rust/src/libcore/iter/mod.rs

1825 lines
52 KiB
Rust
Raw Normal View History

// Copyright 2013-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Composable external iteration.
//!
//! If you've found yourself with a collection of some kind, and needed to
//! perform an operation on the elements of said collection, you'll quickly run
//! into 'iterators'. Iterators are heavily used in idiomatic Rust code, so
//! it's worth becoming familiar with them.
//!
//! Before explaining more, let's talk about how this module is structured:
//!
//! # Organization
//!
//! This module is largely organized by type:
//!
//! * [Traits] are the core portion: these traits define what kind of iterators
//! exist and what you can do with them. The methods of these traits are worth
//! putting some extra study time into.
//! * [Functions] provide some helpful ways to create some basic iterators.
//! * [Structs] are often the return types of the various methods on this
//! module's traits. You'll usually want to look at the method that creates
//! the `struct`, rather than the `struct` itself. For more detail about why,
//! see '[Implementing Iterator](#implementing-iterator)'.
//!
//! [Traits]: #traits
//! [Functions]: #functions
//! [Structs]: #structs
//!
//! That's it! Let's dig into iterators.
//!
//! # Iterator
//!
//! The heart and soul of this module is the [`Iterator`] trait. The core of
//! [`Iterator`] looks like this:
//!
//! ```
//! trait Iterator {
//! type Item;
//! fn next(&mut self) -> Option<Self::Item>;
//! }
//! ```
//!
//! An iterator has a method, [`next()`], which when called, returns an
//! [`Option`]`<Item>`. [`next()`] will return `Some(Item)` as long as there
//! are elements, and once they've all been exhausted, will return `None` to
//! indicate that iteration is finished. Individual iterators may choose to
//! resume iteration, and so calling [`next()`] again may or may not eventually
//! start returning `Some(Item)` again at some point.
//!
//! [`Iterator`]'s full definition includes a number of other methods as well,
//! but they are default methods, built on top of [`next()`], and so you get
//! them for free.
//!
//! Iterators are also composable, and it's common to chain them together to do
//! more complex forms of processing. See the [Adapters](#adapters) section
//! below for more details.
//!
//! [`Iterator`]: trait.Iterator.html
//! [`next()`]: trait.Iterator.html#tymethod.next
//! [`Option`]: ../../std/option/enum.Option.html
//!
//! # The three forms of iteration
//!
//! There are three common methods which can create iterators from a collection:
//!
//! * `iter()`, which iterates over `&T`.
//! * `iter_mut()`, which iterates over `&mut T`.
//! * `into_iter()`, which iterates over `T`.
//!
//! Various things in the standard library may implement one or more of the
//! three, where appropriate.
//!
//! # Implementing Iterator
//!
//! Creating an iterator of your own involves two steps: creating a `struct` to
//! hold the iterator's state, and then `impl`ementing [`Iterator`] for that
//! `struct`. This is why there are so many `struct`s in this module: there is
//! one for each iterator and iterator adapter.
//!
//! Let's make an iterator named `Counter` which counts from `1` to `5`:
//!
//! ```
//! // First, the struct:
//!
//! /// An iterator which counts from one to five
//! struct Counter {
//! count: usize,
//! }
//!
//! // we want our count to start at one, so let's add a new() method to help.
//! // This isn't strictly necessary, but is convenient. Note that we start
//! // `count` at zero, we'll see why in `next()`'s implementation below.
//! impl Counter {
//! fn new() -> Counter {
//! Counter { count: 0 }
//! }
//! }
//!
//! // Then, we implement `Iterator` for our `Counter`:
//!
//! impl Iterator for Counter {
//! // we will be counting with usize
//! type Item = usize;
//!
//! // next() is the only required method
//! fn next(&mut self) -> Option<usize> {
//! // increment our count. This is why we started at zero.
//! self.count += 1;
//!
//! // check to see if we've finished counting or not.
//! if self.count < 6 {
//! Some(self.count)
//! } else {
//! None
//! }
//! }
//! }
//!
//! // And now we can use it!
//!
//! let mut counter = Counter::new();
//!
//! let x = counter.next().unwrap();
//! println!("{}", x);
//!
//! let x = counter.next().unwrap();
//! println!("{}", x);
//!
//! let x = counter.next().unwrap();
//! println!("{}", x);
//!
//! let x = counter.next().unwrap();
//! println!("{}", x);
//!
//! let x = counter.next().unwrap();
//! println!("{}", x);
//! ```
//!
//! This will print `1` through `5`, each on their own line.
//!
//! Calling `next()` this way gets repetitive. Rust has a construct which can
//! call `next()` on your iterator, until it reaches `None`. Let's go over that
//! next.
//!
//! # for Loops and IntoIterator
//!
//! Rust's `for` loop syntax is actually sugar for iterators. Here's a basic
//! example of `for`:
//!
//! ```
//! let values = vec![1, 2, 3, 4, 5];
//!
//! for x in values {
//! println!("{}", x);
//! }
//! ```
//!
//! This will print the numbers one through five, each on their own line. But
//! you'll notice something here: we never called anything on our vector to
//! produce an iterator. What gives?
//!
//! There's a trait in the standard library for converting something into an
//! iterator: [`IntoIterator`]. This trait has one method, [`into_iter()`],
//! which converts the thing implementing [`IntoIterator`] into an iterator.
//! Let's take a look at that `for` loop again, and what the compiler converts
//! it into:
//!
//! [`IntoIterator`]: trait.IntoIterator.html
//! [`into_iter()`]: trait.IntoIterator.html#tymethod.into_iter
//!
//! ```
//! let values = vec![1, 2, 3, 4, 5];
//!
//! for x in values {
//! println!("{}", x);
//! }
//! ```
//!
//! Rust de-sugars this into:
//!
//! ```
//! let values = vec![1, 2, 3, 4, 5];
//! {
//! let result = match IntoIterator::into_iter(values) {
//! mut iter => loop {
//! match iter.next() {
//! Some(x) => { println!("{}", x); },
//! None => break,
//! }
//! },
//! };
//! result
//! }
//! ```
//!
