rust/src/libstd/panicking.rs

242 lines
7.7 KiB
Rust
Raw Normal View History

std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 21:11:49 -05:00
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
2015-03-11 17:24:14 -05:00
use io::prelude::*;
use any::Any;
use cell::Cell;
use cell::RefCell;
use intrinsics;
2015-12-18 01:51:55 -06:00
use sync::StaticRwLock;
use sync::atomic::{AtomicBool, Ordering};
2015-03-11 17:24:14 -05:00
use sys::stdio::Stderr;
use sys_common::backtrace;
use sys_common::thread_info;
use sys_common::util;
2015-12-18 01:51:55 -06:00
use thread;
thread_local! { pub static PANIC_COUNT: Cell<usize> = Cell::new(0) }
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 21:11:49 -05:00
thread_local! {
2015-03-11 17:24:14 -05:00
pub static LOCAL_STDERR: RefCell<Option<Box<Write + Send>>> = {
RefCell::new(None)
}
}
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 21:11:49 -05:00
2015-12-18 01:51:55 -06:00
#[derive(Copy, Clone)]
2016-03-15 21:42:45 -05:00
enum Hook {
2015-12-18 01:51:55 -06:00
Default,
Custom(*mut (Fn(&PanicInfo) + 'static + Sync + Send)),
}
2016-03-15 21:42:45 -05:00
static HOOK_LOCK: StaticRwLock = StaticRwLock::new();
static mut HOOK: Hook = Hook::Default;
static FIRST_PANIC: AtomicBool = AtomicBool::new(true);
2015-12-18 01:51:55 -06:00
2016-03-15 21:42:45 -05:00
/// Registers a custom panic hook, replacing any that was previously registered.
2015-12-18 01:51:55 -06:00
///
2016-03-15 21:42:45 -05:00
/// The panic hook is invoked when a thread panics, but before it begins
/// unwinding the stack. The default hook prints a message to standard error
2015-12-18 01:51:55 -06:00
/// and generates a backtrace if requested, but this behavior can be customized
2016-03-15 21:42:45 -05:00
/// with the `set_hook` and `take_hook` functions.
2015-12-18 01:51:55 -06:00
///
2016-03-15 21:42:45 -05:00
/// The hook is provided with a `PanicInfo` struct which contains information
2015-12-18 01:51:55 -06:00
/// about the origin of the panic, including the payload passed to `panic!` and
/// the source code location from which the panic originated.
///
2016-03-15 21:42:45 -05:00
/// The panic hook is a global resource.
2015-12-18 01:51:55 -06:00
///
/// # Panics
///
/// Panics if called from a panicking thread.
#[unstable(feature = "panic_handler", reason = "awaiting feedback", issue = "30449")]
pub fn set_hook(hook: Box<Fn(&PanicInfo) + 'static + Sync + Send>) {
2015-12-18 01:51:55 -06:00
if thread::panicking() {
2016-03-15 21:42:45 -05:00
panic!("cannot modify the panic hook from a panicking thread");
2015-12-18 01:51:55 -06:00
}
unsafe {
2016-03-15 21:42:45 -05:00
let lock = HOOK_LOCK.write();
let old_hook = HOOK;
HOOK = Hook::Custom(Box::into_raw(hook));
2015-12-18 01:51:55 -06:00
drop(lock);
2016-03-15 21:42:45 -05:00
if let Hook::Custom(ptr) = old_hook {
2015-12-18 01:51:55 -06:00
Box::from_raw(ptr);
}
}
}
2016-03-15 21:42:45 -05:00
/// Unregisters the current panic hook, returning it.
2015-12-18 01:51:55 -06:00
///
2016-03-15 21:42:45 -05:00
/// If no custom hook is registered, the default hook will be returned.
2015-12-18 01:51:55 -06:00
///
/// # Panics
///
/// Panics if called from a panicking thread.
#[unstable(feature = "panic_handler", reason = "awaiting feedback", issue = "30449")]
2016-03-15 21:42:45 -05:00
pub fn take_hook() -> Box<Fn(&PanicInfo) + 'static + Sync + Send> {
2015-12-18 01:51:55 -06:00
if thread::panicking() {
2016-03-15 21:42:45 -05:00
panic!("cannot modify the panic hook from a panicking thread");
2015-12-18 01:51:55 -06:00
}
unsafe {
2016-03-15 21:42:45 -05:00
let lock = HOOK_LOCK.write();
let hook = HOOK;
HOOK = Hook::Default;
2015-12-18 01:51:55 -06:00
drop(lock);
2016-03-15 21:42:45 -05:00
match hook {
Hook::Default => Box::new(default_hook),
Hook::Custom(ptr) => {Box::from_raw(ptr)} // FIXME #30530
2015-12-18 01:51:55 -06:00
}
}
}
/// A struct providing information about a panic.
