224 lines
6.9 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2014-11-09 13:59:23 +01:00
#![allow(missing_docs)]
#![allow(non_camel_case_types)]
#![allow(unused_imports)]
#![allow(dead_code)]
#![allow(unused_unsafe)]
#![allow(unused_mut)]
use prelude::v1::*;
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-17 22:47:40 -08:00
use ffi::CStr;
use io::{self, ErrorKind};
use libc;
use num::{Int, SignedInt};
use num;
use old_io::{self, IoResult, IoError};
use str;
use sys_common::mkerr_libc;
macro_rules! helper_init { (static $name:ident: Helper<$m:ty>) => (
static $name: Helper<$m> = Helper {
lock: ::sync::MUTEX_INIT,
cond: ::sync::CONDVAR_INIT,
chan: ::cell::UnsafeCell { value: 0 as *mut Sender<$m> },
signal: ::cell::UnsafeCell { value: 0 },
initialized: ::cell::UnsafeCell { value: false },
shutdown: ::cell::UnsafeCell { value: false },
};
) }
pub mod backtrace;
pub mod c;
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 11:16:40 -08:00
pub mod condvar;
pub mod ext;
pub mod fd;
pub mod fs; // support for std::old_io
pub mod fs2; // support for std::fs
pub mod helper_signal;
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 11:16:40 -08:00
pub mod mutex;
pub mod net;
pub mod os;
pub mod os_str;
pub mod pipe;
pub mod pipe2;
pub mod process;
pub mod process2;
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 11:16:40 -08:00
pub mod rwlock;
pub mod stack_overflow;
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 11:16:40 -08:00
pub mod sync;
pub mod tcp;
pub mod thread;
pub mod thread_local;
pub mod time;
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 11:16:40 -08:00
pub mod timer;
pub mod tty;
pub mod udp;
pub mod addrinfo {
pub use sys_common::net::get_host_addresses;
pub use sys_common::net::get_address_name;
}
// FIXME: move these to c module
pub type sock_t = self::fs::fd_t;
pub type wrlen = libc::size_t;
pub type msglen_t = libc::size_t;
pub unsafe fn close_sock(sock: sock_t) { let _ = libc::close(sock); }
pub fn last_error() -> IoError {
decode_error_detailed(os::errno() as i32)
}
pub fn last_net_error() -> IoError {
last_error()
}
extern "system" {
fn gai_strerror(errcode: libc::c_int) -> *const libc::c_char;
}
pub fn last_gai_error(s: libc::c_int) -> IoError {
let mut err = decode_error(s);
err.detail = Some(unsafe {
std: Implement CString-related RFCs This commit is an implementation of [RFC 592][r592] and [RFC 840][r840]. These two RFCs tweak the behavior of `CString` and add a new `CStr` unsized slice type to the module. [r592]: https://github.com/rust-lang/rfcs/blob/master/text/0592-c-str-deref.md [r840]: https://github.com/rust-lang/rfcs/blob/master/text/0840-no-panic-in-c-string.md The new `CStr` type is only constructable via two methods: 1. By `deref`'ing from a `CString` 2. Unsafely via `CStr::from_ptr` The purpose of `CStr` is to be an unsized type which is a thin pointer to a `libc::c_char` (currently it is a fat pointer slice due to implementation limitations). Strings from C can be safely represented with a `CStr` and an appropriate lifetime as well. Consumers of `&CString` should now consume `&CStr` instead to allow producers to pass in C-originating strings instead of just Rust-allocated strings. A new constructor was added to `CString`, `new`, which takes `T: IntoBytes` instead of separate `from_slice` and `from_vec` methods (both have been deprecated in favor of `new`). The `new` method returns a `Result` instead of panicking. The error variant contains the relevant information about where the error happened and bytes (if present). Conversions are provided to the `io::Error` and `old_io::IoError` types via the `FromError` trait which translate to `InvalidInput`. This is a breaking change due to the modification of existing `#[unstable]` APIs and new deprecation, and more detailed information can be found in the two RFCs. Notable breakage includes: * All construction of `CString` now needs to use `new` and handle the outgoing `Result`. * Usage of `CString` as a byte slice now explicitly needs a `.as_bytes()` call. * The `as_slice*` methods have been removed in favor of just having the `as_bytes*` methods. Closes #22469 Closes #22470 [breaking-change]
2015-02-17 22:47:40 -08:00
let data = CStr::from_ptr(gai_strerror(s));
str::from_utf8(data.to_bytes()).unwrap().to_string()
});
err
}
/// Convert an `errno` value into a high-level error variant and description.
pub fn decode_error(errno: i32) -> IoError {
// FIXME: this should probably be a bit more descriptive...
