rust/compiler/rustc_ty_utils/src/consts.rs

466 lines
18 KiB
Rust
Raw Normal View History

use rustc_errors::ErrorGuaranteed;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::LocalDefId;
use rustc_index::vec::IndexVec;
use rustc_middle::mir::interpret::{LitToConstError, LitToConstInput};
use rustc_middle::ty::abstract_const::{CastKind, Node, NodeId};
use rustc_middle::ty::{self, TyCtxt, TypeVisitable};
use rustc_middle::{mir, thir};
use rustc_span::Span;
use rustc_target::abi::VariantIdx;
2022-06-28 16:26:54 -05:00
use std::iter;
use crate::errors::{GenericConstantTooComplex, GenericConstantTooComplexSub};
/// Destructures array, ADT or tuple constants into the constants
/// of their fields.
pub(crate) fn destructure_const<'tcx>(
tcx: TyCtxt<'tcx>,
const_: ty::Const<'tcx>,
) -> ty::DestructuredConst<'tcx> {
2022-06-28 16:26:54 -05:00
let ty::ConstKind::Value(valtree) = const_.kind() else {
bug!("cannot destructure constant {:?}", const_)
};
2022-06-28 16:26:54 -05:00
let branches = match valtree {
ty::ValTree::Branch(b) => b,
_ => bug!("cannot destructure constant {:?}", const_),
};
2022-06-28 16:26:54 -05:00
let (fields, variant) = match const_.ty().kind() {
ty::Array(inner_ty, _) | ty::Slice(inner_ty) => {
// construct the consts for the elements of the array/slice
let field_consts = branches
.iter()
.map(|b| tcx.mk_const(ty::ConstS { kind: ty::ConstKind::Value(*b), ty: *inner_ty }))
.collect::<Vec<_>>();
debug!(?field_consts);
2022-06-28 16:26:54 -05:00
(field_consts, None)
}
ty::Adt(def, _) if def.variants().is_empty() => bug!("unreachable"),
ty::Adt(def, substs) => {
let (variant_idx, branches) = if def.is_enum() {
let (head, rest) = branches.split_first().unwrap();
(VariantIdx::from_u32(head.unwrap_leaf().try_to_u32().unwrap()), rest)
} else {
(VariantIdx::from_u32(0), branches)
};
let fields = &def.variant(variant_idx).fields;
let mut field_consts = Vec::with_capacity(fields.len());
2022-06-28 16:26:54 -05:00
for (field, field_valtree) in iter::zip(fields, branches) {
let field_ty = field.ty(tcx, substs);
let field_const = tcx.mk_const(ty::ConstS {
kind: ty::ConstKind::Value(*field_valtree),
ty: field_ty,
});
field_consts.push(field_const);
}
2022-06-28 16:26:54 -05:00
debug!(?field_consts);
(field_consts, Some(variant_idx))
}
ty::Tuple(elem_tys) => {
let fields = iter::zip(*elem_tys, branches)
.map(|(elem_ty, elem_valtree)| {
tcx.mk_const(ty::ConstS {
kind: ty::ConstKind::Value(*elem_valtree),
ty: elem_ty,
})
2022-06-28 16:26:54 -05:00
})
.collect::<Vec<_>>();
2022-06-28 16:26:54 -05:00
(fields, None)
}
_ => bug!("cannot destructure constant {:?}", const_),
};
2022-06-28 16:26:54 -05:00
let fields = tcx.arena.alloc_from_iter(fields.into_iter());
2022-06-28 16:26:54 -05:00
ty::DestructuredConst { variant, fields }
}
pub struct AbstractConstBuilder<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
body_id: thir::ExprId,
body: &'a thir::Thir<'tcx>,
/// The current WIP node tree.
