rust/crates/ra_hir/src/ty/infer.rs

725 lines
26 KiB
Rust
Raw Normal View History

//! Type inference, i.e. the process of walking through the code and determining
//! the type of each expression and pattern.
//!
//! For type inference, compare the implementations in rustc (the various
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
//! inference here is the `infer` function, which infers the types of all
//! expressions in a given function.
//!
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
//! which represent currently unknown types; as we walk through the expressions,
//! we might determine that certain variables need to be equal to each other, or
//! to certain types. To record this, we use the union-find implementation from
//! the `ena` crate, which is extracted from rustc.
use std::borrow::Cow;
use std::mem;
use std::ops::Index;
use std::sync::Arc;
use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};
use rustc_hash::FxHashMap;
2019-10-30 09:28:30 -05:00
use hir_def::{
2019-11-22 09:46:39 -06:00
data::{ConstData, FunctionData},
2019-10-30 09:28:30 -05:00
path::known,
2019-11-21 06:39:09 -06:00
resolver::{HasResolver, Resolver, TypeNs},
2019-10-30 09:28:30 -05:00
type_ref::{Mutability, TypeRef},
2019-11-27 03:31:40 -06:00
AdtId, AssocItemId, DefWithBodyId,
2019-10-30 09:28:30 -05:00
};
2019-11-02 15:42:38 -05:00
use hir_expand::{diagnostics::DiagnosticSink, name};
use ra_arena::map::ArenaMap;
2019-05-21 08:24:53 -05:00
use ra_prof::profile;
use test_utils::tested_by;
use super::{
traits::{Guidance, Obligation, ProjectionPredicate, Solution},
2019-11-26 12:04:24 -06:00
ApplicationTy, InEnvironment, ProjectionTy, Substs, TraitEnvironment, TraitRef, Ty, TypeCtor,
TypeWalk, Uncertain,
};
use crate::{
code_model::TypeAlias,
2019-09-08 01:53:49 -05:00
db::HirDatabase,
expr::{BindingAnnotation, Body, ExprId, PatId},
2019-04-16 20:26:01 -05:00
ty::infer::diagnostics::InferenceDiagnostic,
2019-11-26 12:04:24 -06:00
AssocItem, DefWithBody, FloatTy, Function, IntTy, Path, StructField, VariantDef,
};
macro_rules! ty_app {
($ctor:pat, $param:pat) => {
crate::ty::Ty::Apply(crate::ty::ApplicationTy { ctor: $ctor, parameters: $param })
};
($ctor:pat) => {
ty_app!($ctor, _)
};
}
mod unify;
mod path;
mod expr;
mod pat;
mod coerce;
/// The entry point of type inference.
2019-05-21 08:24:53 -05:00
pub fn infer_query(db: &impl HirDatabase, def: DefWithBody) -> Arc<InferenceResult> {
let _p = profile("infer_query");
2019-11-21 06:24:51 -06:00
let resolver = DefWithBodyId::from(def).resolver(db);
2019-11-12 07:46:27 -06:00
let mut ctx = InferenceContext::new(db, def, resolver);
2019-11-22 09:51:53 -06:00
match &def {
DefWithBody::Const(c) => ctx.collect_const(&db.const_data(c.id)),
DefWithBody::Function(f) => ctx.collect_fn(&db.function_data(f.id)),
DefWithBody::Static(s) => ctx.collect_const(&db.static_data(s.id)),
}
ctx.infer_body();
Arc::new(ctx.resolve_all())
}
2019-03-02 13:05:37 -06:00
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
2019-03-04 08:49:18 -06:00
enum ExprOrPatId {
2019-03-04 08:52:48 -06:00
ExprId(ExprId),
PatId(PatId),
}
2019-03-04 08:52:48 -06:00
impl_froms!(ExprOrPatId: ExprId, PatId);
/// Binding modes inferred for patterns.