let (kind, desc) = match errno {
2015-01-22 16:31:00 -08:00
libc::EOF => (old_io::EndOfFile, "end of file"),
libc::ECONNREFUSED => (old_io::ConnectionRefused, "connection refused"),
libc::ECONNRESET => (old_io::ConnectionReset, "connection reset"),
libc::EPERM | libc::EACCES =>
2015-01-22 16:31:00 -08:00
(old_io::PermissionDenied, "permission denied"),
libc::EPIPE => (old_io::BrokenPipe, "broken pipe"),
libc::ENOTCONN => (old_io::NotConnected, "not connected"),
libc::ECONNABORTED => (old_io::ConnectionAborted, "connection aborted"),
libc::EADDRNOTAVAIL => (old_io::ConnectionRefused, "address not available"),
libc::EADDRINUSE => (old_io::ConnectionRefused, "address in use"),
libc::ENOENT => (old_io::FileNotFound, "no such file or directory"),
libc::EISDIR => (old_io::InvalidInput, "illegal operation on a directory"),
libc::ENOSYS => (old_io::IoUnavailable, "function not implemented"),
libc::EINVAL => (old_io::InvalidInput, "invalid argument"),
libc::ENOTTY =>
2015-01-22 16:31:00 -08:00
(old_io::MismatchedFileTypeForOperation,
"file descriptor is not a TTY"),
2015-01-22 16:31:00 -08:00
libc::ETIMEDOUT => (old_io::TimedOut, "operation timed out"),
libc::ECANCELED => (old_io::TimedOut, "operation aborted"),
libc::consts::os::posix88::EEXIST =>
2015-01-22 16:31:00 -08:00
(old_io::PathAlreadyExists, "path already exists"),
// These two constants can have the same value on some systems,
// but different values on others, so we can't use a match
// clause
x if x == libc::EAGAIN || x == libc::EWOULDBLOCK =>
2015-01-22 16:31:00 -08:00
(old_io::ResourceUnavailable, "resource temporarily unavailable"),
2015-01-22 16:31:00 -08:00
_ => (old_io::OtherIoError, "unknown error")
};
IoError { kind: kind, desc: desc, detail: None }
}
pub fn decode_error_detailed(errno: i32) -> IoError {
let mut err = decode_error(errno);
err.detail = Some(os::error_string(errno));
err
}
pub fn decode_error_kind(errno: i32) -> ErrorKind {
match errno as libc::c_int {
libc::ECONNREFUSED => ErrorKind::ConnectionRefused,
libc::ECONNRESET => ErrorKind::ConnectionReset,
libc::EPERM | libc::EACCES => ErrorKind::PermissionDenied,
libc::EPIPE => ErrorKind::BrokenPipe,
libc::ENOTCONN => ErrorKind::NotConnected,
libc::ECONNABORTED => ErrorKind::ConnectionAborted,
libc::EADDRNOTAVAIL => ErrorKind::ConnectionRefused,
libc::EADDRINUSE => ErrorKind::ConnectionRefused,
libc::ENOENT => ErrorKind::FileNotFound,
libc::EISDIR => ErrorKind::InvalidInput,
libc::EINTR => ErrorKind::Interrupted,
libc::EINVAL => ErrorKind::InvalidInput,
libc::ENOTTY => ErrorKind::MismatchedFileTypeForOperation,
libc::ETIMEDOUT => ErrorKind::TimedOut,
libc::ECANCELED => ErrorKind::TimedOut,
libc::consts::os::posix88::EEXIST => ErrorKind::PathAlreadyExists,
// These two constants can have the same value on some systems,
// but different values on others, so we can't use a match
// clause
x if x == libc::EAGAIN || x == libc::EWOULDBLOCK =>
ErrorKind::ResourceUnavailable,
_ => ErrorKind::Other,
}
}
#[inline]
2014-12-07 14:15:25 -05:00
pub fn retry<T, F> (mut f: F) -> T where
T: SignedInt,
F: FnMut() -> T,
{
2014-11-10 09:35:53 +11:00
let one: T = Int::one();
loop {
let n = f();
std: Add a new `env` module This is an implementation of [RFC 578][rfc] which adds a new `std::env` module to replace most of the functionality in the current `std::os` module. More details can be found in the RFC itself, but as a summary the following methods have all been deprecated: [rfc]: https://github.com/rust-lang/rfcs/pull/578 * `os::args_as_bytes` => `env::args` * `os::args` => `env::args` * `os::consts` => `env::consts` * `os::dll_filename` => no replacement, use `env::consts` directly * `os::page_size` => `env::page_size` * `os::make_absolute` => use `env::current_dir` + `join` instead * `os::getcwd` => `env::current_dir` * `os::change_dir` => `env::set_current_dir` * `os::homedir` => `env::home_dir` * `os::tmpdir` => `env::temp_dir` * `os::join_paths` => `env::join_paths` * `os::split_paths` => `env::split_paths` * `os::self_exe_name` => `env::current_exe` * `os::self_exe_path` => use `env::current_exe` + `pop` * `os::set_exit_status` => `env::set_exit_status` * `os::get_exit_status` => `env::get_exit_status` * `os::env` => `env::vars` * `os::env_as_bytes` => `env::vars` * `os::getenv` => `env::var` or `env::var_string` * `os::getenv_as_bytes` => `env::var` * `os::setenv` => `env::set_var` * `os::unsetenv` => `env::remove_var` Many function signatures have also been tweaked for various purposes, but the main changes were: * `Vec`-returning APIs now all return iterators instead * All APIs are now centered around `OsString` instead of `Vec<u8>` or `String`. There is currently on convenience API, `env::var_string`, which can be used to get the value of an environment variable as a unicode `String`. All old APIs are `#[deprecated]` in-place and will remain for some time to allow for migrations. The semantics of the APIs have been tweaked slightly with regard to dealing with invalid unicode (panic instead of replacement). The new `std::env` module is all contained within the `env` feature, so crates must add the following to access the new APIs: #![feature(env)] [breaking-change]
2015-01-27 12:20:58 -08:00
if n == -one && os::errno() == libc::EINTR as i32 { }
else { return n }
}
}
pub fn cvt<T: SignedInt>(t: T) -> io::Result<T> {
let one: T = Int::one();
if t == -one {
Err(io::Error::last_os_error())
} else {
Ok(t)
}
}
pub fn cvt_r<T, F>(mut f: F) -> io::Result<T>
where T: SignedInt, F: FnMut() -> T
{
loop {
match cvt(f()) {
Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
other => return other,
}
}
}
pub fn ms_to_timeval(ms: u64) -> libc::timeval {
libc::timeval {
tv_sec: (ms / 1000) as libc::time_t,
tv_usec: ((ms % 1000) * 1000) as libc::suseconds_t,
}
}
pub fn wouldblock() -> bool {
let err = os::errno();
std: Add a new `env` module This is an implementation of [RFC 578][rfc] which adds a new `std::env` module to replace most of the functionality in the current `std::os` module. More details can be found in the RFC itself, but as a summary the following methods have all been deprecated: [rfc]: https://github.com/rust-lang/rfcs/pull/578 * `os::args_as_bytes` => `env::args` * `os::args` => `env::args` * `os::consts` => `env::consts` * `os::dll_filename` => no replacement, use `env::consts` directly * `os::page_size` => `env::page_size` * `os::make_absolute` => use `env::current_dir` + `join` instead * `os::getcwd` => `env::current_dir` * `os::change_dir` => `env::set_current_dir` * `os::homedir` => `env::home_dir` * `os::tmpdir` => `env::temp_dir` * `os::join_paths` => `env::join_paths` * `os::split_paths` => `env::split_paths` * `os::self_exe_name` => `env::current_exe` * `os::self_exe_path` => use `env::current_exe` + `pop` * `os::set_exit_status` => `env::set_exit_status` * `os::get_exit_status` => `env::get_exit_status` * `os::env` => `env::vars` * `os::env_as_bytes` => `env::vars` * `os::getenv` => `env::var` or `env::var_string` * `os::getenv_as_bytes` => `env::var` * `os::setenv` => `env::set_var` * `os::unsetenv` => `env::remove_var` Many function signatures have also been tweaked for various purposes, but the main changes were: * `Vec`-returning APIs now all return iterators instead * All APIs are now centered around `OsString` instead of `Vec<u8>` or `String`. There is currently on convenience API, `env::var_string`, which can be used to get the value of an environment variable as a unicode `String`. All old APIs are `#[deprecated]` in-place and will remain for some time to allow for migrations. The semantics of the APIs have been tweaked slightly with regard to dealing with invalid unicode (panic instead of replacement). The new `std::env` module is all contained within the `env` feature, so crates must add the following to access the new APIs: #![feature(env)] [breaking-change]
2015-01-27 12:20:58 -08:00
err == libc::EWOULDBLOCK as i32 || err == libc::EAGAIN as i32
}
pub fn set_nonblocking(fd: sock_t, nb: bool) {
let set = nb as libc::c_int;
mkerr_libc(retry(|| unsafe { c::ioctl(fd, c::FIONBIO, &set) })).unwrap();
}
// nothing needed on unix platforms
pub fn init_net() {}