//! First, we call `into_iter()` on the value. Then, we match on the iterator
//! that returns, calling [`next()`] over and over until we see a `None`. At
//! that point, we `break` out of the loop, and we're done iterating.
//!
//! There's one more subtle bit here: the standard library contains an
//! interesting implementation of [`IntoIterator`]:
//!
//! ```ignore
//! impl<I: Iterator> IntoIterator for I
//! ```
//!
//! In other words, all [`Iterator`]s implement [`IntoIterator`], by just
//! returning themselves. This means two things:
//!
//! 1. If you're writing an [`Iterator`], you can use it with a `for` loop.
//! 2. If you're creating a collection, implementing [`IntoIterator`] for it
//! will allow your collection to be used with the `for` loop.
//!
//! # Adapters
//!
//! Functions which take an [`Iterator`] and return another [`Iterator`] are
//! often called 'iterator adapters', as they're a form of the 'adapter
//! pattern'.
//!
//! Common iterator adapters include [`map()`], [`take()`], and [`collect()`].
//! For more, see their documentation.
//!
//! [`map()`]: trait.Iterator.html#method.map
//! [`take()`]: trait.Iterator.html#method.take
//! [`collect()`]: trait.Iterator.html#method.collect
//!
//! # Laziness
//!
//! Iterators (and iterator [adapters](#adapters)) are *lazy*. This means that
//! just creating an iterator doesn't _do_ a whole lot. Nothing really happens
//! until you call [`next()`]. This is sometimes a source of confusion when
//! creating an iterator solely for its side effects. For example, the [`map()`]
//! method calls a closure on each element it iterates over:
//!
//! ```
//! # #![allow(unused_must_use)]
//! let v = vec![1, 2, 3, 4, 5];
//! v.iter().map(|x| println!("{}", x));
//! ```
//!
//! This will not print any values, as we only created an iterator, rather than
//! using it. The compiler will warn us about this kind of behavior:
//!
//! ```text
//! warning: unused result which must be used: iterator adaptors are lazy and
//! do nothing unless consumed
//! ```
//!
//! The idiomatic way to write a [`map()`] for its side effects is to use a
//! `for` loop instead:
//!
//! ```
//! let v = vec![1, 2, 3, 4, 5];
//!
//! for x in &v {
//! println!("{}", x);
//! }
//! ```
//!
//! [`map()`]: trait.Iterator.html#method.map
//!
//! The two most common ways to evaluate an iterator are to use a `for` loop
//! like this, or using the [`collect()`] adapter to produce a new collection.
//!
//! [`collect()`]: trait.Iterator.html#method.collect
//!
//! # Infinity
//!
//! Iterators do not have to be finite. As an example, an open-ended range is
//! an infinite iterator:
//!
//! ```
//! let numbers = 0..;
//! ```
//!
//! It is common to use the [`take()`] iterator adapter to turn an infinite
//! iterator into a finite one:
//!
//! ```
//! let numbers = 0..;
//! let five_numbers = numbers.take(5);
//!
//! for number in five_numbers {
//! println!("{}", number);
//! }
//! ```
//!
//! This will print the numbers `0` through `4`, each on their own line.
//!
//! [`take()`]: trait.Iterator.html#method.take
#![stable(feature = "rust1", since = "1.0.0")]
use clone::Clone;
use cmp;
use default::Default;
use fmt;
use iter_private::TrustedRandomAccess;
use ops::FnMut;
use option::Option::{self, Some, None};
use usize;
#[stable(feature = "rust1", since = "1.0.0")]
pub use self::iterator::Iterator;
#[unstable(feature = "step_trait",
reason = "likely to be replaced by finer-grained traits",
issue = "27741")]
pub use self::range::Step;
#[unstable(feature = "step_by", reason = "recent addition",
issue = "27741")]
pub use self::range::StepBy;
#[stable(feature = "rust1", since = "1.0.0")]
pub use self::sources::{Repeat, repeat};
#[stable(feature = "iter_empty", since = "1.2.0")]
pub use self::sources::{Empty, empty};
#[stable(feature = "iter_once", since = "1.2.0")]
pub use self::sources::{Once, once};
#[stable(feature = "rust1", since = "1.0.0")]
pub use self::traits::{FromIterator, IntoIterator, DoubleEndedIterator, Extend,
ExactSizeIterator};
mod iterator;
mod range;
mod sources;
mod traits;
/// An double-ended iterator with the direction inverted.
///
/// This `struct` is created by the [`rev()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`rev()`]: trait.Iterator.html#method.rev
/// [`Iterator`]: trait.Iterator.html
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Rev<T> {
iter: T
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> Iterator for Rev<I> where I: DoubleEndedIterator {
type Item = <I as Iterator>::Item;
#[inline]
fn next(&mut self) -> Option<<I as Iterator>::Item> { self.iter.next_back() }
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> DoubleEndedIterator for Rev<I> where I: DoubleEndedIterator {
#[inline]
fn next_back(&mut self) -> Option<<I as Iterator>::Item> { self.iter.next() }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> ExactSizeIterator for Rev<I>
where I: ExactSizeIterator + DoubleEndedIterator {}
/// An iterator that clones the elements of an underlying iterator.
///
/// This `struct` is created by the [`cloned()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`cloned()`]: trait.Iterator.html#method.cloned
/// [`Iterator`]: trait.Iterator.html
#[stable(feature = "iter_cloned", since = "1.1.0")]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Clone, Debug)]
pub struct Cloned<I> {
it: I,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, I, T: 'a> Iterator for Cloned<I>
where I: Iterator<Item=&'a T>, T: Clone
{
type Item = T;
fn next(&mut self) -> Option<T> {
self.it.next().cloned()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.it.size_hint()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, I, T: 'a> DoubleEndedIterator for Cloned<I>
where I: DoubleEndedIterator<Item=&'a T>, T: Clone
{
fn next_back(&mut self) -> Option<T> {
self.it.next_back().cloned()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, I, T: 'a> ExactSizeIterator for Cloned<I>
where I: ExactSizeIterator<Item=&'a T>, T: Clone
{}
/// An iterator that repeats endlessly.
