rust/src/interpreter.rs

806 lines
32 KiB
Rust
Raw Normal View History

use rustc::middle::const_eval;
use rustc::middle::def_id::DefId;
2016-03-15 00:45:25 -06:00
use rustc::middle::subst::{self, Subst, Substs};
use rustc::middle::traits;
2016-03-14 21:48:00 -06:00
use rustc::middle::ty::{self, TyCtxt};
2016-02-18 19:06:22 -06:00
use rustc::mir::mir_map::MirMap;
2016-03-07 10:14:47 -06:00
use rustc::mir::repr as mir;
use rustc::util::nodemap::DefIdMap;
use std::cell::RefCell;
use std::ops::Deref;
use std::rc::Rc;
use syntax::codemap::DUMMY_SP;
2016-03-14 21:48:00 -06:00
use error::EvalResult;
2016-03-14 22:05:50 -06:00
use memory::{self, FieldRepr, Memory, Pointer, Repr};
2016-03-17 03:12:15 -06:00
use primval;
2016-03-05 00:48:23 -06:00
const TRACE_EXECUTION: bool = true;
struct Interpreter<'a, 'tcx: 'a> {
/// The results of the type checker, from rustc.
tcx: &'a TyCtxt<'tcx>,
/// A mapping from NodeIds to Mir, from rustc. Only contains MIR for crate-local items.
mir_map: &'a MirMap<'tcx>,
/// A local cache from DefIds to Mir for non-crate-local items.
mir_cache: RefCell<DefIdMap<Rc<mir::Mir<'tcx>>>>,
/// The virtual memory system.
memory: Memory,
/// The virtual call stack.
stack: Vec<Frame<'a, 'tcx>>,
2016-03-14 21:48:00 -06:00
/// Another stack containing the type substitutions for the current function invocation. It
/// exists separately from `stack` because it must contain the `Substs` for a function while
/// *creating* the `Frame` for that same function.
substs_stack: Vec<&'tcx Substs<'tcx>>,
}
/// A stack frame.
struct Frame<'a, 'tcx: 'a> {
2016-03-13 14:46:24 -06:00
/// The MIR for the function called on this frame.
mir: CachedMir<'a, 'tcx>,
/// The block this frame will execute when a function call returns back to this frame.
next_block: mir::BasicBlock,
/// A pointer for writing the return value of the current call if it's not a diverging call.
return_ptr: Option<Pointer>,
/// The list of locals for the current function, stored in order as
/// `[arguments..., variables..., temporaries...]`. The variables begin at `self.var_offset`
/// and the temporaries at `self.temp_offset`.
locals: Vec<Pointer>,
/// The offset of the first variable in `self.locals`.
var_offset: usize,
/// The offset of the first temporary in `self.locals`.
temp_offset: usize,
}
2016-03-14 21:48:00 -06:00
#[derive(Clone)]
enum CachedMir<'mir, 'tcx: 'mir> {
Ref(&'mir mir::Mir<'tcx>),
Owned(Rc<mir::Mir<'tcx>>)
}
/// Represents the action to be taken in the main loop as a result of executing a terminator.
enum TerminatorTarget {
/// Make a local jump to the given block.
Block(mir::BasicBlock),
/// Start executing from the new current frame. (For function calls.)
Call,
2015-11-19 07:07:47 -06:00
/// Stop executing the current frame and resume the previous frame.
Return,
}
impl<'a, 'tcx: 'a> Interpreter<'a, 'tcx> {
fn new(tcx: &'a TyCtxt<'tcx>, mir_map: &'a MirMap<'tcx>) -> Self {
Interpreter {
2015-11-19 07:07:47 -06:00
tcx: tcx,
mir_map: mir_map,
mir_cache: RefCell::new(DefIdMap()),
2016-03-07 10:14:47 -06:00
memory: Memory::new(),
stack: Vec::new(),
substs_stack: Vec::new(),
}
}
2016-03-14 21:48:00 -06:00
fn run(&mut self) -> EvalResult<()> {
use std::fmt::Debug;
fn print_trace<T: Debug>(t: &T, suffix: &'static str, indent: usize) {
if !TRACE_EXECUTION { return; }
for _ in 0..indent { print!(" "); }
println!("{:?}{}", t, suffix);
}
'outer: while !self.stack.is_empty() {
let mut current_block = self.current_frame().next_block;
loop {
print_trace(&current_block, ":", self.stack.len());
let current_mir = self.current_frame().mir.clone(); // Cloning a reference.