nodes: IndexVec<NodeId, Node<'tcx>>,
}
impl<'a, 'tcx> AbstractConstBuilder<'a, 'tcx> {
fn root_span(&self) -> Span {
self.body.exprs[self.body_id].span
}
fn error(&mut self, sub: GenericConstantTooComplexSub) -> Result<!, ErrorGuaranteed> {
let reported = self.tcx.sess.emit_err(GenericConstantTooComplex {
span: self.root_span(),
maybe_supported: None,
sub,
});
Err(reported)
}
fn maybe_supported_error(
&mut self,
sub: GenericConstantTooComplexSub,
) -> Result<!, ErrorGuaranteed> {
let reported = self.tcx.sess.emit_err(GenericConstantTooComplex {
span: self.root_span(),
maybe_supported: Some(()),
sub,
});
Err(reported)
}
#[instrument(skip(tcx, body, body_id), level = "debug")]
pub fn new(
tcx: TyCtxt<'tcx>,
(body, body_id): (&'a thir::Thir<'tcx>, thir::ExprId),
) -> Result<Option<AbstractConstBuilder<'a, 'tcx>>, ErrorGuaranteed> {
let builder = AbstractConstBuilder { tcx, body_id, body, nodes: IndexVec::new() };
struct IsThirPolymorphic<'a, 'tcx> {
is_poly: bool,
thir: &'a thir::Thir<'tcx>,
}
use crate::rustc_middle::thir::visit::Visitor;
use thir::visit;
impl<'a, 'tcx> IsThirPolymorphic<'a, 'tcx> {
fn expr_is_poly(&mut self, expr: &thir::Expr<'tcx>) -> bool {
if expr.ty.has_param_types_or_consts() {
return true;
}
match expr.kind {
thir::ExprKind::NamedConst { substs, .. } => substs.has_param_types_or_consts(),
thir::ExprKind::ConstParam { .. } => true,
thir::ExprKind::Repeat { value, count } => {
self.visit_expr(&self.thir()[value]);
count.has_param_types_or_consts()
}
_ => false,
}
}
fn pat_is_poly(&mut self, pat: &thir::Pat<'tcx>) -> bool {
if pat.ty.has_param_types_or_consts() {
return true;
}
match pat.kind.as_ref() {
thir::PatKind::Constant { value } => value.has_param_types_or_consts(),
thir::PatKind::Range(thir::PatRange { lo, hi, .. }) => {
lo.has_param_types_or_consts() || hi.has_param_types_or_consts()
}
_ => false,
}
}
}
impl<'a, 'tcx> visit::Visitor<'a, 'tcx> for IsThirPolymorphic<'a, 'tcx> {
fn thir(&self) -> &'a thir::Thir<'tcx> {
&self.thir
}
#[instrument(skip(self), level = "debug")]
fn visit_expr(&mut self, expr: &thir::Expr<'tcx>) {
self.is_poly |= self.expr_is_poly(expr);
if !self.is_poly {
visit::walk_expr(self, expr)
}
}
#[instrument(skip(self), level = "debug")]
fn visit_pat(&mut self, pat: &thir::Pat<'tcx>) {
self.is_poly |= self.pat_is_poly(pat);
if !self.is_poly {
visit::walk_pat(self, pat);
}
}
}
let mut is_poly_vis = IsThirPolymorphic { is_poly: false, thir: body };
visit::walk_expr(&mut is_poly_vis, &body[body_id]);
debug!("AbstractConstBuilder: is_poly={}", is_poly_vis.is_poly);
if !is_poly_vis.is_poly {
return Ok(None);
}
Ok(Some(builder))
}
/// We do not allow all binary operations in abstract consts, so filter disallowed ones.
fn check_binop(op: mir::BinOp) -> bool {
use mir::BinOp::*;
match op {
Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr | Eq | Lt | Le
| Ne | Ge | Gt => true,
Offset => false,
}
}
/// While we currently allow all unary operations, we still want to explicitly guard against
/// future changes here.
fn check_unop(op: mir::UnOp) -> bool {
use mir::UnOp::*;
match op {
Not | Neg => true,
}
}
/// Builds the abstract const by walking the thir and bailing out when
/// encountering an unsupported operation.
pub fn build(mut self) -> Result<&'tcx [Node<'tcx>], ErrorGuaranteed> {
2022-07-12 02:11:05 -05:00
debug!("AbstractConstBuilder::build: body={:?}", &*self.body);
self.recurse_build(self.body_id)?;
for n in self.nodes.iter() {
if let Node::Leaf(ct) = n {
if let ty::ConstKind::Unevaluated(ct) = ct.kind() {
// `AbstractConst`s should not contain any promoteds as they require references which
// are not allowed.