///
/// This `struct` is created by the [`cycle()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`cycle()`]: trait.Iterator.html#method.cycle
/// [`Iterator`]: trait.Iterator.html
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Cycle<I> {
orig: I,
iter: I,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> Iterator for Cycle<I> where I: Clone + Iterator {
type Item = <I as Iterator>::Item;
#[inline]
fn next(&mut self) -> Option<<I as Iterator>::Item> {
match self.iter.next() {
None => { self.iter = self.orig.clone(); self.iter.next() }
y => y
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
// the cycle iterator is either empty or infinite
match self.orig.size_hint() {
sz @ (0, Some(0)) => sz,
(0, _) => (0, None),
_ => (usize::MAX, None)
}
}
}
/// An iterator that strings two iterators together.
///
/// This `struct` is created by the [`chain()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`chain()`]: trait.Iterator.html#method.chain
/// [`Iterator`]: trait.Iterator.html
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Chain<A, B> {
a: A,
b: B,
state: ChainState,
}
// The iterator protocol specifies that iteration ends with the return value
// `None` from `.next()` (or `.next_back()`) and it is unspecified what
// further calls return. The chain adaptor must account for this since it uses
// two subiterators.
//
// It uses three states:
//
// - Both: `a` and `b` are remaining
// - Front: `a` remaining
// - Back: `b` remaining
//
// The fourth state (neither iterator is remaining) only occurs after Chain has
// returned None once, so we don't need to store this state.
#[derive(Clone, Debug)]
enum ChainState {
// both front and back iterator are remaining
Both,
// only front is remaining
Front,
// only back is remaining
Back,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B> Iterator for Chain<A, B> where
A: Iterator,
B: Iterator<Item = A::Item>
{
type Item = A::Item;
#[inline]
fn next(&mut self) -> Option<A::Item> {
match self.state {
ChainState::Both => match self.a.next() {
elt @ Some(..) => elt,
None => {
self.state = ChainState::Back;
self.b.next()
}
},
ChainState::Front => self.a.next(),
ChainState::Back => self.b.next(),
}
}
#[inline]
#[rustc_inherit_overflow_checks]
fn count(self) -> usize {
match self.state {
ChainState::Both => self.a.count() + self.b.count(),
ChainState::Front => self.a.count(),
ChainState::Back => self.b.count(),
}
}
#[inline]
fn nth(&mut self, mut n: usize) -> Option<A::Item> {
match self.state {
ChainState::Both | ChainState::Front => {
for x in self.a.by_ref() {
if n == 0 {
return Some(x)
}
n -= 1;
}
if let ChainState::Both = self.state {
self.state = ChainState::Back;
}
}
ChainState::Back => {}
}
if let ChainState::Back = self.state {
self.b.nth(n)
} else {
None
}
}
#[inline]
fn find<P>(&mut self, mut predicate: P) -> Option<Self::Item> where
P: FnMut(&Self::Item) -> bool,
{
match self.state {
ChainState::Both => match self.a.find(&mut predicate) {
None => {
self.state = ChainState::Back;
self.b.find(predicate)
}
v => v
},
ChainState::Front => self.a.find(predicate),
ChainState::Back => self.b.find(predicate),
}
}
#[inline]
fn last(self) -> Option<A::Item> {
match self.state {
ChainState::Both => {
// Must exhaust a before b.
let a_last = self.a.last();
let b_last = self.b.last();
b_last.or(a_last)
},
ChainState::Front => self.a.last(),
ChainState::Back => self.b.last()
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (a_lower, a_upper) = self.a.size_hint();
let (b_lower, b_upper) = self.b.size_hint();
let lower = a_lower.saturating_add(b_lower);
let upper = match (a_upper, b_upper) {
(Some(x), Some(y)) => x.checked_add(y),
_ => None
};
(lower, upper)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B> DoubleEndedIterator for Chain<A, B> where
A: DoubleEndedIterator,
B: DoubleEndedIterator<Item=A::Item>,
{
#[inline]
fn next_back(&mut self) -> Option<A::Item> {
match self.state {
ChainState::Both => match self.b.next_back() {
elt @ Some(..) => elt,
None => {
self.state = ChainState::Front;
self.a.next_back()
}
},
ChainState::Front => self.a.next_back(),
ChainState::Back => self.b.next_back(),
}
}
}
/// An iterator that iterates two other iterators simultaneously.