let block_data = current_mir.basic_block_data(current_block);
for stmt in &block_data.statements {
print_trace(stmt, "", self.stack.len() + 1);
let mir::StatementKind::Assign(ref lvalue, ref rvalue) = stmt.kind;
try!(self.eval_assignment(lvalue, rvalue));
}
let terminator = block_data.terminator();
print_trace(terminator, "", self.stack.len() + 1);
match try!(self.eval_terminator(terminator)) {
TerminatorTarget::Block(block) => current_block = block,
TerminatorTarget::Return => {
self.pop_stack_frame();
self.substs_stack.pop();
continue 'outer;
}
TerminatorTarget::Call => continue 'outer,
}
}
}
Ok(())
}
fn push_stack_frame(&mut self, mir: CachedMir<'a, 'tcx>, args: &[mir::Operand<'tcx>],
return_ptr: Option<Pointer>) -> EvalResult<()> {
let num_args = mir.arg_decls.len();
let num_vars = mir.var_decls.len();
let num_temps = mir.temp_decls.len();
assert_eq!(args.len(), num_args);
let mut locals = Vec::with_capacity(num_args + num_vars + num_temps);
for (arg_decl, arg_operand) in mir.arg_decls.iter().zip(args) {
2016-03-17 02:53:03 -06:00
let size = self.ty_to_repr(arg_decl.ty).size();
let dest = self.memory.allocate(size);
let src = try!(self.eval_operand(arg_operand));
2016-03-17 02:53:03 -06:00
try!(self.memory.copy(src, dest, size));
locals.push(dest);
}
let var_tys = mir.var_decls.iter().map(|v| v.ty);
let temp_tys = mir.temp_decls.iter().map(|t| t.ty);
2016-03-07 07:19:43 -06:00
locals.extend(var_tys.chain(temp_tys).map(|ty| {
2016-03-17 02:53:03 -06:00
let size = self.ty_to_repr(ty).size();
self.memory.allocate(size)
2016-03-07 07:19:43 -06:00
}));
self.stack.push(Frame {
mir: mir.clone(),
next_block: mir::START_BLOCK,
return_ptr: return_ptr,
locals: locals,
var_offset: num_args,
temp_offset: num_args + num_vars,
});
Ok(())
}
fn pop_stack_frame(&mut self) {
let _frame = self.stack.pop().expect("tried to pop a stack frame, but there were none");
// TODO(tsion): Deallocate local variables.
}
fn eval_terminator(&mut self, terminator: &mir::Terminator<'tcx>)
-> EvalResult<TerminatorTarget> {
use rustc::mir::repr::Terminator::*;
let target = match *terminator {
Return => TerminatorTarget::Return,
Goto { target } => TerminatorTarget::Block(target),
2016-03-07 08:22:18 -06:00
If { ref cond, targets: (then_target, else_target) } => {
let cond_ptr = try!(self.eval_operand(cond));
let cond_val = try!(self.memory.read_bool(cond_ptr));
TerminatorTarget::Block(if cond_val { then_target } else { else_target })
}
2016-03-07 08:22:18 -06:00
SwitchInt { ref discr, ref values, ref targets, .. } => {
let discr_ptr = try!(self.eval_lvalue(discr));
2016-03-17 02:53:03 -06:00
let discr_size = self.lvalue_repr(discr).size();
let discr_val = try!(self.memory.read_uint(discr_ptr, discr_size));
2016-03-07 08:22:18 -06:00
// Branch to the `otherwise` case by default, if no match is found.