assert_eq!(ct.promoted, None);
assert_eq!(ct, self.tcx.erase_regions(ct));
}
}
}
Ok(self.tcx.arena.alloc_from_iter(self.nodes.into_iter()))
}
fn recurse_build(&mut self, node: thir::ExprId) -> Result<NodeId, ErrorGuaranteed> {
use thir::ExprKind;
let node = &self.body.exprs[node];
Ok(match &node.kind {
// I dont know if handling of these 3 is correct
&ExprKind::Scope { value, .. } => self.recurse_build(value)?,
&ExprKind::PlaceTypeAscription { source, .. }
| &ExprKind::ValueTypeAscription { source, .. } => self.recurse_build(source)?,
&ExprKind::Literal { lit, neg } => {
let sp = node.span;
let constant = match self.tcx.at(sp).lit_to_const(LitToConstInput {
lit: &lit.node,
ty: node.ty,
neg,
}) {
Ok(c) => c,
Err(LitToConstError::Reported) => self.tcx.const_error(node.ty),
Err(LitToConstError::TypeError) => {
bug!("encountered type error in lit_to_const")
}
};
self.nodes.push(Node::Leaf(constant))
}
&ExprKind::NonHirLiteral { lit, user_ty: _ } => {
let val = ty::ValTree::from_scalar_int(lit);
self.nodes.push(Node::Leaf(ty::Const::from_value(self.tcx, val, node.ty)))
}
&ExprKind::ZstLiteral { user_ty: _ } => {
let val = ty::ValTree::zst();
self.nodes.push(Node::Leaf(ty::Const::from_value(self.tcx, val, node.ty)))
}
&ExprKind::NamedConst { def_id, substs, user_ty: _ } => {
let uneval = ty::Unevaluated::new(ty::WithOptConstParam::unknown(def_id), substs);
let constant = self
.tcx
.mk_const(ty::ConstS { kind: ty::ConstKind::Unevaluated(uneval), ty: node.ty });
self.nodes.push(Node::Leaf(constant))
}
ExprKind::ConstParam { param, .. } => {
let const_param = self
.tcx
.mk_const(ty::ConstS { kind: ty::ConstKind::Param(*param), ty: node.ty });
self.nodes.push(Node::Leaf(const_param))
}
ExprKind::Call { fun, args, .. } => {
let fun = self.recurse_build(*fun)?;
let mut new_args = Vec::<NodeId>::with_capacity(args.len());
for &id in args.iter() {
new_args.push(self.recurse_build(id)?);
}
let new_args = self.tcx.arena.alloc_slice(&new_args);
self.nodes.push(Node::FunctionCall(fun, new_args))
}
&ExprKind::Binary { op, lhs, rhs } if Self::check_binop(op) => {
let lhs = self.recurse_build(lhs)?;
let rhs = self.recurse_build(rhs)?;
self.nodes.push(Node::Binop(op, lhs, rhs))
}
&ExprKind::Unary { op, arg } if Self::check_unop(op) => {
let arg = self.recurse_build(arg)?;
self.nodes.push(Node::UnaryOp(op, arg))
}
// This is necessary so that the following compiles:
//
// ```
// fn foo<const N: usize>(a: [(); N + 1]) {
// bar::<{ N + 1 }>();
// }
// ```
ExprKind::Block { block } => {
if let thir::Block { stmts: box [], expr: Some(e), .. } = &self.body.blocks[*block]
{
self.recurse_build(*e)?
} else {
self.maybe_supported_error(GenericConstantTooComplexSub::BlockNotSupported(
node.span,
))?
}
}
// `ExprKind::Use` happens when a `hir::ExprKind::Cast` is a
// "coercion cast" i.e. using a coercion or is a no-op.
// This is important so that `N as usize as usize` doesnt unify with `N as usize`. (untested)
&ExprKind::Use { source } => {
let arg = self.recurse_build(source)?;
self.nodes.push(Node::Cast(CastKind::Use, arg, node.ty))
}
&ExprKind::Cast { source } => {
let arg = self.recurse_build(source)?;
self.nodes.push(Node::Cast(CastKind::As, arg, node.ty))
}
ExprKind::Borrow { arg, .. } => {
let arg_node = &self.body.exprs[*arg];
// Skip reborrows for now until we allow Deref/Borrow/AddressOf
// expressions.
// FIXME(generic_const_exprs): Verify/explain why this is sound
2022-07-12 02:11:05 -05:00
if let ExprKind::Deref { arg } = arg_node.kind {
self.recurse_build(arg)?
} else {
self.maybe_supported_error(GenericConstantTooComplexSub::BorrowNotSupported(
node.span,
))?
}
}
// FIXME(generic_const_exprs): We may want to support these.