///
/// This `struct` is created by the [`zip()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`zip()`]: trait.Iterator.html#method.zip
/// [`Iterator`]: trait.Iterator.html
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Zip<A, B> {
a: A,
b: B,
spec: <(A, B) as ZipImplData>::Data,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B> Iterator for Zip<A, B> where A: Iterator, B: Iterator
{
type Item = (A::Item, B::Item);
#[inline]
fn next(&mut self) -> Option<Self::Item> {
ZipImpl::next(self)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
ZipImpl::size_hint(self)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B> DoubleEndedIterator for Zip<A, B> where
A: DoubleEndedIterator + ExactSizeIterator,
B: DoubleEndedIterator + ExactSizeIterator,
{
#[inline]
fn next_back(&mut self) -> Option<(A::Item, B::Item)> {
ZipImpl::next_back(self)
}
}
// Zip specialization trait
#[doc(hidden)]
trait ZipImpl<A, B> {
type Item;
fn new(a: A, b: B) -> Self;
fn next(&mut self) -> Option<Self::Item>;
fn size_hint(&self) -> (usize, Option<usize>);
fn next_back(&mut self) -> Option<Self::Item>
where A: DoubleEndedIterator + ExactSizeIterator,
B: DoubleEndedIterator + ExactSizeIterator;
}
// Zip specialization data members
#[doc(hidden)]
trait ZipImplData {
type Data: 'static + Clone + Default + fmt::Debug;
}
#[doc(hidden)]
impl<T> ZipImplData for T {
default type Data = ();
}
// General Zip impl
#[doc(hidden)]
impl<A, B> ZipImpl<A, B> for Zip<A, B>
where A: Iterator, B: Iterator
{
type Item = (A::Item, B::Item);
default fn new(a: A, b: B) -> Self {
Zip {
a: a,
b: b,
spec: Default::default(), // unused
}
}
#[inline]
default fn next(&mut self) -> Option<(A::Item, B::Item)> {
self.a.next().and_then(|x| {
self.b.next().and_then(|y| {
Some((x, y))
})
})
}
#[inline]
default fn next_back(&mut self) -> Option<(A::Item, B::Item)>
where A: DoubleEndedIterator + ExactSizeIterator,
B: DoubleEndedIterator + ExactSizeIterator
{
let a_sz = self.a.len();
let b_sz = self.b.len();
if a_sz != b_sz {
// Adjust a, b to equal length
if a_sz > b_sz {
for _ in 0..a_sz - b_sz { self.a.next_back(); }
} else {
for _ in 0..b_sz - a_sz { self.b.next_back(); }
}
}
match (self.a.next_back(), self.b.next_back()) {
(Some(x), Some(y)) => Some((x, y)),
(None, None) => None,
_ => unreachable!(),
}
}
#[inline]
default fn size_hint(&self) -> (usize, Option<usize>) {
let (a_lower, a_upper) = self.a.size_hint();
let (b_lower, b_upper) = self.b.size_hint();
let lower = cmp::min(a_lower, b_lower);
let upper = match (a_upper, b_upper) {
(Some(x), Some(y)) => Some(cmp::min(x,y)),
(Some(x), None) => Some(x),
(None, Some(y)) => Some(y),
(None, None) => None
};
(lower, upper)
}
}
#[doc(hidden)]
#[derive(Default, Debug, Clone)]
struct ZipImplFields {
index: usize,
len: usize,
}
#[doc(hidden)]
impl<A, B> ZipImplData for (A, B)
where A: TrustedRandomAccess, B: TrustedRandomAccess
{
type Data = ZipImplFields;
}
#[doc(hidden)]
impl<A, B> ZipImpl<A, B> for Zip<A, B>
where A: TrustedRandomAccess, B: TrustedRandomAccess
{
fn new(a: A, b: B) -> Self {
let len = cmp::min(a.len(), b.len());
Zip {
a: a,
b: b,
spec: ZipImplFields {
index: 0,
len: len,
}
}
}
#[inline]
fn next(&mut self) -> Option<(A::Item, B::Item)> {
if self.spec.index < self.spec.len {
let i = self.spec.index;
self.spec.index += 1;
unsafe {
Some((self.a.get_unchecked(i), self.b.get_unchecked(i)))
}
} else {
None
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.spec.len - self.spec.index;
(len, Some(len))
}
#[inline]
fn next_back(&mut self) -> Option<(A::Item, B::Item)>
where A: DoubleEndedIterator + ExactSizeIterator,
B: DoubleEndedIterator + ExactSizeIterator
{
if self.spec.index < self.spec.len {
self.spec.len -= 1;
let i = self.spec.len;
unsafe {
Some((self.a.get_unchecked(i), self.b.get_unchecked(i)))
}
} else {
None
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B> ExactSizeIterator for Zip<A, B>
where A: ExactSizeIterator, B: ExactSizeIterator {}
#[doc(hidden)]
unsafe impl<A, B> TrustedRandomAccess for Zip<A, B>
where A: TrustedRandomAccess,
B: TrustedRandomAccess,
{
unsafe fn get_unchecked(&mut self, i: usize) -> (A::Item, B::Item) {
(self.a.get_unchecked(i), self.b.get_unchecked(i))
}
}
/// An iterator that maps the values of `iter` with `f`.
///
/// This `struct` is created by the [`map()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`map()`]: trait.Iterator.html#method.map
/// [`Iterator`]: trait.Iterator.html
///
/// # Notes about side effects
///
/// The [`map()`] iterator implements [`DoubleEndedIterator`], meaning that
/// you can also [`map()`] backwards:
///
/// ```rust
/// let v: Vec<i32> = vec![1, 2, 3].into_iter().rev().map(|x| x + 1).collect();
///
/// assert_eq!(v, [4, 3, 2]);
/// ```
///
/// [`DoubleEndedIterator`]: trait.DoubleEndedIterator.html
///
/// But if your closure has state, iterating backwards may act in a way you do
/// not expect. Let's go through an example. First, in the forward direction:
///
/// ```rust
/// let mut c = 0;
///
/// for pair in vec!['a', 'b', 'c'].into_iter()
/// .map(|letter| { c += 1; (letter, c) }) {
/// println!("{:?}", pair);
/// }
/// ```
///
/// This will print "('a', 1), ('b', 2), ('c', 3)".
///
/// Now consider this twist where we add a call to `rev`. This version will
/// print `('c', 1), ('b', 2), ('a', 3)`. Note that the letters are reversed,
/// but the values of the counter still go in order. This is because `map()` is
/// still being called lazilly on each item, but we are popping items off the
/// back of the vector now, instead of shifting them from the front.
