_id))
}
pub fn new_temp_block(&'a self,
name: &str)
-> Block<'a, 'tcx> {
self.new_block(false, name, None)
}
pub fn join_blocks(&'a self,
id: ast::NodeId,
in_cxs: &[Block<'a, 'tcx>])
-> Block<'a, 'tcx> {
let out = self.new_id_block("join", id);
let mut reachable = false;
2015-01-31 11:20:46 -06:00
for bcx in in_cxs {
if !bcx.unreachable.get() {
build::Br(*bcx, out.llbb, DebugLoc::None);
reachable = true;
}
}
if !reachable {
build::Unreachable(out);
}
return out;
2013-05-02 20:15:36 -05:00
}
pub fn monomorphize<T>(&self, value: &T) -> T
where T : TypeFoldable<'tcx> + HasTypeFlags
{
monomorphize::apply_param_substs(self.ccx.tcx(),
self.param_substs,
value)
}
/// This is the same as `common::type_needs_drop`, except that it
/// may use or update caches within this `FunctionContext`.
pub fn type_needs_drop(&self, ty: Ty<'tcx>) -> bool {
type_needs_drop_given_env(self.ccx.tcx(), ty, &self.param_env)
}
pub fn eh_personality(&self) -> ValueRef {
// The exception handling personality function.
//
// If our compilation unit has the `eh_personality` lang item somewhere
// within it, then we just need to translate that. Otherwise, we're
// building an rlib which will depend on some upstream implementation of
// this function, so we just codegen a generic reference to it. We don't
// specify any of the types for the function, we just make it a symbol
// that LLVM can later use.
//
// Note that MSVC is a little special here in that we don't use the
// `eh_personality` lang item at all. Currently LLVM has support for
// both Dwarf and SEH unwind mechanisms for MSVC targets and uses the
// *name of the personality function* to decide what kind of unwind side
// tables/landing pads to emit. It looks like Dwarf is used by default,
// injecting a dependency on the `_Unwind_Resume` symbol for resuming
// an "exception", but for MSVC we want to force SEH. This means that we
// can't actually have the personality function be our standard
// `rust_eh_personality` function, but rather we wired it up to the
// CRT's custom personality function, which forces LLVM to consider
// landing pads as "landing pads for SEH".
let target = &self.ccx.sess().target.target;
match self.ccx.tcx().lang_items.eh_personality() {
Some(def_id) if !target.options.is_like_msvc => {
callee::trans_fn_ref(self.ccx, def_id, ExprId(0),
self.param_substs).val
}
_ => {
let mut personality = self.ccx.eh_personality().borrow_mut();
match *personality {
Some(llpersonality) => llpersonality,
None => {
let name = if !target.options.is_like_msvc {
"rust_eh_personality"
} else if target.arch == "x86" {
"_except_handler3"
} else {
"__C_specific_handler"
};
let fty = Type::variadic_func(&[], &Type::i32(self.ccx));
let f = declare::declare_cfn(self.ccx, name, fty,
self.ccx.tcx().types.i32);
*personality = Some(f);
f
}
}
}
}
}
/// By default, LLVM lowers `resume` instructions into calls to `_Unwind_Resume`
/// defined in libgcc, however, unlike personality routines, there is no easy way to
/// override that symbol. This method injects a local-scoped `_Unwind_Resume` function
/// which immediately defers to the user-defined `eh_unwind_resume` lang item.
pub fn inject_unwind_resume_hook(&self) {
let ccx = self.ccx;
if !ccx.sess().target.target.options.custom_unwind_resume ||
ccx.unwind_resume_hooked().get() {
return;
}
let new_resume = match ccx.tcx().lang_items.eh_unwind_resume() {
Some(did) => callee::trans_fn_ref(ccx, did, ExprId(0), &self.param_substs).val,
None => {
let fty = Type::variadic_func(&[], &Type::void(self.ccx));
declare::declare_cfn(self.ccx, "rust_eh_unwind_resume", fty,
self.ccx.tcx().mk_nil())
}
};
unsafe {
let resume_type = Type::func(&[Type::i8(ccx).ptr_to()], &Type::void(ccx));
let old_resume = llvm::LLVMAddFunction(ccx.llmod(),
"_Unwind_Resume\0".as_ptr() as *const _,
resume_type.to_ref());
llvm::SetLinkage(old_resume, llvm::InternalLinkage);
let llbb = llvm::LLVMAppendBasicBlockInContext(ccx.llcx(),
old_resume,
"\0".as_ptr() as *const _);
let builder = ccx.builder();
builder.position_at_end(llbb);
builder.call(new_resume, &[llvm::LLVMGetFirstParam(old_resume)], None);
builder.unreachable(); // it should never return
// Until DwarfEHPrepare pass has run, _Unwind_Resume is not referenced by any live code
// and is subject to dead code elimination. Here we add _Unwind_Resume to @llvm.globals
// to prevent that.