let mut target_block = targets[targets.len() - 1];
2016-03-07 04:48:12 -06:00
for (index, val_const) in values.iter().enumerate() {
let ptr = try!(self.const_to_ptr(val_const));
2016-03-17 02:53:03 -06:00
let val = try!(self.memory.read_uint(ptr, discr_size));
if discr_val == val {
target_block = targets[index];
break;
}
}
2016-03-13 06:30:28 -06:00
TerminatorTarget::Block(target_block)
}
Switch { ref discr, ref targets, .. } => {
let adt_ptr = try!(self.eval_lvalue(discr));
let adt_repr = self.lvalue_repr(discr);
2016-03-17 02:53:03 -06:00
let discr_size = match adt_repr {
Repr::Sum { discr_size, .. } => discr_size,
_ => panic!("attmpted to switch on non-sum type"),
};
2016-03-17 02:53:03 -06:00
let discr_val = try!(self.memory.read_uint(adt_ptr, discr_size));
TerminatorTarget::Block(targets[discr_val as usize])
}
Call { ref func, ref args, ref destination, .. } => {
let mut return_ptr = None;
if let Some((ref lv, target)) = *destination {
self.current_frame_mut().next_block = target;
return_ptr = Some(try!(self.eval_lvalue(lv)));
}
let func_ty = self.current_frame().mir.operand_ty(self.tcx, func);
match func_ty.sty {
ty::TyFnDef(def_id, substs, fn_ty) => {
let substs = self.tcx.mk_substs(
substs.subst(self.tcx, self.current_substs()));
2016-03-15 00:45:25 -06:00
use syntax::abi::Abi;
match fn_ty.abi {
Abi::RustIntrinsic => {
let ret_ptr = &mir::Lvalue::ReturnPointer;
let dest = try!(self.eval_lvalue(ret_ptr));
let dest_repr = self.lvalue_repr(ret_ptr);
match &self.tcx.item_name(def_id).as_str()[..] {
"size_of" => {
let ty = *substs.types.get(subst::FnSpace, 0);
2016-03-17 03:12:15 -06:00
let size = self.ty_to_repr(ty).size() as u64;
try!(self.memory.write_uint(dest, size, dest_repr.size()));
}
"offset" => {
let pointee_ty = *substs.types.get(subst::FnSpace, 0);
let pointee_size = self.ty_to_repr(pointee_ty).size() as isize;
let ptr_arg = try!(self.eval_operand(&args[0]));
let offset_arg = try!(self.eval_operand(&args[1]));
let ptr = try!(self.memory.read_ptr(ptr_arg));
// TODO(tsion): read_isize
let offset = try!(self.memory.read_i64(offset_arg));
let result_ptr = ptr.offset(offset as isize * pointee_size);
try!(self.memory.write_ptr(dest, result_ptr));
}
name => panic!("can't handle intrinsic named {}", name),
}
// Since we pushed no stack frame, the main loop will act
// as if the call just completed and it's returning to the
// current frame.
TerminatorTarget::Call
}
2016-03-15 00:45:25 -06:00
Abi::Rust => {
// Only trait methods can have a Self parameter.
let (def_id, substs) = if substs.self_ty().is_some() {
self.trait_method(def_id, substs)
} else {
(def_id, substs)
};
2016-03-15 00:45:25 -06:00
let mir = self.load_mir(def_id);
self.substs_stack.push(substs);
try!(self.push_stack_frame(mir, args, return_ptr));
TerminatorTarget::Call
}
abi => panic!("can't handle function with ABI {:?}", abi),
}
}
_ => panic!("can't handle callee of type {:?}", func_ty),
2016-02-18 19:06:22 -06:00
}
}
Drop { target, .. } => {
// TODO: Handle destructors and dynamic drop.