///
/// ```rust
/// let mut c = 0;
///
/// for pair in vec!['a', 'b', 'c'].into_iter()
/// .map(|letter| { c += 1; (letter, c) })
/// .rev() {
/// println!("{:?}", pair);
/// }
/// ```
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone)]
pub struct Map<I, F> {
iter: I,
f: F,
}
#[stable(feature = "core_impl_debug", since = "1.9.0")]
impl<I: fmt::Debug, F> fmt::Debug for Map<I, F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Map")
.field("iter", &self.iter)
.finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<B, I: Iterator, F> Iterator for Map<I, F> where F: FnMut(I::Item) -> B {
type Item = B;
#[inline]
fn next(&mut self) -> Option<B> {
self.iter.next().map(&mut self.f)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<B, I: DoubleEndedIterator, F> DoubleEndedIterator for Map<I, F> where
F: FnMut(I::Item) -> B,
{
#[inline]
fn next_back(&mut self) -> Option<B> {
self.iter.next_back().map(&mut self.f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<B, I: ExactSizeIterator, F> ExactSizeIterator for Map<I, F>
where F: FnMut(I::Item) -> B {}
/// An iterator that filters the elements of `iter` with `predicate`.
///
/// This `struct` is created by the [`filter()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`filter()`]: trait.Iterator.html#method.filter
/// [`Iterator`]: trait.Iterator.html
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone)]
pub struct Filter<I, P> {
iter: I,
predicate: P,
}
#[stable(feature = "core_impl_debug", since = "1.9.0")]
impl<I: fmt::Debug, P> fmt::Debug for Filter<I, P> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Filter")
.field("iter", &self.iter)
.finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator, P> Iterator for Filter<I, P> where P: FnMut(&I::Item) -> bool {
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<I::Item> {
for x in self.iter.by_ref() {
if (self.predicate)(&x) {
return Some(x);
}
}
None
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, upper) = self.iter.size_hint();
(0, upper) // can't know a lower bound, due to the predicate
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: DoubleEndedIterator, P> DoubleEndedIterator for Filter<I, P>
where P: FnMut(&I::Item) -> bool,
{
#[inline]
fn next_back(&mut self) -> Option<I::Item> {
for x in self.iter.by_ref().rev() {
if (self.predicate)(&x) {
return Some(x);
}
}
None
}
}
/// An iterator that uses `f` to both filter and map elements from `iter`.
///
/// This `struct` is created by the [`filter_map()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`filter_map()`]: trait.Iterator.html#method.filter_map
/// [`Iterator`]: trait.Iterator.html
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone)]
pub struct FilterMap<I, F> {
iter: I,
f: F,
}
#[stable(feature = "core_impl_debug", since = "1.9.0")]
impl<I: fmt::Debug, F> fmt::Debug for FilterMap<I, F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("FilterMap")
.field("iter", &self.iter)
.finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<B, I: Iterator, F> Iterator for FilterMap<I, F>
where F: FnMut(I::Item) -> Option<B>,
{
type Item = B;
#[inline]
fn next(&mut self) -> Option<B> {
for x in self.iter.by_ref() {
if let Some(y) = (self.f)(x) {
return Some(y);
}
}
None
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, upper) = self.iter.size_hint();
(0, upper) // can't know a lower bound, due to the predicate
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<B, I: DoubleEndedIterator, F> DoubleEndedIterator for FilterMap<I, F>
where F: FnMut(I::Item) -> Option<B>,
{
#[inline]
fn next_back(&mut self) -> Option<B> {
for x in self.iter.by_ref().rev() {
if let Some(y) = (self.f)(x) {
return Some(y);
}
}
None
}
}
/// An iterator that yields the current count and the element during iteration.
///
/// This `struct` is created by the [`enumerate()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`enumerate()`]: trait.Iterator.html#method.enumerate
/// [`Iterator`]: trait.Iterator.html
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Enumerate<I> {
iter: I,
count: usize,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> Iterator for Enumerate<I> where I: Iterator {
type Item = (usize, <I as Iterator>::Item);
/// # Overflow Behavior
///
/// The method does no guarding against overflows, so enumerating more than
/// `usize::MAX` elements either produces the wrong result or panics. If
/// debug assertions are enabled, a panic is guaranteed.
///
/// # Panics
///
/// Might panic if the index of the element overflows a `usize`.
#[inline]
#[rustc_inherit_overflow_checks]
fn next(&mut self) -> Option<(usize, <I as Iterator>::Item)> {
self.iter.next().map(|a| {
let ret = (self.count, a);
// Possible undefined overflow.
self.count += 1;
ret
})
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
#[inline]
#[rustc_inherit_overflow_checks]
fn nth(&mut self, n: usize) -> Option<(usize, I::Item)> {
self.iter.nth(n).map(|a| {
let i = self.count + n;
self.count = i + 1;
(i, a)
})
}
#[inline]
fn count(self) -> usize {
self.iter.count()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> DoubleEndedIterator for Enumerate<I> where
I: ExactSizeIterator + DoubleEndedIterator
{
#[inline]
fn next_back(&mut self) -> Option<(usize, <I as Iterator>::Item)> {
self.iter.next_back().map(|a| {
let len = self.iter.len();
// Can safely add, `ExactSizeIterator` promises that the number of
// elements fits into a `usize`.
(self.count + len, a)
})
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> ExactSizeIterator for Enumerate<I> where I: ExactSizeIterator {}
#[doc(hidden)]
unsafe impl<I> TrustedRandomAccess for Enumerate<I>
where I: TrustedRandomAccess
{
unsafe fn get_unchecked(&mut self, i: usize) -> (usize, I::Item) {
(self.count + i, self.iter.get_unchecked(i))
}
}
/// An iterator with a `peek()` that returns an optional reference to the next
/// element.
///
/// This `struct` is created by the [`peekable()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`peekable()`]: trait.Iterator.html#method.peekable
/// [`Iterator`]: trait.Iterator.html
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Peekable<I: Iterator> {
iter: I,
peeked: Option<I::Item>,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator> Iterator for Peekable<I> {
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<I::Item> {
match self.peeked {
Some(_) => self.peeked.take(),
None => self.iter.next(),
}
}
#[inline]
#[rustc_inherit_overflow_checks]
fn count(self) -> usize {
(if self.peeked.is_some() { 1 } else { 0 }) + self.iter.count()
}
#[inline]
fn nth(&mut self, n: usize) -> Option<I::Item> {
match self.peeked {
Some(_) if n == 0 => self.peeked.take(),
Some(_) => {
self.peeked = None;
self.iter.nth(n-1)
},
None => self.iter.nth(n)
}
}
#[inline]
fn last(self) -> Option<I::Item> {
self.iter.last().or(self.peeked)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (lo, hi) = self.iter.size_hint();
if self.peeked.is_some() {
let lo = lo.saturating_add(1);
let hi = hi.and_then(|x| x.checked_add(1));
(lo, hi)
} else {
(lo, hi)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: ExactSizeIterator> ExactSizeIterator for Peekable<I> {}
impl<I: Iterator> Peekable<I> {
/// Returns a reference to the next() value without advancing the iterator.