#[unstable(feature = "panic_handler", reason = "awaiting feedback", issue = "30449")]
pub struct PanicInfo<'a> {
payload: &'a (Any + Send),
location: Location<'a>,
}
impl<'a> PanicInfo<'a> {
/// Returns the payload associated with the panic.
///
/// This will commonly, but not always, be a `&'static str` or `String`.
#[unstable(feature = "panic_handler", reason = "awaiting feedback", issue = "30449")]
pub fn payload(&self) -> &(Any + Send) {
self.payload
}
/// Returns information about the location from which the panic originated,
/// if available.
///
/// This method will currently always return `Some`, but this may change
/// in future versions.
#[unstable(feature = "panic_handler", reason = "awaiting feedback", issue = "30449")]
pub fn location(&self) -> Option<&Location> {
Some(&self.location)
}
}
/// A struct containing information about the location of a panic.
#[unstable(feature = "panic_handler", reason = "awaiting feedback", issue = "30449")]
pub struct Location<'a> {
file: &'a str,
line: u32,
}
impl<'a> Location<'a> {
/// Returns the name of the source file from which the panic originated.
#[unstable(feature = "panic_handler", reason = "awaiting feedback", issue = "30449")]
pub fn file(&self) -> &str {
self.file
}
/// Returns the line number from which the panic originated.
#[unstable(feature = "panic_handler", reason = "awaiting feedback", issue = "30449")]
pub fn line(&self) -> u32 {
self.line
}
}
2016-03-15 21:42:45 -05:00
fn default_hook(info: &PanicInfo) {
2015-12-18 01:51:55 -06:00
let panics = PANIC_COUNT.with(|s| s.get());
// If this is a double panic, make sure that we print a backtrace
// for this panic. Otherwise only print it if logging is enabled.
let log_backtrace = panics >= 2 || backtrace::log_enabled();
let file = info.location.file;
let line = info.location.line;
let msg = match info.payload.downcast_ref::<&'static str>() {
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 21:11:49 -05:00
Some(s) => *s,
2015-12-18 01:51:55 -06:00
None => match info.payload.downcast_ref::<String>() {
Some(s) => &s[..],
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 21:11:49 -05:00
None => "Box<Any>",
}
};
let mut err = Stderr::new().ok();
let thread = thread_info::current_thread();
let name = thread.as_ref().and_then(|t| t.name()).unwrap_or("<unnamed>");
let write = |err: &mut ::io::Write| {
let _ = writeln!(err, "thread '{}' panicked at '{}', {}:{}",
name, msg, file, line);
if log_backtrace {
let _ = backtrace::write(err);
} else if FIRST_PANIC.compare_and_swap(true, false, Ordering::SeqCst) {
let _ = writeln!(err, "note: Run with `RUST_BACKTRACE=1` for a backtrace.");
}
};
2014-12-06 20:34:37 -06:00
let prev = LOCAL_STDERR.with(|s| s.borrow_mut().take());
match (prev, err.as_mut()) {
(Some(mut stderr), _) => {
write(&mut *stderr);
2014-12-06 20:34:37 -06:00
let mut s = Some(stderr);
LOCAL_STDERR.with(|slot| {
*slot.borrow_mut() = s.take();
});
}
(None, Some(ref mut err)) => { write(err) }
_ => {}
2014-12-06 20:34:37 -06:00
}
}
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 21:11:49 -05:00
pub fn on_panic(obj: &(Any+Send), file: &'static str, line: u32) {
let panics = PANIC_COUNT.with(|s| {
let count = s.get() + 1;
s.set(count);
count
});
// If this is the third nested call, on_panic triggered the last panic,
// otherwise the double-panic check would have aborted the process.
// Even if it is likely that on_panic was unable to log the backtrace,
// abort immediately to avoid infinite recursion, so that attaching a
// debugger provides a useable stacktrace.
if panics >= 3 {
util::dumb_print(format_args!("thread panicked while processing \
panic. aborting.\n"));
unsafe { intrinsics::abort() }
}
2015-12-18 01:51:55 -06:00
let info = PanicInfo {
payload: obj,
location: Location {
file: file,
line: line,
},
};
unsafe {
2016-03-15 21:42:45 -05:00
let _lock = HOOK_LOCK.read();
match HOOK {
Hook::Default => default_hook(&info),
Hook::Custom(ptr) => (*ptr)(&info),
2015-12-18 01:51:55 -06:00
}
}
if panics >= 2 {
// If a thread panics while it's already unwinding then we
// have limited options. Currently our preference is to
// just abort. In the future we may consider resuming
// unwinding or otherwise exiting the thread cleanly.
util::dumb_print(format_args!("thread panicked while panicking. \
aborting.\n"));
unsafe { intrinsics::abort() }
}
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 21:11:49 -05:00
}