let i8p_ty = Type::i8p(ccx);
let used_ty = Type::array(&i8p_ty, 1);
let used = llvm::LLVMAddGlobal(ccx.llmod(), used_ty.to_ref(),
"llvm.used\0".as_ptr() as *const _);
let old_resume = llvm::LLVMConstBitCast(old_resume, i8p_ty.to_ref());
llvm::LLVMSetInitializer(used, C_array(i8p_ty, &[old_resume]));
llvm::SetLinkage(used, llvm::AppendingLinkage);
llvm::LLVMSetSection(used, "llvm.metadata\0".as_ptr() as *const _)
}
ccx.unwind_resume_hooked().set(true);
}
2013-05-02 20:15:36 -05:00
}
// Basic block context. We create a block context for each basic block
// (single-entry, single-exit sequence of instructions) we generate from Rust
// code. Each basic block we generate is attached to a function, typically
// with many basic blocks per function. All the basic blocks attached to a
// function are organized as a directed graph.
pub struct BlockS<'blk, 'tcx: 'blk> {
// The BasicBlockRef returned from a call to
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic
// block to the function pointed to by llfn. We insert
// instructions into that block by way of this block context.
// The block pointing to this one in the function's digraph.
pub llbb: BasicBlockRef,
pub terminated: Cell<bool>,
pub unreachable: Cell<bool>,
// Is this block part of a landing pad?
pub is_lpad: bool,
// AST node-id associated with this block, if any. Used for
// debugging purposes only.
pub opt_node_id: Option<ast::NodeId>,
// The function context for the function to which this block is
// attached.
pub fcx: &'blk FunctionContext<'blk, 'tcx>,
}
pub type Block<'blk, 'tcx> = &'blk BlockS<'blk, 'tcx>;
impl<'blk, 'tcx> BlockS<'blk, 'tcx> {
pub fn new(llbb: BasicBlockRef,
is_lpad: bool,
opt_node_id: Option<ast::NodeId>,
fcx: &'blk FunctionContext<'blk, 'tcx>)
-> Block<'blk, 'tcx> {
fcx.block_arena.alloc(BlockS {
llbb: llbb,
terminated: Cell::new(false),
unreachable: Cell::new(false),
is_lpad: is_lpad,
opt_node_id: opt_node_id,
fcx: fcx
})
}
pub fn ccx(&self) -> &'blk CrateContext<'blk, 'tcx> {
self.fcx.ccx
}
pub fn tcx(&self) -> &'blk ty::ctxt<'tcx> {
self.fcx.ccx.tcx()
}
pub fn sess(&self) -> &'blk Session { self.fcx.ccx.sess() }
2012-09-05 17:58:43 -05:00
pub fn name(&self, name: ast::Name) -> String {
name.to_string()
}
2012-09-05 17:58:43 -05:00
pub fn node_id_to_string(&self, id: ast::NodeId) -> String {
self.tcx().map.node_to_string(id).to_string()
}
pub fn def(&self, nid: ast::NodeId) -> def::Def {
match self.tcx().def_map.borrow().get(&nid) {
Some(v) => v.full_def(),
None => {
self.tcx().sess.bug(&format!(
"no def associated with node id {}", nid));
}
}
}
pub fn val_to_string(&self, val: ValueRef) -> String {
self.ccx().tn().val_to_string(val)
}
pub fn llty_str(&self, ty: Type) -> String {
self.ccx().tn().type_to_string(ty)
}
pub fn to_str(&self) -> String {
format!("[block {:p}]", self)
}
pub fn monomorphize<T>(&self, value: &T) -> T
where T : TypeFoldable<'tcx> + HasTypeFlags
{
monomorphize::apply_param_substs(self.tcx(),
self.fcx.param_substs,
value)
}
}
pub struct Result<'blk, 'tcx: 'blk> {
pub bcx: Block<'blk, 'tcx>,
pub val: ValueRef
}
impl<'b, 'tcx> Result<'b, 'tcx> {
pub fn new(bcx: Block<'b, 'tcx>, val: ValueRef) -> Result<'b, 'tcx> {
Result {
bcx: bcx,
val: val,
}
}
}
2013-06-16 05:52:44 -05:00
pub fn val_ty(v: ValueRef) -> Type {
unsafe {
Type::from_ref(llvm::LLVMTypeOf(v))
}
}
// LLVM constant constructors.