TerminatorTarget::Block(target)
}
Resume => unimplemented!(),
};
Ok(target)
}
fn assign_to_product(&mut self, dest: Pointer, dest_repr: &Repr,
operands: &[mir::Operand<'tcx>]) -> EvalResult<()> {
match *dest_repr {
Repr::Product { ref fields, .. } => {
for (field, operand) in fields.iter().zip(operands) {
let src = try!(self.eval_operand(operand));
let field_dest = dest.offset(field.offset as isize);
2016-03-17 03:11:40 -06:00
try!(self.memory.copy(src, field_dest, field.size));
}
}
_ => panic!("expected Repr::Product target"),
}
Ok(())
}
fn eval_assignment(&mut self, lvalue: &mir::Lvalue<'tcx>, rvalue: &mir::Rvalue<'tcx>)
-> EvalResult<()>
{
let dest = try!(self.eval_lvalue(lvalue));
let dest_repr = self.lvalue_repr(lvalue);
use rustc::mir::repr::Rvalue::*;
match *rvalue {
Use(ref operand) => {
let src = try!(self.eval_operand(operand));
self.memory.copy(src, dest, dest_repr.size())
}
BinaryOp(bin_op, ref left, ref right) => {
2016-03-17 02:53:03 -06:00
let left_ptr = try!(self.eval_operand(left));
let left_ty = self.operand_ty(left);
let left_val = try!(self.memory.read_primval(left_ptr, left_ty));
let right_ptr = try!(self.eval_operand(right));
let right_ty = self.operand_ty(right);
let right_val = try!(self.memory.read_primval(right_ptr, right_ty));
self.memory.write_primval(dest, primval::binary_op(bin_op, left_val, right_val))
}
2016-03-07 07:57:08 -06:00
UnaryOp(un_op, ref operand) => {
2016-03-17 02:53:03 -06:00
let ptr = try!(self.eval_operand(operand));
let ty = self.operand_ty(operand);
let val = try!(self.memory.read_primval(ptr, ty));
self.memory.write_primval(dest, primval::unary_op(un_op, val))
2016-03-07 07:57:08 -06:00
}
Aggregate(ref kind, ref operands) => {
use rustc::mir::repr::AggregateKind::*;
match *kind {
Tuple => self.assign_to_product(dest, &dest_repr, operands),
Adt(ref adt_def, variant_idx, _) => match adt_def.adt_kind() {
ty::AdtKind::Struct => self.assign_to_product(dest, &dest_repr, operands),
ty::AdtKind::Enum => match dest_repr {
2016-03-17 02:53:03 -06:00
Repr::Sum { discr_size, ref variants, .. } => {
if discr_size > 0 {
let discr = variant_idx as u64;
try!(self.memory.write_uint(dest, discr, discr_size));
2016-03-13 06:05:48 -06:00
}
self.assign_to_product(
2016-03-17 02:53:03 -06:00
dest.offset(discr_size as isize),
&variants[variant_idx],
operands
)
}
_ => panic!("expected Repr::Sum target"),
}
},
2016-03-15 05:50:53 -06:00
Vec => match dest_repr {
Repr::Array { ref elem, length } => {
assert_eq!(length, operands.len());
let elem_size = elem.size();
for (i, operand) in operands.iter().enumerate() {
let src = try!(self.eval_operand(operand));
2016-03-15 05:50:53 -06:00
let offset = i * elem_size;
let elem_dest = dest.offset(offset as isize);
try!(self.memory.copy(src, elem_dest, elem_size));
2016-03-15 05:50:53 -06:00
}
Ok(())
}
_ => panic!("expected Repr::Array target"),
},
Closure(..) => unimplemented!(),
}
}
2016-03-13 14:36:25 -06:00
Ref(_, _, ref lvalue) => {
let ptr = try!(self.eval_lvalue(lvalue));
2016-03-13 14:36:25 -06:00
self.memory.write_ptr(dest, ptr)
}
2015-12-28 22:24:05 -06:00
2016-03-14 22:05:50 -06:00
Box(ty) => {
let repr = self.ty_to_repr(ty);
let ptr = self.memory.allocate(repr.size());
self.memory.write_ptr(dest, ptr)
}
Cast(kind, ref operand, dest_ty) => {
fn pointee_type<'tcx>(ptr_ty: ty::Ty<'tcx>) -> Option<ty::Ty<'tcx>> {
match ptr_ty.sty {
ty::TyRef(_, ty::TypeAndMut { ty, .. }) |
ty::TyRawPtr(ty::TypeAndMut { ty, .. }) |
ty::TyBox(ty) => {
Some(ty)
}
_ => None,
}
}
let src = try!(self.eval_operand(operand));
let src_ty = self.current_frame().mir.operand_ty(self.tcx, operand);
use rustc::mir::repr::CastKind::*;
match kind {
Unsize => {
try!(self.memory.copy(src, dest, 8));
let src_pointee_ty = pointee_type(src_ty).unwrap();
let dest_pointee_ty = pointee_type(dest_ty).unwrap();
match (&src_pointee_ty.sty, &dest_pointee_ty.sty) {
(&ty::TyArray(_, length), &ty::TySlice(_)) =>
// TODO(tsion): Add write_usize? (Host/target issues.)