/// https://doc.rust-lang.org/reference/patterns.html#binding-modes
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum BindingMode {
Move,
Ref(Mutability),
}
impl BindingMode {
2019-07-05 11:02:32 -05:00
pub fn convert(annotation: BindingAnnotation) -> BindingMode {
match annotation {
BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared),
BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
}
}
}
impl Default for BindingMode {
fn default() -> Self {
BindingMode::Move
}
}
/// A mismatch between an expected and an inferred type.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TypeMismatch {
pub expected: Ty,
pub actual: Ty,
}
/// The result of type inference: A mapping from expressions and patterns to types.
#[derive(Clone, PartialEq, Eq, Debug, Default)]
pub struct InferenceResult {
/// For each method call expr, records the function it resolves to.
method_resolutions: FxHashMap<ExprId, Function>,
/// For each field access expr, records the field it resolves to.
field_resolutions: FxHashMap<ExprId, StructField>,
2019-11-24 11:06:55 -06:00
/// For each field in record literal, records the field it resolves to.
record_field_resolutions: FxHashMap<ExprId, StructField>,
2019-07-21 06:11:45 -05:00
/// For each struct literal, records the variant it resolves to.
variant_resolutions: FxHashMap<ExprOrPatId, VariantDef>,
2019-03-02 13:05:37 -06:00
/// For each associated item record what it resolves to
assoc_resolutions: FxHashMap<ExprOrPatId, AssocItem>,
2019-03-23 08:28:47 -05:00
diagnostics: Vec<InferenceDiagnostic>,
pub(super) type_of_expr: ArenaMap<ExprId, Ty>,
pub(super) type_of_pat: ArenaMap<PatId, Ty>,
pub(super) type_mismatches: ArenaMap<ExprId, TypeMismatch>,
}
impl InferenceResult {
pub fn method_resolution(&self, expr: ExprId) -> Option<Function> {
2019-07-04 12:26:44 -05:00
self.method_resolutions.get(&expr).copied()
}
pub fn field_resolution(&self, expr: ExprId) -> Option<StructField> {
2019-07-04 12:26:44 -05:00
self.field_resolutions.get(&expr).copied()
}
2019-11-24 11:06:55 -06:00
pub fn record_field_resolution(&self, expr: ExprId) -> Option<StructField> {
self.record_field_resolutions.get(&expr).copied()
}
2019-07-21 06:11:45 -05:00
pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantDef> {
self.variant_resolutions.get(&id.into()).copied()
}
pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantDef> {
self.variant_resolutions.get(&id.into()).copied()
2019-07-12 11:56:18 -05:00
}
pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<AssocItem> {
2019-07-04 12:26:44 -05:00
self.assoc_resolutions.get(&id.into()).copied()
2019-03-04 08:49:18 -06:00
}
pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<AssocItem> {
2019-07-04 12:26:44 -05:00
self.assoc_resolutions.get(&id.into()).copied()
}
pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
self.type_mismatches.get(expr)
}
2019-03-23 08:28:47 -05:00
pub(crate) fn add_diagnostics(
&self,
db: &impl HirDatabase,
owner: Function,
2019-03-23 12:41:59 -05:00
sink: &mut DiagnosticSink,
2019-03-23 08:28:47 -05:00
) {
2019-03-23 10:35:14 -05:00
self.diagnostics.iter().for_each(|it| it.add_to(db, owner, sink))
2019-03-21 14:13:11 -05:00
}
}
impl Index<ExprId> for InferenceResult {
type Output = Ty;
fn index(&self, expr: ExprId) -> &Ty {
self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
}
}
impl Index<PatId> for InferenceResult {
type Output = Ty;
fn index(&self, pat: PatId) -> &Ty {
self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
}
}
/// The inference context contains all information needed during type inference.