2013-06-15 22:45:48 -05:00
pub fn C_null(t: Type) -> ValueRef {
unsafe {
llvm::LLVMConstNull(t.to_ref())
}
}
2013-06-15 22:45:48 -05:00
pub fn C_undef(t: Type) -> ValueRef {
unsafe {
llvm::LLVMGetUndef(t.to_ref())
}
}
2013-06-15 22:45:48 -05:00
pub fn C_integral(t: Type, u: u64, sign_extend: bool) -> ValueRef {
unsafe {
llvm::LLVMConstInt(t.to_ref(), u, sign_extend as Bool)
}
}
2013-06-15 22:45:48 -05:00
pub fn C_floating(s: &str, t: Type) -> ValueRef {
unsafe {
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-18 00:47:40 -06:00
let s = CString::new(s).unwrap();
llvm::LLVMConstRealOfString(t.to_ref(), s.as_ptr())
}
}
pub fn C_nil(ccx: &CrateContext) -> ValueRef {
C_struct(ccx, &[], false)
}
pub fn C_bool(ccx: &CrateContext, val: bool) -> ValueRef {
C_integral(Type::i1(ccx), val as u64, false)
}
pub fn C_i32(ccx: &CrateContext, i: i32) -> ValueRef {
C_integral(Type::i32(ccx), i as u64, true)
2011-10-26 00:23:28 -05:00
}
pub fn C_u32(ccx: &CrateContext, i: u32) -> ValueRef {
C_integral(Type::i32(ccx), i as u64, false)
}
pub fn C_u64(ccx: &CrateContext, i: u64) -> ValueRef {
C_integral(Type::i64(ccx), i, false)
}
pub fn C_int<I: AsI64>(ccx: &CrateContext, i: I) -> ValueRef {
let v = i.as_i64();
match machine::llbitsize_of_real(ccx, ccx.int_type()) {
32 => assert!(v < (1<<31) && v >= -(1<<31)),
64 => {},
n => panic!("unsupported target size: {}", n)
}
C_integral(ccx.int_type(), v as u64, true)
}
pub fn C_uint<I: AsU64>(ccx: &CrateContext, i: I) -> ValueRef {
let v = i.as_u64();
match machine::llbitsize_of_real(ccx, ccx.int_type()) {
32 => assert!(v < (1<<32)),
64 => {},
n => panic!("unsupported target size: {}", n)
}
C_integral(ccx.int_type(), v, false)
}
pub trait AsI64 { fn as_i64(self) -> i64; }
pub trait AsU64 { fn as_u64(self) -> u64; }
// FIXME: remove the intptr conversions, because they
// are host-architecture-dependent
impl AsI64 for i64 { fn as_i64(self) -> i64 { self as i64 }}
impl AsI64 for i32 { fn as_i64(self) -> i64 { self as i64 }}
impl AsI64 for isize { fn as_i64(self) -> i64 { self as i64 }}
impl AsU64 for u64 { fn as_u64(self) -> u64 { self as u64 }}
impl AsU64 for u32 { fn as_u64(self) -> u64 { self as u64 }}
impl AsU64 for usize { fn as_u64(self) -> u64 { self as u64 }}
pub fn C_u8(ccx: &CrateContext, i: u8) -> ValueRef {
C_integral(Type::i8(ccx), i as u64, false)
}
// This is a 'c-like' raw string, which differs from
// our boxed-and-length-annotated strings.
