rust/src/libstd/primitive_docs.rs

422 lines
11 KiB
Rust
Raw Normal View History

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[doc(primitive = "bool")]
//
/// The boolean type.
///
mod prim_bool { }
#[doc(primitive = "char")]
//
2015-07-20 19:12:59 -05:00
/// A Unicode scalar value.
///
/// A `char` represents a
/// *[Unicode scalar
/// value](http://www.unicode.org/glossary/#unicode_scalar_value)*, as it can
/// contain any Unicode code point except high-surrogate and low-surrogate code
/// points.
///
/// As such, only values in the ranges \[0x0,0xD7FF\] and \[0xE000,0x10FFFF\]
/// (inclusive) are allowed. A `char` can always be safely cast to a `u32`;
/// however the converse is not always true due to the above range limits
/// and, as such, should be performed via the `from_u32` function.
///
/// *[See also the `std::char` module](char/index.html).*
///
mod prim_char { }
#[doc(primitive = "unit")]
//
/// The `()` type, sometimes called "unit" or "nil".
///
/// The `()` type has exactly one value `()`, and is used when there
/// is no other meaningful value that could be returned. `()` is most
/// commonly seen implicitly: functions without a `-> ...` implicitly
/// have return type `()`, that is, these are equivalent:
///
/// ```rust
/// fn long() -> () {}
///
/// fn short() {}
/// ```
///
/// The semicolon `;` can be used to discard the result of an
/// expression at the end of a block, making the expression (and thus
/// the block) evaluate to `()`. For example,
///
/// ```rust
/// fn returns_i64() -> i64 {
/// 1i64
/// }
/// fn returns_unit() {
/// 1i64;
/// }
///
/// let is_i64 = {
/// returns_i64()
/// };
/// let is_unit = {
/// returns_i64();
/// };
/// ```
///
mod prim_unit { }
#[doc(primitive = "pointer")]
//
2015-07-20 19:12:59 -05:00
/// Raw, unsafe pointers, `*const T`, and `*mut T`.
///
/// Working with raw pointers in Rust is uncommon,
/// typically limited to a few patterns.
///
/// Use the `null` function to create null pointers, and the `is_null` method
/// of the `*const T` type to check for null. The `*const T` type also defines
/// the `offset` method, for pointer math.
///
/// # Common ways to create raw pointers
///
/// ## 1. Coerce a reference (`&T`) or mutable reference (`&mut T`).
///
/// ```
/// let my_num: i32 = 10;
/// let my_num_ptr: *const i32 = &my_num;
/// let mut my_speed: i32 = 88;
/// let my_speed_ptr: *mut i32 = &mut my_speed;
/// ```
///
/// To get a pointer to a boxed value, dereference the box:
///
/// ```
/// let my_num: Box<i32> = Box::new(10);
/// let my_num_ptr: *const i32 = &*my_num;
/// let mut my_speed: Box<i32> = Box::new(88);
/// let my_speed_ptr: *mut i32 = &mut *my_speed;
/// ```
///
/// This does not take ownership of the original allocation
/// and requires no resource management later,
/// but you must not use the pointer after its lifetime.
///
/// ## 2. Consume a box (`Box<T>`).
///
/// The `into_raw` function consumes a box and returns
/// the raw pointer. It doesn't destroy `T` or deallocate any memory.
///
/// ```
2015-07-27 09:50:19 -05:00
/// #![feature(box_raw)]
///
/// let my_speed: Box<i32> = Box::new(88);
/// let my_speed: *mut i32 = Box::into_raw(my_speed);
///
/// // By taking ownership of the original `Box<T>` though
/// // we are obligated to put it together later to be destroyed.
/// unsafe {
/// drop(Box::from_raw(my_speed));
/// }
/// ```
///
/// Note that here the call to `drop` is for clarity - it indicates
/// that we are done with the given value and it should be destroyed.
///
/// ## 3. Get it from C.