///
/// The `peek()` method will return the value that a call to [`next()`] would
/// return, but does not advance the iterator. Like [`next()`], if there is
/// a value, it's wrapped in a `Some(T)`, but if the iterator is over, it
/// will return `None`.
///
/// [`next()`]: trait.Iterator.html#tymethod.next
///
/// Because `peek()` returns reference, and many iterators iterate over
/// references, this leads to a possibly confusing situation where the
/// return value is a double reference. You can see this effect in the
/// examples below, with `&&i32`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let xs = [1, 2, 3];
///
/// let mut iter = xs.iter().peekable();
///
/// // peek() lets us see into the future
/// assert_eq!(iter.peek(), Some(&&1));
/// assert_eq!(iter.next(), Some(&1));
///
/// assert_eq!(iter.next(), Some(&2));
///
/// // we can peek() multiple times, the iterator won't advance
/// assert_eq!(iter.peek(), Some(&&3));
/// assert_eq!(iter.peek(), Some(&&3));
///
/// assert_eq!(iter.next(), Some(&3));
///
/// // after the iterator is finished, so is peek()
/// assert_eq!(iter.peek(), None);
/// assert_eq!(iter.next(), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn peek(&mut self) -> Option<&I::Item> {
if self.peeked.is_none() {
self.peeked = self.iter.next();
}
match self.peeked {
Some(ref value) => Some(value),
None => None,
}
}
/// Checks if the iterator has finished iterating.
///
/// Returns `true` if there are no more elements in the iterator, and
/// `false` if there are.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(peekable_is_empty)]
///
/// let xs = [1, 2, 3];
///
/// let mut iter = xs.iter().peekable();
///
/// // there are still elements to iterate over
/// assert_eq!(iter.is_empty(), false);
///
/// // let's consume the iterator
/// iter.next();
/// iter.next();
/// iter.next();
///
/// assert_eq!(iter.is_empty(), true);
/// ```
#[unstable(feature = "peekable_is_empty", issue = "32111")]
#[inline]
std: Stabilize APIs for the 1.10 release This commit applies the FCP decisions made by the libs team for the 1.10 cycle, including both new stabilizations and deprecations. Specifically, the list of APIs is: Stabilized: * `os::windows::fs::OpenOptionsExt::access_mode` * `os::windows::fs::OpenOptionsExt::share_mode` * `os::windows::fs::OpenOptionsExt::custom_flags` * `os::windows::fs::OpenOptionsExt::attributes` * `os::windows::fs::OpenOptionsExt::security_qos_flags` * `os::unix::fs::OpenOptionsExt::custom_flags` * `sync::Weak::new` * `Default for sync::Weak` * `panic::set_hook` * `panic::take_hook` * `panic::PanicInfo` * `panic::PanicInfo::payload` * `panic::PanicInfo::location` * `panic::Location` * `panic::Location::file` * `panic::Location::line` * `ffi::CStr::from_bytes_with_nul` * `ffi::CStr::from_bytes_with_nul_unchecked` * `ffi::FromBytesWithNulError` * `fs::Metadata::modified` * `fs::Metadata::accessed` * `fs::Metadata::created` * `sync::atomic::Atomic{Usize,Isize,Bool,Ptr}::compare_exchange` * `sync::atomic::Atomic{Usize,Isize,Bool,Ptr}::compare_exchange_weak` * `collections::{btree,hash}_map::{Occupied,Vacant,}Entry::key` * `os::unix::net::{UnixStream, UnixListener, UnixDatagram, SocketAddr}` * `SocketAddr::is_unnamed` * `SocketAddr::as_pathname` * `UnixStream::connect` * `UnixStream::pair` * `UnixStream::try_clone` * `UnixStream::local_addr` * `UnixStream::peer_addr` * `UnixStream::set_read_timeout` * `UnixStream::set_write_timeout` * `UnixStream::read_timeout` * `UnixStream::write_Timeout` * `UnixStream::set_nonblocking` * `UnixStream::take_error` * `UnixStream::shutdown` * Read/Write/RawFd impls for `UnixStream` * `UnixListener::bind` * `UnixListener::accept` * `UnixListener::try_clone` * `UnixListener::local_addr` * `UnixListener::set_nonblocking` * `UnixListener::take_error` * `UnixListener::incoming` * RawFd impls for `UnixListener` * `UnixDatagram::bind` * `UnixDatagram::unbound` * `UnixDatagram::pair` * `UnixDatagram::connect` * `UnixDatagram::try_clone` * `UnixDatagram::local_addr` * `UnixDatagram::peer_addr` * `UnixDatagram::recv_from` * `UnixDatagram::recv` * `UnixDatagram::send_to` * `UnixDatagram::send` * `UnixDatagram::set_read_timeout` * `UnixDatagram::set_write_timeout` * `UnixDatagram::read_timeout` * `UnixDatagram::write_timeout` * `UnixDatagram::set_nonblocking` * `UnixDatagram::take_error` * `UnixDatagram::shutdown` * RawFd impls for `UnixDatagram` * `{BTree,Hash}Map::values_mut` * `<[_]>::binary_search_by_key` Deprecated: * `StaticCondvar` - this, and all other static synchronization primitives below, are usable today through the lazy-static crate on stable Rust today. Additionally, we'd like the non-static versions to be directly usable in a static context one day, so they're unlikely to be the final forms of the APIs in any case. * `CONDVAR_INIT` * `StaticMutex` * `MUTEX_INIT` * `StaticRwLock` * `RWLOCK_INIT` * `iter::Peekable::is_empty` Closes #27717 Closes #27720 cc #27784 (but encode methods still exist) Closes #30014 Closes #30425 Closes #30449 Closes #31190 Closes #31399 Closes #31767 Closes #32111 Closes #32281 Closes #32312 Closes #32551 Closes #33018
2016-05-17 13:57:07 -05:00
#[rustc_deprecated(since = "1.10.0", reason = "replaced by .peek().is_none()")]
pub fn is_empty(&mut self) -> bool {
self.peek().is_none()
}
}
/// An iterator that rejects elements while `predicate` is true.