pub fn C_cstr(cx: &CrateContext, s: InternedString, null_terminated: bool) -> ValueRef {
unsafe {
match cx.const_cstr_cache().borrow().get(&s) {
Some(&llval) => return llval,
None => ()
}
let sc = llvm::LLVMConstStringInContext(cx.llcx(),
2015-02-03 18:04:50 -06:00
s.as_ptr() as *const c_char,
s.len() as c_uint,
!null_terminated as Bool);
2013-06-15 22:45:48 -05:00
let gsym = token::gensym("str");
let sym = format!("str{}", gsym.usize());
let g = declare::define_global(cx, &sym[..], val_ty(sc)).unwrap_or_else(||{
cx.sess().bug(&format!("symbol `{}` is already defined", sym));
});
llvm::LLVMSetInitializer(g, sc);
llvm::LLVMSetGlobalConstant(g, True);
llvm::SetLinkage(g, llvm::InternalLinkage);
cx.const_cstr_cache().borrow_mut().insert(s, g);
g
}
}
// NB: Do not use `do_spill_noroot` to make this into a constant string, or
// you will be kicked off fast isel. See issue #4352 for an example of this.
pub fn C_str_slice(cx: &CrateContext, s: InternedString) -> ValueRef {
2015-02-03 18:04:50 -06:00
let len = s.len();
let cs = consts::ptrcast(C_cstr(cx, s, false), Type::i8p(cx));
C_named_struct(cx.tn().find_type("str_slice").unwrap(), &[cs, C_uint(cx, len)])
}
pub fn C_struct(cx: &CrateContext, elts: &[ValueRef], packed: bool) -> ValueRef {
C_struct_in_context(cx.llcx(), elts, packed)
}
pub fn C_struct_in_context(llcx: ContextRef, elts: &[ValueRef], packed: bool) -> ValueRef {
unsafe {
llvm::LLVMConstStructInContext(llcx,
elts.as_ptr(), elts.len() as c_uint,
packed as Bool)
}
}
pub fn C_named_struct(t: Type, elts: &[ValueRef]) -> ValueRef {
unsafe {
llvm::LLVMConstNamedStruct(t.to_ref(), elts.as_ptr(), elts.len() as c_uint)
}
}
2013-06-16 05:52:44 -05:00
pub fn C_array(ty: Type, elts: &[ValueRef]) -> ValueRef {
unsafe {
return llvm::LLVMConstArray(ty.to_ref(), elts.as_ptr(), elts.len() as c_uint);
}
2011-07-27 17:14:59 -05:00
}
2011-08-04 12:46:10 -05:00
pub fn C_vector(elts: &[ValueRef]) -> ValueRef {
unsafe {
return llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint);
}
}
pub fn C_bytes(cx: &CrateContext, bytes: &[u8]) -> ValueRef {
C_bytes_in_context(cx.llcx(), bytes)
}
pub fn C_bytes_in_context(llcx: ContextRef, bytes: &[u8]) -> ValueRef {
unsafe {
let ptr = bytes.as_ptr() as *const c_char;
return llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True);
}
}
pub fn const_get_elt(cx: &CrateContext, v: ValueRef, us: &[c_uint])
-> ValueRef {
unsafe {
let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint);
debug!("const_get_elt(v={}, us={:?}, r={})",
cx.tn().val_to_string(v), us, cx.tn().val_to_string(r));
return r;
}
}
pub fn const_to_int(v: ValueRef) -> i64 {
unsafe {
llvm::LLVMConstIntGetSExtValue(v)
}
}
pub fn const_to_uint(v: ValueRef) -> u64 {
unsafe {
llvm::LLVMConstIntGetZExtValue(v)
}
}
fn is_const_integral(v: ValueRef) -> bool {
unsafe {
!llvm::LLVMIsAConstantInt(v).is_null()
}
}
pub fn const_to_opt_int(v: ValueRef) -> Option<i64> {
unsafe {
if is_const_integral(v) {
Some(llvm::LLVMConstIntGetSExtValue(v))
} else {
None
}
}
}
pub fn const_to_opt_uint(v: ValueRef) -> Option<u64> {
unsafe {
if is_const_integral(v) {
Some(llvm::LLVMConstIntGetZExtValue(v))
} else {
None
}
}
}
pub fn is_undef(val: ValueRef) -> bool {
unsafe {
llvm::LLVMIsUndef(val) != False
}
}
#[allow(dead_code)] // potentially useful
pub fn is_null(val: ValueRef) -> bool {
unsafe {
llvm::LLVMIsNull(val) != False
}
}
pub fn monomorphize_type<'blk, 'tcx>(bcx: &BlockS<'blk, 'tcx>, t: Ty<'tcx>) -> Ty<'tcx> {
bcx.fcx.monomorphize(&t)
}
pub fn node_id_type<'blk, 'tcx>(bcx: &BlockS<'blk, 'tcx>, id: ast::NodeId) -> Ty<'tcx> {
let tcx = bcx.tcx();
let t = tcx.node_id_to_type(id);
monomorphize_type(bcx, t)
}
pub fn expr_ty<'blk, 'tcx>(bcx: &BlockS<'blk, 'tcx>, ex: &ast::Expr) -> Ty<'tcx> {
node_id_type(bcx, ex.id)
}
pub fn expr_ty_adjusted<'blk, 'tcx>(bcx: &BlockS<'blk, 'tcx>, ex: &ast::Expr) -> Ty<'tcx> {
monomorphize_type(bcx, bcx.tcx().expr_ty_adjusted(ex))
}
/// Attempts to resolve an obligation. The result is a shallow vtable resolution -- meaning that we
/// do not (necessarily) resolve all nested obligations on the impl. Note that type check should
/// guarantee to us that all nested obligations *could be* resolved if we wanted to.