///
/// ```
/// # #![feature(libc)]
/// extern crate libc;
///
/// use std::mem;
///
/// fn main() {
/// unsafe {
/// let my_num: *mut i32 = libc::malloc(mem::size_of::<i32>() as libc::size_t) as *mut i32;
/// if my_num.is_null() {
/// panic!("failed to allocate memory");
/// }
/// libc::free(my_num as *mut libc::c_void);
/// }
/// }
/// ```
///
/// Usually you wouldn't literally use `malloc` and `free` from Rust,
/// but C APIs hand out a lot of pointers generally, so are a common source
/// of raw pointers in Rust.
///
/// *[See also the `std::ptr` module](ptr/index.html).*
///
mod prim_pointer { }
#[doc(primitive = "array")]
//
/// A fixed-size array, denoted `[T; N]`, for the element type, `T`, and
/// the non-negative compile time constant size, `N`.
///
/// Arrays values are created either with an explicit expression that lists
/// each element: `[x, y, z]` or a repeat expression: `[x; N]`. The repeat
/// expression requires that the element type is `Copy`.
///
/// The type `[T; N]` is `Copy` if `T: Copy`.
///
/// Arrays of sizes from 0 to 32 (inclusive) implement the following traits
/// if the element type allows it:
///
/// - `Clone`
/// - `Debug`
/// - `IntoIterator` (implemented for `&[T; N]` and `&mut [T; N]`)
/// - `PartialEq`, `PartialOrd`, `Ord`, `Eq`
/// - `Hash`
/// - `AsRef`, `AsMut`
///
/// Arrays dereference to [slices (`[T]`)][slice], so their methods can be called
/// on arrays.
///
/// [slice]: primitive.slice.html
///
/// Rust does not currently support generics over the size of an array type.
///
/// # Examples
///
/// ```
/// let mut array: [i32; 3] = [0; 3];
///
/// array[1] = 1;
/// array[2] = 2;
///
/// assert_eq!([1, 2], &array[1..]);
///
/// // This loop prints: 0 1 2
/// for x in &array {
/// print!("{} ", x);
/// }
///
/// ```
///
mod prim_array { }
#[doc(primitive = "slice")]
//
/// A dynamically-sized view into a contiguous sequence, `[T]`.
///
/// Slices are a view into a block of memory represented as a pointer and a
/// length.
///
/// ```
/// // slicing a Vec
/// let vec = vec![1, 2, 3];
/// let int_slice = &vec[..];
/// // coercing an array to a slice
/// let str_slice: &[&str] = &["one", "two", "three"];
/// ```
///
/// Slices are either mutable or shared. The shared slice type is `&[T]`,
/// while the mutable slice type is `&mut [T]`, where `T` represents the element
/// type. For example, you can mutate the block of memory that a mutable slice
/// points to:
///
/// ```
/// let x = &mut [1, 2, 3];
/// x[1] = 7;
/// assert_eq!(x, &[1, 7, 3]);
/// ```
///
/// *[See also the `std::slice` module](slice/index.html).*
///
mod prim_slice { }
#[doc(primitive = "str")]
//
2015-07-20 19:12:59 -05:00
/// Unicode string slices.
///
/// Rust's `str` type is one of the core primitive types of the language. `&str`
/// is the borrowed string type. This type of string can only be created from
/// other strings, unless it is a `&'static str` (see below). It is not possible
/// to move out of borrowed strings because they are owned elsewhere.
///
/// # Examples
///
/// Here's some code that uses a `&str`:
///
/// ```
/// let s = "Hello, world.";
/// ```
///
/// This `&str` is a `&'static str`, which is the type of string literals.
/// They're `'static` because literals are available for the entire lifetime of
/// the program.
///
/// You can get a non-`'static` `&str` by taking a slice of a `String`:
///
/// ```
/// let some_string = "Hello, world.".to_string();
/// let s = &some_string;
/// ```
///
/// # Representation
///
/// Rust's string type, `str`, is a sequence of Unicode scalar values encoded as
/// a stream of UTF-8 bytes. All [strings](../../reference.html#literals) are
/// guaranteed to be validly encoded UTF-8 sequences. Additionally, strings are
/// not null-terminated and can thus contain null bytes.
///
/// The actual representation of `str`s have direct mappings to slices: `&str`
/// is the same as `&[u8]`.
