rust/src/libcore/num/uint_macros.rs

235 lines
5.1 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![macro_escape]
#![doc(hidden)]
macro_rules! uint_module (($T:ty, $T_SIGNED:ty, $bits:expr) => (
pub static BITS : uint = $bits;
pub static BYTES : uint = ($bits / 8);
pub static MIN: $T = 0 as $T;
pub static MAX: $T = 0 as $T - 1 as $T;
impl Ord for $T {
#[inline]
fn lt(&self, other: &$T) -> bool { *self < *other }
}
impl TotalEq for $T {}
impl Eq for $T {
#[inline]
fn eq(&self, other: &$T) -> bool { *self == *other }
}
impl TotalOrd for $T {
#[inline]
fn cmp(&self, other: &$T) -> Ordering {
if *self < *other { Less }
else if *self > *other { Greater }
else { Equal }
}
}
impl Num for $T {}
impl Zero for $T {
#[inline]
fn zero() -> $T { 0 }
#[inline]
fn is_zero(&self) -> bool { *self == 0 }
}
impl One for $T {
#[inline]
fn one() -> $T { 1 }
}
#[cfg(not(test))]
impl Add<$T,$T> for $T {
#[inline]
fn add(&self, other: &$T) -> $T { *self + *other }
}
#[cfg(not(test))]
impl Sub<$T,$T> for $T {
#[inline]
fn sub(&self, other: &$T) -> $T { *self - *other }
}
#[cfg(not(test))]
impl Mul<$T,$T> for $T {
#[inline]
fn mul(&self, other: &$T) -> $T { *self * *other }
}
#[cfg(not(test))]
impl Div<$T,$T> for $T {
#[inline]
fn div(&self, other: &$T) -> $T { *self / *other }
}
#[cfg(not(test))]
impl Rem<$T,$T> for $T {
#[inline]
fn rem(&self, other: &$T) -> $T { *self % *other }
}
#[cfg(not(test))]
impl Neg<$T> for $T {
#[inline]
fn neg(&self) -> $T { -*self }
}
impl Unsigned for $T {}
#[cfg(not(test))]
impl BitOr<$T,$T> for $T {
#[inline]
fn bitor(&self, other: &$T) -> $T { *self | *other }
}
#[cfg(not(test))]
impl BitAnd<$T,$T> for $T {
#[inline]
fn bitand(&self, other: &$T) -> $T { *self & *other }
}
#[cfg(not(test))]
impl BitXor<$T,$T> for $T {
#[inline]
fn bitxor(&self, other: &$T) -> $T { *self ^ *other }
}
#[cfg(not(test))]
impl Shl<$T,$T> for $T {
#[inline]
fn shl(&self, other: &$T) -> $T { *self << *other }
}
#[cfg(not(test))]
impl Shr<$T,$T> for $T {
#[inline]
fn shr(&self, other: &$T) -> $T { *self >> *other }
}
#[cfg(not(test))]
impl Not<$T> for $T {
#[inline]
fn not(&self) -> $T { !*self }
}
impl Bounded for $T {
#[inline]
fn min_value() -> $T { MIN }
#[inline]
fn max_value() -> $T { MAX }
}
impl Bitwise for $T {
/// Returns the number of ones in the binary representation of the number.
#[inline]
fn count_ones(&self) -> $T {
(*self as $T_SIGNED).count_ones() as $T
}
/// Returns the number of leading zeros in the in the binary representation
/// of the number.
#[inline]
fn leading_zeros(&self) -> $T {
(*self as $T_SIGNED).leading_zeros() as $T
}
/// Returns the number of trailing zeros in the in the binary representation
/// of the number.
#[inline]
fn trailing_zeros(&self) -> $T {
(*self as $T_SIGNED).trailing_zeros() as $T
}
}
impl CheckedDiv for $T {
#[inline]
fn checked_div(&self, v: &$T) -> Option<$T> {
if *v == 0 {
None
} else {
Some(self / *v)
}
}
}
impl Int for $T {}
impl Primitive for $T {}
impl Default for $T {
#[inline]
fn default() -> $T { 0 }
}
#[cfg(test)]
mod tests {
use prelude::*;
use super::*;
use num;
use num::CheckedDiv;
use num::Bitwise;
use num::ToStrRadix;
use str::StrSlice;
use u16;
#[test]
fn test_overflows() {
assert!(MAX > 0);
assert!(MIN <= 0);
assert_eq!(MIN + MAX + 1, 0);
}
#[test]
fn test_num() {
num::test_num(10 as $T, 2 as $T);
}
#[test]
fn test_bitwise() {
assert_eq!(0b1110 as $T, (0b1100 as $T).bitor(&(0b1010 as $T)));
assert_eq!(0b1000 as $T, (0b1100 as $T).bitand(&(0b1010 as $T)));
assert_eq!(0b0110 as $T, (0b1100 as $T).bitxor(&(0b1010 as $T)));
assert_eq!(0b1110 as $T, (0b0111 as $T).shl(&(1 as $T)));
assert_eq!(0b0111 as $T, (0b1110 as $T).shr(&(1 as $T)));
assert_eq!(MAX - (0b1011 as $T), (0b1011 as $T).not());
}
#[test]
fn test_count_ones() {
assert_eq!((0b0101100 as $T).count_ones(), 3);
assert_eq!((0b0100001 as $T).count_ones(), 2);
assert_eq!((0b1111001 as $T).count_ones(), 5);
}
#[test]
fn test_count_zeros() {
assert_eq!((0b0101100 as $T).count_zeros(), BITS as $T - 3);
assert_eq!((0b0100001 as $T).count_zeros(), BITS as $T - 2);
assert_eq!((0b1111001 as $T).count_zeros(), BITS as $T - 5);
}
#[test]
fn test_unsigned_checked_div() {
assert_eq!(10u.checked_div(&2), Some(5));
assert_eq!(5u.checked_div(&0), None);
}
}
))