pub fn fulfill_obligation<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
span: Span,
trait_ref: ty::PolyTraitRef<'tcx>)
-> traits::Vtable<'tcx, ()>
{
let tcx = ccx.tcx();
// Remove any references to regions; this helps improve caching.
let trait_ref = erase_regions(tcx, &trait_ref);
// First check the cache.
match ccx.trait_cache().borrow().get(&trait_ref) {
Some(vtable) => {
2015-06-18 12:25:05 -05:00
info!("Cache hit: {:?}", trait_ref);
return (*vtable).clone();
}
None => { }
}
2015-06-18 12:25:05 -05:00
debug!("trans fulfill_obligation: trait_ref={:?} def_id={:?}",
trait_ref, trait_ref.def_id());
// Do the initial selection for the obligation. This yields the
// shallow result we are looking for -- that is, what specific impl.
2015-06-28 00:04:15 -05:00
let infcx = infer::normalizing_infer_ctxt(tcx, &tcx.tables);
let mut selcx = traits::SelectionContext::new(&infcx);
2015-06-28 00:04:15 -05:00
let obligation =
traits::Obligation::new(traits::ObligationCause::misc(span, ast::DUMMY_NODE_ID),
trait_ref.to_poly_trait_predicate());
let selection = match selcx.select(&obligation) {
Ok(Some(selection)) => selection,
Ok(None) => {
// Ambiguity can happen when monomorphizing during trans
// expands to some humongo type that never occurred
// statically -- this humongo type can then overflow,
// leading to an ambiguous result. So report this as an
// overflow bug, since I believe this is the only case
// where ambiguity can result.
2015-06-18 12:25:05 -05:00
debug!("Encountered ambiguity selecting `{:?}` during trans, \
presuming due to overflow",
2015-06-18 12:25:05 -05:00
trait_ref);
ccx.sess().span_fatal(
span,
"reached the recursion limit during monomorphization");
}
Err(e) => {
tcx.sess.span_bug(
span,
2015-06-18 12:25:05 -05:00
&format!("Encountered error `{:?}` selecting `{:?}` during trans",
e,
trait_ref))
}
};
// Currently, we use a fulfillment context to completely resolve
// all nested obligations. This is because they can inform the
// inference of the impl's type parameters.
let mut fulfill_cx = infcx.fulfillment_cx.borrow_mut();
let vtable = selection.map(|predicate| {
fulfill_cx.register_predicate_obligation(&infcx, predicate);
});
let vtable = erase_regions(tcx,
&drain_fulfillment_cx_or_panic(span, &infcx, &mut fulfill_cx, &vtable)
);
info!("Cache miss: {:?} => {:?}", trait_ref, vtable);
ccx.trait_cache().borrow_mut().insert(trait_ref, vtable.clone());
vtable
}
/// Normalizes the predicates and checks whether they hold. If this
/// returns false, then either normalize encountered an error or one
/// of the predicates did not hold. Used when creating vtables to
/// check for unsatisfiable methods.