///
/// *[See also the `std::str` module](str/index.html).*
///
mod prim_str { }
#[doc(primitive = "tuple")]
//
/// A finite heterogeneous sequence, `(T, U, ..)`.
///
/// To access the _N_-th element of a tuple one can use `N` itself
/// as a field of the tuple.
///
/// Indexing starts from zero, so `0` returns first value, `1`
/// returns second value, and so on. In general, a tuple with _S_
/// elements provides aforementioned fields from `0` to `S-1`.
///
/// If every type inside a tuple implements one of the following
/// traits, then a tuple itself also implements it.
///
/// * `Clone`
/// * `PartialEq`
/// * `Eq`
/// * `PartialOrd`
/// * `Ord`
/// * `Debug`
/// * `Default`
/// * `Hash`
///
/// # Examples
///
/// Accessing elements of a tuple at specified indices:
///
/// ```
/// let x = ("colorless", "green", "ideas", "sleep", "furiously");
/// assert_eq!(x.3, "sleep");
///
/// let v = (3, 3);
/// let u = (1, -5);
/// assert_eq!(v.0 * u.0 + v.1 * u.1, -12);
/// ```
///
/// Using traits implemented for tuples:
///
/// ```
/// let a = (1, 2);
/// let b = (3, 4);
/// assert!(a != b);
///
/// let c = b.clone();
/// assert!(b == c);
///
/// let d : (u32, f32) = Default::default();
/// assert_eq!(d, (0, 0.0f32));
/// ```
///
mod prim_tuple { }
#[doc(primitive = "f32")]
2015-07-20 19:12:59 -05:00
/// The 32-bit floating point type.
///
/// *[See also the `std::f32` module](f32/index.html).*
///
mod prim_f32 { }
#[doc(primitive = "f64")]
//
2015-07-20 19:12:59 -05:00
/// The 64-bit floating point type.
///
/// *[See also the `std::f64` module](f64/index.html).*
///
mod prim_f64 { }
#[doc(primitive = "i8")]
//
2015-07-20 19:12:59 -05:00
/// The 8-bit signed integer type.
///
/// *[See also the `std::i8` module](i8/index.html).*
///
mod prim_i8 { }
#[doc(primitive = "i16")]
//
2015-07-20 19:12:59 -05:00
/// The 16-bit signed integer type.
///
/// *[See also the `std::i16` module](i16/index.html).*
///
mod prim_i16 { }
#[doc(primitive = "i32")]
//
2015-07-20 19:12:59 -05:00
/// The 32-bit signed integer type.
///
/// *[See also the `std::i32` module](i32/index.html).*
///
mod prim_i32 { }
#[doc(primitive = "i64")]
//
2015-07-20 19:12:59 -05:00
/// The 64-bit signed integer type.
///
/// *[See also the `std::i64` module](i64/index.html).*
///
mod prim_i64 { }
#[doc(primitive = "u8")]
//
2015-07-20 19:12:59 -05:00
/// The 8-bit unsigned integer type.
///
/// *[See also the `std::u8` module](u8/index.html).*
///
mod prim_u8 { }
#[doc(primitive = "u16")]
//
2015-07-20 19:12:59 -05:00
/// The 16-bit unsigned integer type.
///
/// *[See also the `std::u16` module](u16/index.html).*
///
mod prim_u16 { }
#[doc(primitive = "u32")]
//
2015-07-20 19:12:59 -05:00
/// The 32-bit unsigned integer type.
///
/// *[See also the `std::u32` module](u32/index.html).*
///
mod prim_u32 { }
#[doc(primitive = "u64")]
//
2015-07-20 19:12:59 -05:00
/// The 64-bit unsigned integer type.
///
/// *[See also the `std::u64` module](u64/index.html).*
///
mod prim_u64 { }
#[doc(primitive = "isize")]
//
2015-07-20 19:12:59 -05:00
/// The pointer-sized signed integer type.
///
/// *[See also the `std::isize` module](isize/index.html).*
///
mod prim_isize { }
#[doc(primitive = "usize")]
//
2015-07-20 19:12:59 -05:00
/// The pointer-sized signed integer type.
///
/// *[See also the `std::usize` module](usize/index.html).*
///
mod prim_usize { }