self.memory.write_u64(dest.offset(8), length as u64),
_ => panic!("can't handle cast: {:?}", rvalue),
}
}
Misc => {
if pointee_type(src_ty).is_some() && pointee_type(dest_ty).is_some() {
2016-03-17 01:11:06 -06:00
// FIXME(tsion): Wrong for fat pointers.
self.memory.copy(src, dest, 8)
} else {
2016-03-17 01:11:06 -06:00
// FIXME(tsion): Wrong for almost everything.
self.memory.copy(src, dest, 8)
// panic!("can't handle cast: {:?}", rvalue);
}
}
_ => panic!("can't handle cast: {:?}", rvalue),
}
}
ref r => panic!("can't handle rvalue: {:?}", r),
}
}
2016-03-17 02:53:03 -06:00
fn operand_ty(&self, operand: &mir::Operand<'tcx>) -> ty::Ty<'tcx> {
self.current_frame().mir.operand_ty(self.tcx, operand)
}
fn eval_operand(&mut self, op: &mir::Operand<'tcx>) -> EvalResult<Pointer> {
self.eval_operand_and_repr(op).map(|(p, _)| p)
}
fn eval_operand_and_repr(&mut self, op: &mir::Operand<'tcx>) -> EvalResult<(Pointer, Repr)> {
use rustc::mir::repr::Operand::*;
match *op {
Consume(ref lvalue) => Ok((try!(self.eval_lvalue(lvalue)), self.lvalue_repr(lvalue))),
2016-03-13 01:14:20 -06:00
Constant(mir::Constant { ref literal, ty, .. }) => {
use rustc::mir::repr::Literal::*;
2016-03-13 01:14:20 -06:00
match *literal {
Value { ref value } => Ok((
try!(self.const_to_ptr(value)),
self.ty_to_repr(ty),
)),
2016-03-12 20:23:48 -06:00
ref l => panic!("can't handle item literal: {:?}", l),
}
}
}
}
2015-11-12 17:44:29 -06:00
fn lvalue_repr(&self, lvalue: &mir::Lvalue<'tcx>) -> Repr {
use rustc::mir::tcx::LvalueTy;
match self.current_frame().mir.lvalue_ty(self.tcx, lvalue) {
LvalueTy::Ty { ty } => self.ty_to_repr(ty),
LvalueTy::Downcast { ref adt_def, substs, variant_index } =>
self.make_variant_repr(&adt_def.variants[variant_index], substs),
}
}
fn eval_lvalue(&self, lvalue: &mir::Lvalue<'tcx>) -> EvalResult<Pointer> {
2016-03-07 07:48:38 -06:00
let frame = self.current_frame();
use rustc::mir::repr::Lvalue::*;
let ptr = match *lvalue {
ReturnPointer =>
frame.return_ptr.expect("ReturnPointer used in a function with no return value"),
2016-03-14 21:48:00 -06:00
Arg(i) => frame.locals[i as usize],
Var(i) => frame.locals[frame.var_offset + i as usize],
Temp(i) => frame.locals[frame.temp_offset + i as usize],
2016-03-13 06:48:04 -06:00
Projection(ref proj) => {
let base_ptr = try!(self.eval_lvalue(&proj.base));
let base_repr = self.lvalue_repr(&proj.base);
2016-03-13 06:48:04 -06:00
use rustc::mir::repr::ProjectionElem::*;
match proj.elem {
Field(field, _) => match base_repr {
Repr::Product { ref fields, .. } =>
base_ptr.offset(fields[field.index()].offset as isize),
_ => panic!("field access on non-product type: {:?}", base_repr),
},
2016-03-13 08:01:22 -06:00
Downcast(..) => match base_repr {
2016-03-17 02:53:03 -06:00
Repr::Sum { discr_size, .. } => base_ptr.offset(discr_size as isize),
_ => panic!("variant downcast on non-sum type"),
2016-03-13 06:48:04 -06:00
},
2016-03-13 14:36:25 -06:00
Deref => try!(self.memory.read_ptr(base_ptr)),
2016-03-13 06:48:04 -06:00
_ => unimplemented!(),
}
}
2016-03-07 07:48:38 -06:00
ref l => panic!("can't handle lvalue: {:?}", l),
};
Ok(ptr)
2016-03-07 07:48:38 -06:00
}
2016-03-05 00:45:54 -06:00
fn const_to_ptr(&mut self, const_val: &const_eval::ConstVal) -> EvalResult<Pointer> {
use rustc::middle::const_eval::ConstVal::*;
2015-11-12 17:44:29 -06:00
match *const_val {
2016-03-07 04:44:03 -06:00
Float(_f) => unimplemented!(),
2016-03-15 16:09:08 -06:00
Integral(int) => {
// TODO(tsion): Check int constant type.