///
/// This `struct` is created by the [`skip_while()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`skip_while()`]: trait.Iterator.html#method.skip_while
/// [`Iterator`]: trait.Iterator.html
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone)]
pub struct SkipWhile<I, P> {
iter: I,
flag: bool,
predicate: P,
}
#[stable(feature = "core_impl_debug", since = "1.9.0")]
impl<I: fmt::Debug, P> fmt::Debug for SkipWhile<I, P> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("SkipWhile")
.field("iter", &self.iter)
.field("flag", &self.flag)
.finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator, P> Iterator for SkipWhile<I, P>
where P: FnMut(&I::Item) -> bool
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<I::Item> {
for x in self.iter.by_ref() {
if self.flag || !(self.predicate)(&x) {
self.flag = true;
return Some(x);
}
}
None
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, upper) = self.iter.size_hint();
(0, upper) // can't know a lower bound, due to the predicate
}
}
/// An iterator that only accepts elements while `predicate` is true.
///
/// This `struct` is created by the [`take_while()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`take_while()`]: trait.Iterator.html#method.take_while
/// [`Iterator`]: trait.Iterator.html
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone)]
pub struct TakeWhile<I, P> {
iter: I,
flag: bool,
predicate: P,
}
#[stable(feature = "core_impl_debug", since = "1.9.0")]
impl<I: fmt::Debug, P> fmt::Debug for TakeWhile<I, P> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("TakeWhile")
.field("iter", &self.iter)
.field("flag", &self.flag)
.finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator, P> Iterator for TakeWhile<I, P>
where P: FnMut(&I::Item) -> bool
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<I::Item> {
if self.flag {
None
} else {
self.iter.next().and_then(|x| {
if (self.predicate)(&x) {
Some(x)
} else {
self.flag = true;
None
}
})
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, upper) = self.iter.size_hint();
(0, upper) // can't know a lower bound, due to the predicate
}
}
/// An iterator that skips over `n` elements of `iter`.
///
/// This `struct` is created by the [`skip()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`skip()`]: trait.Iterator.html#method.skip
/// [`Iterator`]: trait.Iterator.html
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Skip<I> {
iter: I,
n: usize
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> Iterator for Skip<I> where I: Iterator {
type Item = <I as Iterator>::Item;
#[inline]
fn next(&mut self) -> Option<I::Item> {
if self.n == 0 {
self.iter.next()
} else {
let old_n = self.n;
self.n = 0;
self.iter.nth(old_n)
}
}
#[inline]
fn nth(&mut self, n: usize) -> Option<I::Item> {
// Can't just add n + self.n due to overflow.
if self.n == 0 {
self.iter.nth(n)
} else {
let to_skip = self.n;
self.n = 0;
// nth(n) skips n+1
if self.iter.nth(to_skip-1).is_none() {
return None;
}
self.iter.nth(n)
}
}
#[inline]
fn count(self) -> usize {
self.iter.count().saturating_sub(self.n)
}
#[inline]
fn last(mut self) -> Option<I::Item> {
if self.n == 0 {
self.iter.last()
} else {
let next = self.next();
if next.is_some() {
// recurse. n should be 0.
self.last().or(next)
} else {
None
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (lower, upper) = self.iter.size_hint();
let lower = lower.saturating_sub(self.n);
let upper = upper.map(|x| x.saturating_sub(self.n));
(lower, upper)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> ExactSizeIterator for Skip<I> where I: ExactSizeIterator {}
#[stable(feature = "double_ended_skip_iterator", since = "1.8.0")]
impl<I> DoubleEndedIterator for Skip<I> where I: DoubleEndedIterator + ExactSizeIterator {
fn next_back(&mut self) -> Option<Self::Item> {
if self.len() > 0 {
self.iter.next_back()
} else {
None
}
}
}
/// An iterator that only iterates over the first `n` iterations of `iter`.
///
/// This `struct` is created by the [`take()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`take()`]: trait.Iterator.html#method.take
/// [`Iterator`]: trait.Iterator.html
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Take<I> {
iter: I,
n: usize
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> Iterator for Take<I> where I: Iterator{
type Item = <I as Iterator>::Item;
#[inline]
fn next(&mut self) -> Option<<I as Iterator>::Item> {
if self.n != 0 {
self.n -= 1;
self.iter.next()
} else {
None
}
}
#[inline]
fn nth(&mut self, n: usize) -> Option<I::Item> {
if self.n > n {
self.n -= n + 1;
self.iter.nth(n)
} else {
if self.n > 0 {
self.iter.nth(self.n - 1);
self.n = 0;
}
None
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (lower, upper) = self.iter.size_hint();
let lower = cmp::min(lower, self.n);
let upper = match upper {
Some(x) if x < self.n => Some(x),
_ => Some(self.n)
};
(lower, upper)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> ExactSizeIterator for Take<I> where I: ExactSizeIterator {}
/// An iterator to maintain state while iterating another iterator.