pub fn normalize_and_test_predicates<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
predicates: Vec<ty::Predicate<'tcx>>)
-> bool
{
2015-06-18 12:25:05 -05:00
debug!("normalize_and_test_predicates(predicates={:?})",
predicates);
let tcx = ccx.tcx();
let infcx = infer::normalizing_infer_ctxt(tcx, &tcx.tables);
let mut selcx = traits::SelectionContext::new(&infcx);
let mut fulfill_cx = infcx.fulfillment_cx.borrow_mut();
let cause = traits::ObligationCause::dummy();
let traits::Normalized { value: predicates, obligations } =
traits::normalize(&mut selcx, cause.clone(), &predicates);
for obligation in obligations {
fulfill_cx.register_predicate_obligation(&infcx, obligation);
}
for predicate in predicates {
let obligation = traits::Obligation::new(cause.clone(), predicate);
fulfill_cx.register_predicate_obligation(&infcx, obligation);
}
drain_fulfillment_cx(&infcx, &mut fulfill_cx, &()).is_ok()
}
pub fn drain_fulfillment_cx_or_panic<'a,'tcx,T>(span: Span,
infcx: &infer::InferCtxt<'a,'tcx>,
fulfill_cx: &mut traits::FulfillmentContext<'tcx>,
result: &T)
-> T
where T : TypeFoldable<'tcx>
{
match drain_fulfillment_cx(infcx, fulfill_cx, result) {
Ok(v) => v,
Err(errors) => {
infcx.tcx.sess.span_bug(
span,
2015-06-18 12:25:05 -05:00
&format!("Encountered errors `{:?}` fulfilling during trans",
errors));
}
}
}
/// Finishes processes any obligations that remain in the fulfillment
/// context, and then "freshens" and returns `result`. This is
/// primarily used during normalization and other cases where
/// processing the obligations in `fulfill_cx` may cause type
/// inference variables that appear in `result` to be unified, and
/// hence we need to process those obligations to get the complete
/// picture of the type.
pub fn drain_fulfillment_cx<'a,'tcx,T>(infcx: &infer::InferCtxt<'a,'tcx>,
fulfill_cx: &mut traits::FulfillmentContext<'tcx>,
result: &T)
-> StdResult<T,Vec<traits::FulfillmentError<'tcx>>>
where T : TypeFoldable<'tcx>
{
2015-06-18 12:25:05 -05:00
debug!("drain_fulfillment_cx(result={:?})",
result);
// In principle, we only need to do this so long as `result`
// contains unbound type parameters. It could be a slight
// optimization to stop iterating early.
match fulfill_cx.select_all_or_error(infcx) {
Ok(()) => { }
Err(errors) => {
return Err(errors);
}
}
// Use freshen to simultaneously replace all type variables with
// their bindings and replace all regions with 'static. This is
// sort of overkill because we do not expect there to be any
// unbound type variables, hence no `TyFresh` types should ever be
// inserted.
Ok(result.fold_with(&mut infcx.freshener()))
}
// Key used to lookup values supplied for type parameters in an expr.
2015-03-30 08:38:44 -05:00
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum ExprOrMethodCall {
// Type parameters for a path like `None::<int>`
ExprId(ast::NodeId),
// Type parameters for a method call like `a.foo::<int>()`
MethodCallKey(ty::MethodCall)
}
pub fn node_id_substs<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
node: ExprOrMethodCall,
param_substs: &subst::Substs<'tcx>)
-> subst::Substs<'tcx> {
let tcx = ccx.tcx();
let substs = match node {
ExprId(id) => {
tcx.node_id_item_substs(id).substs
}
MethodCallKey(method_call) => {
tcx.tables.borrow().method_map[&method_call].substs.clone()
}
};
if substs.types.needs_infer() {
tcx.sess.bug(&format!("type parameters for node {:?} include inference types: {:?}",
2015-06-18 12:25:05 -05:00
node, substs));
}
monomorphize::apply_param_substs(tcx,
param_substs,
&substs.erase_regions())
}
pub fn langcall(bcx: Block,
span: Option<Span>,
msg: &str,
li: LangItem)
-> ast::DefId {
match bcx.tcx().lang_items.require(li) {
Ok(id) => id,
Err(s) => {
2013-09-28 00:38:08 -05:00
let msg = format!("{} {}", msg, s);
match span {
Some(span) => bcx.tcx().sess.span_fatal(span, &msg[..]),
None => bcx.tcx().sess.fatal(&msg[..]),
}
}
}
}