#[derive(Clone, Debug)]
struct InferenceContext<'a, D: HirDatabase> {
db: &'a D,
2019-11-12 07:46:27 -06:00
owner: DefWithBody,
body: Arc<Body>,
resolver: Resolver,
var_unification_table: InPlaceUnificationTable<TypeVarId>,
2019-07-09 14:34:23 -05:00
trait_env: Arc<TraitEnvironment>,
obligations: Vec<Obligation>,
result: InferenceResult,
/// The return type of the function being inferred.
return_ty: Ty,
/// Impls of `CoerceUnsized` used in coercion.
/// (from_ty_ctor, to_ty_ctor) => coerce_generic_index
// FIXME: Use trait solver for this.
// Chalk seems unable to work well with builtin impl of `Unsize` now.
coerce_unsized_map: FxHashMap<(TypeCtor, TypeCtor), usize>,
}
impl<'a, D: HirDatabase> InferenceContext<'a, D> {
2019-11-12 07:46:27 -06:00
fn new(db: &'a D, owner: DefWithBody, resolver: Resolver) -> Self {
InferenceContext {
result: InferenceResult::default(),
var_unification_table: InPlaceUnificationTable::new(),
obligations: Vec::default(),
return_ty: Ty::Unknown, // set in collect_fn_signature
trait_env: TraitEnvironment::lower(db, &resolver),
coerce_unsized_map: Self::init_coerce_unsized_map(db, &resolver),
db,
2019-11-12 07:46:27 -06:00
owner,
2019-11-24 11:53:42 -06:00
body: db.body(owner.into()),
resolver,
}
}
fn resolve_all(mut self) -> InferenceResult {
// FIXME resolve obligations as well (use Guidance if necessary)
let mut result = mem::replace(&mut self.result, InferenceResult::default());
let mut tv_stack = Vec::new();
for ty in result.type_of_expr.values_mut() {
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
*ty = resolved;
}
for ty in result.type_of_pat.values_mut() {
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
*ty = resolved;
}
result
}
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
self.result.type_of_expr.insert(expr, ty);
}
fn write_method_resolution(&mut self, expr: ExprId, func: Function) {
self.result.method_resolutions.insert(expr, func);
}
fn write_field_resolution(&mut self, expr: ExprId, field: StructField) {
self.result.field_resolutions.insert(expr, field);
}
2019-07-21 06:11:45 -05:00
fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantDef) {
self.result.variant_resolutions.insert(id, variant);
2019-07-12 11:56:18 -05:00
}
2019-11-27 03:31:40 -06:00
fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId) {
self.result.assoc_resolutions.insert(id, item.into());
}
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
self.result.type_of_pat.insert(pat, ty);
}
fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
self.result.diagnostics.push(diagnostic);
}
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
let ty = Ty::from_hir(
self.db,
2019-03-23 02:53:48 -05:00
// FIXME use right resolver for block
&self.resolver,
type_ref,
);
let ty = self.insert_type_vars(ty);
self.normalize_associated_types_in(ty)
}
fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
}
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
self.unify_inner(ty1, ty2, 0)
}
fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
if depth > 1000 {
// prevent stackoverflows
panic!("infinite recursion in unification");
}
if ty1 == ty2 {
return true;
}
// try to resolve type vars first
let ty1 = self.resolve_ty_shallow(ty1);
let ty2 = self.resolve_ty_shallow(ty2);
match (&*ty1, &*ty2) {
2019-03-21 16:29:12 -05:00
(Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
}
2019-09-12 13:59:21 -05:00
_ => self.unify_inner_trivial(&ty1, &ty2),
}
}
fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
match (ty1, ty2) {
(Ty::Unknown, _) | (_, Ty::Unknown) => true,
(Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
| (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
| (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2)))
| (
Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)),
Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)),
) => {
// both type vars are unknown since we tried to resolve them
self.var_unification_table.union(*tv1, *tv2);
true
}
// The order of MaybeNeverTypeVar matters here.
// Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
// Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
(Ty::Infer(InferTy::TypeVar(tv)), other)
| (other, Ty::Infer(InferTy::TypeVar(tv)))
| (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other)
| (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv)))
| (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_)))
| (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv)))
| (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_)))
| (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => {
// the type var is unknown since we tried to resolve it
self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
true
}
_ => false,
}
}
fn new_type_var(&mut self) -> Ty {
Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
fn new_integer_var(&mut self) -> Ty {
Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
fn new_float_var(&mut self) -> Ty {
Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
fn new_maybe_never_type_var(&mut self) -> Ty {
Ty::Infer(InferTy::MaybeNeverTypeVar(
self.var_unification_table.new_key(TypeVarValue::Unknown),
))
}
/// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
match ty {
Ty::Unknown => self.new_type_var(),
Ty::Apply(ApplicationTy { ctor: TypeCtor::Int(Uncertain::Unknown), .. }) => {
self.new_integer_var()
}
Ty::Apply(ApplicationTy { ctor: TypeCtor::Float(Uncertain::Unknown), .. }) => {
self.new_float_var()
}
_ => ty,
}
}
fn insert_type_vars(&mut self, ty: Ty) -> Ty {
ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
}
fn resolve_obligations_as_possible(&mut self) {
let obligations = mem::replace(&mut self.obligations, Vec::new());
for obligation in obligations {
let in_env = InEnvironment::new(self.trait_env.clone(), obligation.clone());
let canonicalized = self.canonicalizer().canonicalize_obligation(in_env);
2019-11-21 06:24:51 -06:00
let solution = self
.db
.trait_solve(self.resolver.krate().unwrap().into(), canonicalized.value.clone());
match solution {
Some(Solution::Unique(substs)) => {
canonicalized.apply_solution(self, substs.0);
}
Some(Solution::Ambig(Guidance::Definite(substs))) => {
canonicalized.apply_solution(self, substs.0);
self.obligations.push(obligation);
}
Some(_) => {
// FIXME use this when trying to resolve everything at the end
self.obligations.push(obligation);
}
None => {
// FIXME obligation cannot be fulfilled => diagnostic
}
};
}
}
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types. All types returned by the infer_* functions should
/// be resolved as far as possible, i.e. contain no type variables with
/// known type.
fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
self.resolve_obligations_as_possible();
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
tested_by!(type_var_cycles_resolve_as_possible);
// recursive type
return tv.fallback_value();
}
2019-10-17 10:06:01 -05:00
if let Some(known_ty) =
self.var_unification_table.inlined_probe_value(inner).known()
{
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
ty
}
}
_ => ty,
})
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
let mut ty = Cow::Borrowed(ty);
// The type variable could resolve to a int/float variable. Hence try
// resolving up to three times; each type of variable shouldn't occur
// more than once
for i in 0..3 {
if i > 0 {
tested_by!(type_var_resolves_to_int_var);
}
match &*ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
2019-10-17 10:06:01 -05:00
match self.var_unification_table.inlined_probe_value(inner).known() {
Some(known_ty) => {
// The known_ty can't be a type var itself
ty = Cow::Owned(known_ty.clone());
}
_ => return ty,
}
}
_ => return ty,
}
}
log::error!("Inference variable still not resolved: {:?}", ty);
ty
}
2019-08-11 06:52:34 -05:00
/// Recurses through the given type, normalizing associated types mentioned
/// in it by replacing them by type variables and registering obligations to
/// resolve later. This should be done once for every type we get from some
/// type annotation (e.g. from a let type annotation, field type or function
/// call). `make_ty` handles this already, but e.g. for field types we need
/// to do it as well.
fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
2019-08-11 06:52:34 -05:00
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
ty.fold(&mut |ty| match ty {
Ty::Projection(proj_ty) => self.normalize_projection_ty(proj_ty),
_ => ty,
})
}
fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
let var = self.new_type_var();
2019-09-24 20:32:01 -05:00
let predicate = ProjectionPredicate { projection_ty: proj_ty, ty: var.clone() };
let obligation = Obligation::Projection(predicate);
self.obligations.push(obligation);
var
}
/// Resolves the type completely; type variables without known type are
/// replaced by Ty::Unknown.
fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
tested_by!(type_var_cycles_resolve_completely);
// recursive type
return tv.fallback_value();
}
2019-10-17 10:06:01 -05:00
if let Some(known_ty) =
self.var_unification_table.inlined_probe_value(inner).known()
{
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
tv.fallback_value()
}
}
_ => ty,
})
}
fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantDef>) {
let path = match path {
Some(path) => path,
None => return (Ty::Unknown, None),
};
let resolver = &self.resolver;
2019-11-26 12:04:24 -06:00
// FIXME: this should resolve assoc items as well, see this example:
// https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521
match resolver.resolve_path_in_type_ns_fully(self.db, &path) {
Some(TypeNs::AdtId(AdtId::StructId(strukt))) => {
let substs = Ty::substs_from_path(self.db, resolver, path, strukt.into());
let ty = self.db.ty(strukt.into());
let ty = self.insert_type_vars(ty.apply_substs(substs));
2019-11-26 12:04:24 -06:00
(ty, Some(VariantDef::Struct(strukt.into())))
}
2019-11-26 12:04:24 -06:00
Some(TypeNs::EnumVariantId(var)) => {
let substs = Ty::substs_from_path(self.db, resolver, path, var.into());
let ty = self.db.ty(var.parent.into());
let ty = self.insert_type_vars(ty.apply_substs(substs));
2019-11-26 12:04:24 -06:00
(ty, Some(VariantDef::EnumVariant(var.into())))
}
2019-11-26 12:04:24 -06:00
Some(_) | None => (Ty::Unknown, None),
}
}
2019-06-18 12:07:35 -05:00
fn collect_const(&mut self, data: &ConstData) {
2019-11-22 09:46:39 -06:00
self.return_ty = self.make_ty(&data.type_ref);
}
2019-11-22 08:10:51 -06:00
fn collect_fn(&mut self, data: &FunctionData) {
let body = Arc::clone(&self.body); // avoid borrow checker problem
2019-11-24 09:48:29 -06:00
for (type_ref, pat) in data.params.iter().zip(body.params.iter()) {
let ty = self.make_ty(type_ref);
self.infer_pat(*pat, &ty, BindingMode::default());
}
2019-11-22 08:10:51 -06:00
self.return_ty = self.make_ty(&data.ret_type);
}
fn infer_body(&mut self) {
2019-11-24 09:48:29 -06:00
self.infer_expr(self.body.body_expr, &Expectation::has_type(self.return_ty.clone()));
}
fn resolve_into_iter_item(&self) -> Option<TypeAlias> {
2019-09-15 07:14:33 -05:00
let path = known::std_iter_into_iterator();
2019-11-26 08:21:29 -06:00
let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
self.db.trait_data(trait_).associated_type_by_name(&name::ITEM_TYPE).map(TypeAlias::from)
}
fn resolve_ops_try_ok(&self) -> Option<TypeAlias> {
2019-09-15 07:14:33 -05:00
let path = known::std_ops_try();
2019-11-26 08:21:29 -06:00
let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
self.db.trait_data(trait_).associated_type_by_name(&name::OK_TYPE).map(TypeAlias::from)
}
fn resolve_future_future_output(&self) -> Option<TypeAlias> {
2019-09-15 07:14:33 -05:00
let path = known::std_future_future();
2019-11-26 08:21:29 -06:00
let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
self.db.trait_data(trait_).associated_type_by_name(&name::OUTPUT_TYPE).map(TypeAlias::from)
}
2019-09-11 10:53:41 -05:00
2019-11-26 05:29:12 -06:00
fn resolve_boxed_box(&self) -> Option<AdtId> {
2019-09-15 07:14:33 -05:00
let path = known::std_boxed_box();
let struct_ = self.resolver.resolve_known_struct(self.db, &path)?;
2019-11-26 05:29:12 -06:00
Some(struct_.into())
2019-09-11 10:53:41 -05:00
}
}
/// The ID of a type variable.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct TypeVarId(pub(super) u32);
impl UnifyKey for TypeVarId {
type Value = TypeVarValue;
fn index(&self) -> u32 {
self.0
}
fn from_index(i: u32) -> Self {
TypeVarId(i)
}
fn tag() -> &'static str {
"TypeVarId"
}
}
/// The value of a type variable: either we already know the type, or we don't
/// know it yet.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum TypeVarValue {
Known(Ty),
Unknown,
}
impl TypeVarValue {
fn known(&self) -> Option<&Ty> {
match self {
TypeVarValue::Known(ty) => Some(ty),
TypeVarValue::Unknown => None,
}
}
}
impl UnifyValue for TypeVarValue {
type Error = NoError;
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
match (value1, value2) {
// We should never equate two type variables, both of which have
// known types. Instead, we recursively equate those types.
(TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
"equating two type variables, both of which have known types: {:?} and {:?}",
t1, t2
),
// If one side is known, prefer that one.
(TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
(TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
(TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
}
}
}
/// The kinds of placeholders we need during type inference. There's separate
/// values for general types, and for integer and float variables. The latter
/// two are used for inference of literal values (e.g. `100` could be one of
/// several integer types).
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum InferTy {
TypeVar(TypeVarId),
IntVar(TypeVarId),
FloatVar(TypeVarId),
MaybeNeverTypeVar(TypeVarId),
}
impl InferTy {
fn to_inner(self) -> TypeVarId {
match self {
InferTy::TypeVar(ty)
| InferTy::IntVar(ty)
| InferTy::FloatVar(ty)
| InferTy::MaybeNeverTypeVar(ty) => ty,
}
}
fn fallback_value(self) -> Ty {
match self {
InferTy::TypeVar(..) => Ty::Unknown,
InferTy::IntVar(..) => Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::i32()))),
InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float(Uncertain::Known(FloatTy::f64()))),
InferTy::MaybeNeverTypeVar(..) => Ty::simple(TypeCtor::Never),
}
}
}
/// When inferring an expression, we propagate downward whatever type hint we
/// are able in the form of an `Expectation`.
#[derive(Clone, PartialEq, Eq, Debug)]
struct Expectation {
ty: Ty,
2019-03-23 02:53:48 -05:00
// FIXME: In some cases, we need to be aware whether the expectation is that
// the type match exactly what we passed, or whether it just needs to be
// coercible to the expected type. See Expectation::rvalue_hint in rustc.
}
impl Expectation {
/// The expectation that the type of the expression needs to equal the given
/// type.
fn has_type(ty: Ty) -> Self {
Expectation { ty }
}
/// This expresses no expectation on the type.
fn none() -> Self {
Expectation { ty: Ty::Unknown }
}
}
2019-03-23 08:28:47 -05:00
mod diagnostics {
2019-11-02 15:42:38 -05:00
use hir_expand::diagnostics::DiagnosticSink;
use crate::{db::HirDatabase, diagnostics::NoSuchField, expr::ExprId, Function, HasSource};
2019-03-23 08:28:47 -05:00
#[derive(Debug, PartialEq, Eq, Clone)]
pub(super) enum InferenceDiagnostic {
NoSuchField { expr: ExprId, field: usize },
}
impl InferenceDiagnostic {
2019-03-23 10:35:14 -05:00
pub(super) fn add_to(
&self,
db: &impl HirDatabase,
owner: Function,
2019-03-23 12:41:59 -05:00
sink: &mut DiagnosticSink,
2019-03-23 10:35:14 -05:00
) {
2019-03-23 08:28:47 -05:00
match self {
InferenceDiagnostic::NoSuchField { expr, field } => {
2019-06-11 08:49:56 -05:00
let file = owner.source(db).file_id;
2019-03-23 08:28:47 -05:00
let field = owner.body_source_map(db).field_syntax(*expr, *field);
2019-03-23 10:35:14 -05:00
sink.push(NoSuchField { file, field })
2019-03-23 08:28:47 -05:00
}
}
}
}
}