let ptr = self.memory.allocate(8);
2016-03-15 16:09:08 -06:00
try!(self.memory.write_u64(ptr, int.to_u64_unchecked()));
2016-03-15 00:45:25 -06:00
Ok(ptr)
}
Str(ref _s) => unimplemented!(),
ByteStr(ref _bs) => unimplemented!(),
2016-03-07 04:44:03 -06:00
Bool(b) => {
2016-03-07 07:19:43 -06:00
let ptr = self.memory.allocate(Repr::Bool.size());
try!(self.memory.write_bool(ptr, b));
2016-03-07 04:44:03 -06:00
Ok(ptr)
2016-03-15 00:45:25 -06:00
}
2016-03-15 16:09:08 -06:00
Char(_c) => unimplemented!(),
Struct(_node_id) => unimplemented!(),
Tuple(_node_id) => unimplemented!(),
Function(_def_id) => unimplemented!(),
Array(_, _) => unimplemented!(),
Repeat(_, _) => unimplemented!(),
2016-03-15 16:09:08 -06:00
Dummy => unimplemented!(),
2015-11-12 17:44:29 -06:00
}
}
fn make_product_repr<I>(&self, iter: I) -> Repr where I: IntoIterator<Item = ty::Ty<'tcx>> {
let mut size = 0;
let fields = iter.into_iter().map(|ty| {
2016-03-17 03:11:40 -06:00
let field_size = self.ty_to_repr(ty).size();
let old_size = size;
2016-03-17 03:11:40 -06:00
size += field_size;
FieldRepr { offset: old_size, size: field_size }
}).collect();
Repr::Product { size: size, fields: fields }
}
fn make_variant_repr(&self, v: ty::VariantDef<'tcx>, substs: &'tcx Substs<'tcx>) -> Repr {
let field_tys = v.fields.iter().map(|f| f.ty(self.tcx, substs));
self.make_product_repr(field_tys)
}
// TODO(tsion): Cache these outputs.
fn ty_to_repr(&self, ty: ty::Ty<'tcx>) -> Repr {
use syntax::ast::{IntTy, UintTy};
match ty.subst(self.tcx, self.current_substs()).sty {
ty::TyBool => Repr::Bool,
2016-03-14 23:03:31 -06:00
ty::TyInt(IntTy::Is) => Repr::isize(),
ty::TyInt(IntTy::I8) => Repr::I8,
2016-03-13 01:48:07 -06:00
ty::TyInt(IntTy::I16) => Repr::I16,
ty::TyInt(IntTy::I32) => Repr::I32,
ty::TyInt(IntTy::I64) => Repr::I64,
2016-03-14 23:03:31 -06:00
ty::TyUint(UintTy::Us) => Repr::usize(),
ty::TyUint(UintTy::U8) => Repr::U8,
ty::TyUint(UintTy::U16) => Repr::U16,
ty::TyUint(UintTy::U32) => Repr::U32,
ty::TyUint(UintTy::U64) => Repr::U64,
ty::TyTuple(ref fields) => self.make_product_repr(fields.iter().cloned()),
ty::TyEnum(adt_def, substs) => {
let num_variants = adt_def.variants.len();
2016-03-17 02:53:03 -06:00
let discr_size = match num_variants {
n if n <= 1 => 0,
n if n <= 1 << 8 => 1,
n if n <= 1 << 16 => 2,
n if n <= 1 << 32 => 4,
_ => 8,
};
let variants: Vec<Repr> = adt_def.variants.iter().map(|v| {
self.make_variant_repr(v, substs)
}).collect();
Repr::Sum {
2016-03-17 02:53:03 -06:00
discr_size: discr_size,
max_variant_size: variants.iter().map(Repr::size).max().unwrap_or(0),
variants: variants,
}
}