///
/// This `struct` is created by the [`scan()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`scan()`]: trait.Iterator.html#method.scan
/// [`Iterator`]: trait.Iterator.html
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone)]
pub struct Scan<I, St, F> {
iter: I,
f: F,
state: St,
}
#[stable(feature = "core_impl_debug", since = "1.9.0")]
impl<I: fmt::Debug, St: fmt::Debug, F> fmt::Debug for Scan<I, St, F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Scan")
.field("iter", &self.iter)
.field("state", &self.state)
.finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<B, I, St, F> Iterator for Scan<I, St, F> where
I: Iterator,
F: FnMut(&mut St, I::Item) -> Option<B>,
{
type Item = B;
#[inline]
fn next(&mut self) -> Option<B> {
self.iter.next().and_then(|a| (self.f)(&mut self.state, a))
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, upper) = self.iter.size_hint();
(0, upper) // can't know a lower bound, due to the scan function
}
}
/// An iterator that maps each element to an iterator, and yields the elements
/// of the produced iterators.
///
/// This `struct` is created by the [`flat_map()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`flat_map()`]: trait.Iterator.html#method.flat_map
/// [`Iterator`]: trait.Iterator.html
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone)]
pub struct FlatMap<I, U: IntoIterator, F> {
iter: I,
f: F,
frontiter: Option<U::IntoIter>,
backiter: Option<U::IntoIter>,
}
#[stable(feature = "core_impl_debug", since = "1.9.0")]
impl<I: fmt::Debug, U: IntoIterator, F> fmt::Debug for FlatMap<I, U, F>
where U::IntoIter: fmt::Debug
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("FlatMap")
.field("iter", &self.iter)
.field("frontiter", &self.frontiter)
.field("backiter", &self.backiter)
.finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator, U: IntoIterator, F> Iterator for FlatMap<I, U, F>
where F: FnMut(I::Item) -> U,
{
type Item = U::Item;
#[inline]
fn next(&mut self) -> Option<U::Item> {
loop {
if let Some(ref mut inner) = self.frontiter {
if let Some(x) = inner.by_ref().next() {
return Some(x)
}
}
match self.iter.next().map(&mut self.f) {
None => return self.backiter.as_mut().and_then(|it| it.next()),
next => self.frontiter = next.map(IntoIterator::into_iter),
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (flo, fhi) = self.frontiter.as_ref().map_or((0, Some(0)), |it| it.size_hint());
let (blo, bhi) = self.backiter.as_ref().map_or((0, Some(0)), |it| it.size_hint());
let lo = flo.saturating_add(blo);
match (self.iter.size_hint(), fhi, bhi) {
((0, Some(0)), Some(a), Some(b)) => (lo, a.checked_add(b)),
_ => (lo, None)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: DoubleEndedIterator, U, F> DoubleEndedIterator for FlatMap<I, U, F> where
F: FnMut(I::Item) -> U,
U: IntoIterator,
U::IntoIter: DoubleEndedIterator
{
#[inline]
fn next_back(&mut self) -> Option<U::Item> {
loop {
if let Some(ref mut inner) = self.backiter {
if let Some(y) = inner.next_back() {
return Some(y)
}
}
match self.iter.next_back().map(&mut self.f) {
None => return self.frontiter.as_mut().and_then(|it| it.next_back()),
next => self.backiter = next.map(IntoIterator::into_iter),
}
}
}
}
/// An iterator that yields `None` forever after the underlying iterator
/// yields `None` once.
///
/// This `struct` is created by the [`fuse()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`fuse()`]: trait.Iterator.html#method.fuse
/// [`Iterator`]: trait.Iterator.html
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Fuse<I> {
iter: I,
done: bool
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> Iterator for Fuse<I> where I: Iterator {
type Item = <I as Iterator>::Item;
#[inline]
fn next(&mut self) -> Option<<I as Iterator>::Item> {
if self.done {
None
} else {
let next = self.iter.next();
self.done = next.is_none();
next
}
}
#[inline]
fn nth(&mut self, n: usize) -> Option<I::Item> {
if self.done {
None
} else {
let nth = self.iter.nth(n);
self.done = nth.is_none();
nth
}
}
#[inline]
fn last(self) -> Option<I::Item> {
if self.done {
None
} else {
self.iter.last()
}
}
#[inline]
fn count(self) -> usize {
if self.done {
0
} else {
self.iter.count()
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
if self.done {
(0, Some(0))
} else {
self.iter.size_hint()
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> DoubleEndedIterator for Fuse<I> where I: DoubleEndedIterator {
#[inline]
fn next_back(&mut self) -> Option<<I as Iterator>::Item> {
if self.done {
None
} else {
let next = self.iter.next_back();
self.done = next.is_none();
next
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I> ExactSizeIterator for Fuse<I> where I: ExactSizeIterator {}
/// An iterator that calls a function with a reference to each element before
/// yielding it.
///
/// This `struct` is created by the [`inspect()`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`inspect()`]: trait.Iterator.html#method.inspect
/// [`Iterator`]: trait.Iterator.html
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone)]
pub struct Inspect<I, F> {
iter: I,
f: F,
}
#[stable(feature = "core_impl_debug", since = "1.9.0")]
impl<I: fmt::Debug, F> fmt::Debug for Inspect<I, F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Inspect")
.field("iter", &self.iter)
.finish()
}
}
impl<I: Iterator, F> Inspect<I, F> where F: FnMut(&I::Item) {
#[inline]
fn do_inspect(&mut self, elt: Option<I::Item>) -> Option<I::Item> {
if let Some(ref a) = elt {
(self.f)(a);
}
elt
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator, F> Iterator for Inspect<I, F> where F: FnMut(&I::Item) {
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<I::Item> {
let next = self.iter.next();
self.do_inspect(next)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: DoubleEndedIterator, F> DoubleEndedIterator for Inspect<I, F>
where F: FnMut(&I::Item),
{
#[inline]
fn next_back(&mut self) -> Option<I::Item> {
let next = self.iter.next_back();
self.do_inspect(next)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: ExactSizeIterator, F> ExactSizeIterator for Inspect<I, F>
where F: FnMut(&I::Item) {}