ExprKind::AddressOf { .. } | ExprKind::Deref { .. } => self.maybe_supported_error(
GenericConstantTooComplexSub::AddressAndDerefNotSupported(node.span),
)?,
ExprKind::Repeat { .. } | ExprKind::Array { .. } => self.maybe_supported_error(
GenericConstantTooComplexSub::ArrayNotSupported(node.span),
)?,
ExprKind::NeverToAny { .. } => self.maybe_supported_error(
GenericConstantTooComplexSub::NeverToAnyNotSupported(node.span),
)?,
ExprKind::Tuple { .. } => self.maybe_supported_error(
GenericConstantTooComplexSub::TupleNotSupported(node.span),
)?,
ExprKind::Index { .. } => self.maybe_supported_error(
GenericConstantTooComplexSub::IndexNotSupported(node.span),
)?,
ExprKind::Field { .. } => self.maybe_supported_error(
GenericConstantTooComplexSub::FieldNotSupported(node.span),
)?,
ExprKind::ConstBlock { .. } => self.maybe_supported_error(
GenericConstantTooComplexSub::ConstBlockNotSupported(node.span),
)?,
ExprKind::Adt(_) => self
.maybe_supported_error(GenericConstantTooComplexSub::AdtNotSupported(node.span))?,
// dont know if this is correct
ExprKind::Pointer { .. } => {
self.error(GenericConstantTooComplexSub::PointerNotSupported(node.span))?
}
ExprKind::Yield { .. } => {
self.error(GenericConstantTooComplexSub::YieldNotSupported(node.span))?
}
ExprKind::Continue { .. } | ExprKind::Break { .. } | ExprKind::Loop { .. } => {
self.error(GenericConstantTooComplexSub::LoopNotSupported(node.span))?
}
ExprKind::Box { .. } => {
self.error(GenericConstantTooComplexSub::BoxNotSupported(node.span))?
}
ExprKind::Unary { .. } => unreachable!(),
// we handle valid unary/binary ops above
ExprKind::Binary { .. } => {
self.error(GenericConstantTooComplexSub::BinaryNotSupported(node.span))?
}
ExprKind::LogicalOp { .. } => {
self.error(GenericConstantTooComplexSub::LogicalOpNotSupported(node.span))?
}
ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => {
self.error(GenericConstantTooComplexSub::AssignNotSupported(node.span))?
}
ExprKind::Closure { .. } | ExprKind::Return { .. } => {
self.error(GenericConstantTooComplexSub::ClosureAndReturnNotSupported(node.span))?
}
// let expressions imply control flow
ExprKind::Match { .. } | ExprKind::If { .. } | ExprKind::Let { .. } => {
self.error(GenericConstantTooComplexSub::ControlFlowNotSupported(node.span))?
}
ExprKind::InlineAsm { .. } => {
self.error(GenericConstantTooComplexSub::InlineAsmNotSupported(node.span))?
}
// we dont permit let stmts so `VarRef` and `UpvarRef` cant happen
ExprKind::VarRef { .. }
| ExprKind::UpvarRef { .. }
| ExprKind::StaticRef { .. }
| ExprKind::ThreadLocalRef(_) => {
self.error(GenericConstantTooComplexSub::OperationNotSupported(node.span))?
}
})
}
}
/// Builds an abstract const, do not use this directly, but use `AbstractConst::new` instead.
pub fn thir_abstract_const<'tcx>(
tcx: TyCtxt<'tcx>,
def: ty::WithOptConstParam<LocalDefId>,
) -> Result<Option<&'tcx [Node<'tcx>]>, ErrorGuaranteed> {
if tcx.features().generic_const_exprs {
match tcx.def_kind(def.did) {
// FIXME(generic_const_exprs): We currently only do this for anonymous constants,
// meaning that we do not look into associated constants. I(@lcnr) am not yet sure whether
// we want to look into them or treat them as opaque projections.
//
// Right now we do neither of that and simply always fail to unify them.
DefKind::AnonConst | DefKind::InlineConst => (),
_ => return Ok(None),
}
let body = tcx.thir_body(def)?;
AbstractConstBuilder::new(tcx, (&*body.0.borrow(), body.1))?
.map(AbstractConstBuilder::build)
.transpose()
} else {
Ok(None)
}
}
pub fn provide(providers: &mut ty::query::Providers) {
*providers = ty::query::Providers {
destructure_const,
thir_abstract_const: |tcx, def_id| {
let def_id = def_id.expect_local();
if let Some(def) = ty::WithOptConstParam::try_lookup(def_id, tcx) {
tcx.thir_abstract_const_of_const_arg(def)
} else {
thir_abstract_const(tcx, ty::WithOptConstParam::unknown(def_id))
}
},
thir_abstract_const_of_const_arg: |tcx, (did, param_did)| {
thir_abstract_const(
tcx,
ty::WithOptConstParam { did, const_param_did: Some(param_did) },
)
},
..*providers
};
}