ty::TyStruct(adt_def, substs) => {
assert_eq!(adt_def.variants.len(), 1);
self.make_variant_repr(&adt_def.variants[0], substs)
}
2016-03-15 05:50:53 -06:00
ty::TyArray(ref elem_ty, length) => Repr::Array {
elem: Box::new(self.ty_to_repr(elem_ty)),
length: length,
},
ty::TyRef(_, ty::TypeAndMut { ty, .. }) |
ty::TyRawPtr(ty::TypeAndMut { ty, .. }) |
ty::TyBox(ty) => {
if ty.is_sized(&self.tcx.empty_parameter_environment(), DUMMY_SP) {
Repr::Pointer
} else {
Repr::FatPointer
}
}
2016-03-13 14:36:25 -06:00
ref t => panic!("can't convert type to repr: {:?}", t),
}
}
fn current_frame(&self) -> &Frame<'a, 'tcx> {
self.stack.last().expect("no call frames exist")
}
fn current_frame_mut(&mut self) -> &mut Frame<'a, 'tcx> {
self.stack.last_mut().expect("no call frames exist")
}
fn current_substs(&self) -> &'tcx Substs<'tcx> {
self.substs_stack.last().cloned().unwrap_or_else(|| self.tcx.mk_substs(Substs::empty()))
}
2016-03-14 21:48:00 -06:00
fn load_mir(&self, def_id: DefId) -> CachedMir<'a, 'tcx> {
match self.tcx.map.as_local_node_id(def_id) {
Some(node_id) => CachedMir::Ref(self.mir_map.map.get(&node_id).unwrap()),
None => {
let mut mir_cache = self.mir_cache.borrow_mut();
if let Some(mir) = mir_cache.get(&def_id) {
return CachedMir::Owned(mir.clone());
}
2016-03-14 21:48:00 -06:00
use rustc::middle::cstore::CrateStore;
let cs = &self.tcx.sess.cstore;
let mir = cs.maybe_get_item_mir(self.tcx, def_id).unwrap();
let cached = Rc::new(mir);
mir_cache.insert(def_id, cached.clone());
CachedMir::Owned(cached)
}
}
}
fn fulfill_obligation(&self, trait_ref: ty::PolyTraitRef<'tcx>) -> traits::Vtable<'tcx, ()> {
use rustc::middle::infer;
use syntax::ast;
// Do the initial selection for the obligation. This yields the shallow result we are
// looking for -- that is, what specific impl.
let infcx = infer::normalizing_infer_ctxt(self.tcx, &self.tcx.tables);
let mut selcx = traits::SelectionContext::new(&infcx);
let obligation = traits::Obligation::new(
traits::ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID),
trait_ref.to_poly_trait_predicate(),
);
let selection = selcx.select(&obligation).unwrap().unwrap();
// Currently, we use a fulfillment context to completely resolve all nested obligations.
// This is because they can inform the inference of the impl's type parameters.
let mut fulfill_cx = traits::FulfillmentContext::new();
let vtable = selection.map(|predicate| {
fulfill_cx.register_predicate_obligation(&infcx, predicate);
});
let vtable = infer::drain_fulfillment_cx_or_panic(
DUMMY_SP, &infcx, &mut fulfill_cx, &vtable
);
vtable
}
/// Trait method, which has to be resolved to an impl method.
pub fn trait_method(&self, def_id: DefId, substs: &'tcx Substs<'tcx>)
-> (DefId, &'tcx Substs<'tcx>) {
let method_item = self.tcx.impl_or_trait_item(def_id);
let trait_id = method_item.container().id();
let trait_ref = ty::Binder(substs.to_trait_ref(self.tcx, trait_id));
match self.fulfill_obligation(trait_ref) {
traits::VtableImpl(vtable_impl) => {
let impl_did = vtable_impl.impl_def_id;
let mname = self.tcx.item_name(def_id);
// Create a concatenated set of substitutions which includes those from the
// impl and those from the method:
let impl_substs = vtable_impl.substs.with_method_from(&substs);
let substs = self.tcx.mk_substs(impl_substs);
let mth = self.tcx.get_impl_method(impl_did, substs, mname);
println!("{:?} {:?}", mth.method.def_id, mth.substs);
(mth.method.def_id, mth.substs)
}
2016-03-17 02:53:03 -06:00
traits::VtableClosure(_vtable_closure) => {
// The substitutions should have no type parameters remaining after passing
// through fulfill_obligation
2016-03-17 02:53:03 -06:00
let _trait_closure_kind = self.tcx.lang_items.fn_trait_kind(trait_id).unwrap();
unimplemented!()
// vtable_closure.closure_def_id
// vtable_closure.substs
// trait_closure_kind
// let method_ty = def_ty(tcx, def_id, substs);
// let fn_ptr_ty = match method_ty.sty {
// ty::TyFnDef(_, _, fty) => tcx.mk_ty(ty::TyFnPtr(fty)),
// _ => unreachable!("expected fn item type, found {}",
// method_ty)
// };
// Callee::ptr(immediate_rvalue(llfn, fn_ptr_ty))
}
2016-03-17 02:53:03 -06:00
traits::VtableFnPointer(_fn_ty) => {
let _trait_closure_kind = self.tcx.lang_items.fn_trait_kind(trait_id).unwrap();
unimplemented!()
// let llfn = trans_fn_pointer_shim(ccx, trait_closure_kind, fn_ty);
// let method_ty = def_ty(tcx, def_id, substs);
// let fn_ptr_ty = match method_ty.sty {
// ty::TyFnDef(_, _, fty) => tcx.mk_ty(ty::TyFnPtr(fty)),
// _ => unreachable!("expected fn item type, found {}",
// method_ty)
// };
// Callee::ptr(immediate_rvalue(llfn, fn_ptr_ty))
}
2016-03-17 02:53:03 -06:00
traits::VtableObject(ref _data) => {
unimplemented!()
// Callee {
// data: Virtual(traits::get_vtable_index_of_object_method(
// tcx, data, def_id)),
// ty: def_ty(tcx, def_id, substs)
// }
}
vtable => unreachable!("resolved vtable bad vtable {:?} in trans", vtable),
}
}
2016-03-14 21:48:00 -06:00
}
2016-03-14 21:48:00 -06:00
impl<'mir, 'tcx: 'mir> Deref for CachedMir<'mir, 'tcx> {
type Target = mir::Mir<'tcx>;
fn deref(&self) -> &mir::Mir<'tcx> {
match *self {
CachedMir::Ref(r) => r,
CachedMir::Owned(ref rc) => &rc,
}
}
}
pub fn interpret_start_points<'tcx>(tcx: &TyCtxt<'tcx>, mir_map: &MirMap<'tcx>) {
2016-03-14 22:05:50 -06:00
/// Print the given allocation and all allocations it depends on.
fn print_allocation_tree(memory: &Memory, alloc_id: memory::AllocId) {
let alloc = memory.get(alloc_id).unwrap();
2016-03-14 22:08:38 -06:00
println!(" {:?}: {:?}", alloc_id, alloc);
2016-03-14 22:05:50 -06:00
for &target_alloc in alloc.relocations.values() {
print_allocation_tree(memory, target_alloc);
}
}
2016-02-18 19:06:22 -06:00
for (&id, mir) in &mir_map.map {
for attr in tcx.map.attrs(id) {
2016-03-07 10:14:47 -06:00
use syntax::attr::AttrMetaMethods;
if attr.check_name("miri_run") {
2015-11-12 17:11:41 -06:00
let item = tcx.map.expect_item(id);
println!("Interpreting: {}", item.name);
let mut miri = Interpreter::new(tcx, mir_map);
let return_ptr = match mir.return_ty {
ty::FnConverging(ty) => {
let repr = miri.ty_to_repr(ty).size();
Some(miri.memory.allocate(repr))
}
ty::FnDiverging => None,
};
miri.push_stack_frame(CachedMir::Ref(mir), &[], return_ptr).unwrap();
miri.run().unwrap();
2015-11-12 17:11:41 -06:00
if let Some(ret) = return_ptr {
2016-03-14 22:05:50 -06:00
println!("Result:");
print_allocation_tree(&miri.memory, ret.alloc_id);
println!("");
2015-11-12 17:11:41 -06:00
}
}
}
}
}